Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = cation recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Viewed by 190
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

19 pages, 5960 KB  
Article
Involvement of Surface Receptors in the Uptake and Cellular Responses Induced by Cationic Polyamine-Based Carbon Dots in Macrophages
by Agathe Cerland, Ezeddine Harmouch, Mickaël Rapp, Luc Lebeau, Françoise Pons and Carole Ronzani
Toxics 2025, 13(9), 731; https://doi.org/10.3390/toxics13090731 - 30 Aug 2025
Viewed by 665
Abstract
Cationic polyamine-based carbon dots (CDs) are increasingly being explored for biomedical applications. These ultrasmall (<10 nm) fluorescent nanoparticles, synthesized from organic precursors and functionalized with polyamines, possess a strong positive surface charge that enables efficient complexation and delivery of nucleic acids, making them [...] Read more.
Cationic polyamine-based carbon dots (CDs) are increasingly being explored for biomedical applications. These ultrasmall (<10 nm) fluorescent nanoparticles, synthesized from organic precursors and functionalized with polyamines, possess a strong positive surface charge that enables efficient complexation and delivery of nucleic acids, making them promising candidates for gene therapy. However, the mechanisms by which the immune system, particularly macrophages, recognizes and responds to these nanomaterials remain poorly understood. In this study, we investigated the role of surface receptors in the uptake and biological effects of cationic polyamine-based CDs in macrophages. Our data showed that Fc receptors and the Toll-like receptor 4 (TLR4) were minimally involved in CD internalization and associated cellular responses in contrast to scavenger receptors (SRs). Indeed, SR inhibition reduced CD-induced cell viability loss, LDH release, and secretion of the pro-inflammatory cytokine IL-1β. Among SRs, SR-A1 was identified as a key receptor mediating CD recognition and toxicity, likely through activation of the MERTK signaling pathway. Importantly, these mechanisms occurred in the absence of serum, indicating that protein corona formation is not required for CD interaction with macrophage surface receptors. Overall, our findings highlight the prominent role of SRs, particularly SR-A1, as receptors recognizing cationic polyamine-based CDs on the surface of macrophages, and provide new insights into the cellular mechanisms underlying the immunotoxicity of these carbon-based nanomaterials. Full article
Show Figures

Graphical abstract

17 pages, 3952 KB  
Article
BA-CD Composite Polymers for Efficient Adsorption of Diverse Dyes and Its Mechanism: A Discussion-Based Thermal Dynamic and Kinetic Study
by Zhaona Liu, Make Li, Yangyang Zheng and Huacheng Zhang
Polymers 2025, 17(17), 2357; https://doi.org/10.3390/polym17172357 - 29 Aug 2025
Viewed by 598
Abstract
Boric acid/β-CD-based polymers (BA-CD) possess hierarchical porous structures and efficient functional groups for further molecular recognition, which are used for the adsorption of a series of cationic and anionic organic dyes. The effects of pH, contact time, initial concentration of solution, and temperature [...] Read more.
Boric acid/β-CD-based polymers (BA-CD) possess hierarchical porous structures and efficient functional groups for further molecular recognition, which are used for the adsorption of a series of cationic and anionic organic dyes. The effects of pH, contact time, initial concentration of solution, and temperature on the adsorption performance were experimentally investigated in detail. Surprisingly, the adsorption capacities of BA-CD towards RB exhibited a higher value of 733.2 mg g−1 among a series of cationic and anionic dyes. The adsorption kinetics further indicated that the adsorption of dyes by BA-CD belonged to a quasi-second-order kinetic model, while the adsorption isotherms demonstrated the adsorption process as the Langmuir isotherm model. The characterization of the adsorption process was performed in the presence of monomolecular layer chemisorption. In addition, the reusability test showed that BA-CD had a high reusability rate of 90% in MG after five cycles, indicating its future potential for the treatment of dye wastewater. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 2332 KB  
Review
Glutamate-Mediated Neural Alterations in Lead Exposure: Mechanisms, Pathways, and Phenotypes
by Wagner A. Tamagno and Jennifer L. Freeman
Toxics 2025, 13(7), 519; https://doi.org/10.3390/toxics13070519 - 21 Jun 2025
Cited by 1 | Viewed by 1416
Abstract
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial [...] Read more.
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial use, and ongoing applications in modern technologies. This review focuses on the mechanisms by which Pb disrupts glutamatergic signaling, a critical pathway for learning, memory, and synaptic plasticity. Pb’s interference with glutamate receptors (ionotropic NMDA and AMPA, as well as metabotropic receptors), transporters (EAATs, VGLUTs, and SNATs), and metabolic pathways (glutamate–glutamine cycle, TCA cycle, and glutathione synthesis) are detailed. By mimicking divalent cations like Ca2+ and Zn2+, Pb2+ disrupts calcium homeostasis, exacerbates excitotoxicity, and induces oxidative stress, ultimately impairing neuronal communication and synaptic function. These molecular disruptions manifest cognitive deficits, behavioral abnormalities, and increased susceptibility to neurodevelopmental and neurodegenerative disorders. Understanding Pb’s impact on glutamatergic neurotransmission offers critical insights into its neurotoxic profile and highlights the importance of addressing its effects on neural function. Full article
Show Figures

Graphical abstract

30 pages, 5237 KB  
Article
A Detailed Thermodynamic Description of Ion Pair Binding by a Calix[4]arene Derivative Containing Urea and Amide Functionalities
by Marija Cvetnić, Tamara Rinkovec, Robert Vianello, Gordan Horvat, Nikola Bregović and Vladislav Tomišić
Molecules 2025, 30(11), 2464; https://doi.org/10.3390/molecules30112464 - 4 Jun 2025
Cited by 1 | Viewed by 1229
Abstract
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents [...] Read more.
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents a difficult task that is rarely resolved due to various coupled processes. Here, we present a comprehensive study of ion pair (NaCl, NaHSO4, and NaH2PO4) binding by a ureido–amide calix[4]arene host in acetonitrile using a series of experimental techniques and molecular dynamics simulations. We devoted particular attention to characterizing the side processes (ion association and salt precipitation) and included them in the models describing ion pair complex formation. For this purpose, a multimethod approach (potentiometry, conductometry, ITC, flame AES) was employed, generating reliable data which provided insight into the thermodynamic effect of each included equilibrium. Positive cooperativity was observed in the context of NaCl and NaHSO4 binding by the studied calixarene. Computational results related to the NaCl complex in acetonitrile revealed that favorable Coulombic interactions, changes in affinity for solvent molecule inclusion, and intramolecular hydrogen bonding contributed to cation-induced cooperativity. Full article
Show Figures

Graphical abstract

32 pages, 16345 KB  
Article
Surface Ion-Imprinted Polypropylene Fibers for Selective and Rapid Adsorption of Borate Ions: Preparation, Characterization, and Performance Study
by Hui Jiang, Xinchi Zong, Zhengwei Luo, Wenhua Geng and Jianliang Zhu
Polymers 2025, 17(10), 1368; https://doi.org/10.3390/polym17101368 - 16 May 2025
Viewed by 467
Abstract
This study presents a novel ion-imprinted fiber material, I-(PP-g-GMA-NMDG), designed for the rapid and selective adsorption of borate ions. Leveraging low-temperature plasma graft polymerization, polypropylene (PP) melt-blown fibers were functionalized with glycidyl methacrylate (GMA) and N-methyl-D-glucamine (NMDG) to introduce tailored [...] Read more.
This study presents a novel ion-imprinted fiber material, I-(PP-g-GMA-NMDG), designed for the rapid and selective adsorption of borate ions. Leveraging low-temperature plasma graft polymerization, polypropylene (PP) melt-blown fibers were functionalized with glycidyl methacrylate (GMA) and N-methyl-D-glucamine (NMDG) to introduce tailored recognition sites. Systematic optimization of plasma parameters (100 W discharge power, O2 atmosphere) and liquid-phase grafting conditions (28.5% GMA, 85 °C, 2.5 h) achieved a grafting rate of 203.26%. The imprinted fibers exhibited exceptional adsorption performance, with a maximum capacity of 35.85 mg/g at pH 9, reaching 90% saturation within 60 min. Adsorption kinetics adhered to a pseudo-second-order model, while the Freundlich isotherm indicated multilayer adsorption. Competitive ion experiments demonstrated high selectivity for B(OH)4 over anions (SO42− and Cl) and cations (Na+, K+, Ca2+, and Mg2+), which was attributed to the precise spatial and charge complementarity of the imprinted cavities. Characterization via FT-IR, XRD, and SEM confirmed successful synthesis and structural stability. The material retained 78.1% adsorption efficiency after five regeneration cycles, showcasing its practicality for boron recovery from wastewater. This work advances boron-selective adsorption technology by combining plasma modification with ion imprinting, offering a sustainable solution for industrial and environmental applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

26 pages, 5996 KB  
Article
N-N-Substituted Piperazine, Cmp2, Improves Cognitive and Motor Functions in 5xFAD Mice
by Nikita Zernov, Daria Melenteva, Viktor Ghamaryan, Ani Makichyan, Lernik Hunanyan and Elena Popugaeva
Int. J. Mol. Sci. 2025, 26(10), 4591; https://doi.org/10.3390/ijms26104591 - 10 May 2025
Cited by 1 | Viewed by 781
Abstract
The piperazine derivative N-(2,6-difluorophenyl)-2-(4-phenylpiperazin-1-yl)propanamide (cmp2) has emerged as a potential transient receptor potential cation channel, subfamily C, member 6 (TRPC6) modulator, offering a promising pathway for Alzheimer’s disease (AD) therapy. Our recent findings identify cmp2 as a novel compound with synaptoprotective effects in [...] Read more.
The piperazine derivative N-(2,6-difluorophenyl)-2-(4-phenylpiperazin-1-yl)propanamide (cmp2) has emerged as a potential transient receptor potential cation channel, subfamily C, member 6 (TRPC6) modulator, offering a promising pathway for Alzheimer’s disease (AD) therapy. Our recent findings identify cmp2 as a novel compound with synaptoprotective effects in primary hippocampal cultures and effective blood–brain barrier (BBB) penetration. In vivo studies demonstrate that cmp2 (10 mg/kg, intraperitoneally) restores synaptic plasticity deficits in 5xFAD mice. This study further shows cmp2’s selectivity towards tetrameric TRPC6 channel in silico. Acute administration of cmp2 is non-toxic, with no indications of chronic toxicity, and Ames testing confirms its lack of mutagenicity. Behavioral assays reveal that cmp2 improves cognitive functions in 5xFAD mice, including increased novel object recognition, better passing of the Morris water maze, and improved fear memory, as well as upregulation of motor function in beam walking tests. These findings suggest that cmp2 holds promise as a candidate for AD treatment. Full article
(This article belongs to the Special Issue Drug Design and Development for Neurological Diseases)
Show Figures

Figure 1

14 pages, 4247 KB  
Article
Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions
by Hongbin Liu, Yue Zhao, Biyi Huang, Hui Liu, Putao Zhang, Wen Gu and Tingli Ma
Int. J. Mol. Sci. 2025, 26(8), 3566; https://doi.org/10.3390/ijms26083566 - 10 Apr 2025
Viewed by 799
Abstract
Zinc-based MOFs exhibit significant advantages in ion detection due to their unique structure and chemical properties. They can efficiently and selectively recognize and detect specific ions, making them powerful analytical tools for applications in environmental monitoring, biomedical fields, and more. In this work, [...] Read more.
Zinc-based MOFs exhibit significant advantages in ion detection due to their unique structure and chemical properties. They can efficiently and selectively recognize and detect specific ions, making them powerful analytical tools for applications in environmental monitoring, biomedical fields, and more. In this work, we used a simple ligand to improve the coordination environment of Zn2+ ions and successfully synthesized a 3D coordination compound Zn(all-bdc)(Py) MOF through a straightforward hydrothermal method at low temperature. Additionally, we explored the potential of this MOF as a bifunctional ion fluorescence probe for both cationic and anionic recognition. The results showed that this 3D porous MOF exhibited excellent recognition ability for trivalent iron ions (Fe3+) and potassium permanganate (KMnO4) ions due to its highly porous structures and efficient ion recognition. When iron ions were added to 500 μL and potassium permanganate ions were added to 100 μL, the fluorescence of the compound was effectively quenched, and the detection limits for these two ions were 0.95 μM and 0.13 μM, respectively. The mixed-ion experiments also demonstrated that even in the presence of similar ions, this 3D MOF still maintained good selective recognition ability, specifically identifying Fe3+ and KMnO4 ions. This work provides a novel synthetic strategy for the design of MOFs capable of mixed-ion recognition and detection, expanding their application potential in ion sensing and analysis. Full article
Show Figures

Figure 1

20 pages, 10507 KB  
Article
Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids
by Sonia Ilieva, Nikolay Petkov, Raimundo Gargallo, Christo Novakov, Miroslav Rangelov, Nadezhda Todorova, Aleksey Vasilev and Diana Cheshmedzhieva
Biosensors 2025, 15(3), 187; https://doi.org/10.3390/bios15030187 - 14 Mar 2025
Cited by 1 | Viewed by 855
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b [...] Read more.
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes—(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)—were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes’ photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism–aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

40 pages, 5920 KB  
Article
Molecular Recognition of Diaryl Ureas in Their Targeted Proteins—A Data Mining and Quantum Chemical Study
by Majed S. Aljohani and Xiche Hu
Molecules 2025, 30(5), 1007; https://doi.org/10.3390/molecules30051007 - 21 Feb 2025
Viewed by 1187
Abstract
Diaryl ureas (DU) are a cornerstone scaffold in organic and medicinal chemistry, celebrated for their unique structural attributes and broad range of biomedical applications. Their therapeutic reach has broadened beyond kinase inhibition in cancer therapy to encompass diverse mechanisms, including modulation of chromatin [...] Read more.
Diaryl ureas (DU) are a cornerstone scaffold in organic and medicinal chemistry, celebrated for their unique structural attributes and broad range of biomedical applications. Their therapeutic reach has broadened beyond kinase inhibition in cancer therapy to encompass diverse mechanisms, including modulation of chromatin remodeling complexes, interference with developmental signaling pathways, and inhibition of stress-activated protein kinases in inflammatory disorders. A critical element in the rational design and optimization of DU-based therapeutics is a detailed understanding of their molecular recognition by target proteins. In this study, we employed a multi-tiered computational approach to investigate the molecular determinants of DU–protein interactions. A large-scale data mining of the Protein Data Bank resulted in an in-house dataset of 158 non-redundant, high-resolution crystal structures of DU–protein complexes. This dataset serves as the basis for a systematic analysis of nonbonded interactions, including hydrogen bonding, salt bridges, π–π stacking, CH-π, cation–π, and XH-π interactions (X = OH, NH, SH). Advanced electronic structure calculations at the B2PLYP/def2-QZVP level are applied to quantify the energetic contributions of these interactions and their roles in molecular recognition of diaryl ureas in their target proteins. The study led to the following findings: central to the molecular recognition of diaryl ureas in proteins are nonbonded π interactions—predominantly CH-π and π–π stacking—that synergize with hydrogen bonding to achieve high binding affinity and specificity. Aromatic R groups in diaryl ureas play a pivotal role by broadening the interaction footprint within hydrophobic protein pockets, enabling energetically favorable and diverse binding modes. Comparative analyses highlight that diaryl ureas with aromatic R groups possess a more extensive and robust interaction profile than those with non-aromatic counterparts, emphasizing the critical importance of nonbonded π interactions in molecular recognition. These findings enhance our understanding of molecular recognition of diaryl ureas in proteins and provide valuable insights for the rational design of diaryl ureas as potent and selective inhibitors of protein kinases and other therapeutically significant proteins. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 4058 KB  
Article
Homogeneous Aptasensor with Electrochemical and Electrochemiluminescence Dual Detection Channels Enabled by Nanochannel-Based Probe Enrichment and DNase I Cleavage for Tumor Biomarker Detection
by Jiong Gao, Shiyue Zhang and Fengna Xi
Molecules 2025, 30(3), 746; https://doi.org/10.3390/molecules30030746 - 6 Feb 2025
Cited by 7 | Viewed by 1350
Abstract
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase [...] Read more.
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase I cleavage for selective detection of the tumor biomarker, carbohydrate antigen 125 (CA125). A two-dimensional (2D) composite probe was prepared by assembling the CA125-specific aptamer and the cationic probe tris(2,2′-bipyridyl)Ru(II) (Ru(bpy)32+), which exhibited both EC and ECL properties, onto graphene oxide (GO) nanosheets (Ru(bpy)32+/Apt@GO). A vertically ordered mesoporous silica film (VMSF) with ultrasmall, uniform, and vertically aligned nanochannel arrays was rapidly grown on the inexpensive and disposable indium tin oxide (ITO) electrode, forming the detection interface. Due to the size exclusion effect of the ultrasmall nanochannels in VMSF, the Ru(bpy)32+/Apt@GO probe was unable to penetrate the nanochannels, resulting in no detectable Ru(bpy)32+ signal on the electrode. Upon specific recognition of CA125 by the aptamer, an aptamer-CA125 complex was formed and subsequently detached from GO. DNase I then cleaved the aptamer-CA125 complex, releasing CA125 and allowing Ru(bpy)32+ to dissociate into the solution. This enzymatic cleavage enabled CA125 to re-enter the binding cycle, amplifying the release of Ru(bpy)32+ into the solution. The electrostatic adsorption of the cationic Ru(bpy)32+ by VMSF significantly enhanced both the EC and ECL signals. The constructed aptasensor exhibited a linear EC detection range for CA125 from 0.1 U/mL to 100 ng/mL, with a limit of detection (LOD) of 91 mU/mL. For ECL detection, CA125 was detected over a range from 0.001 to 100 U/mL, with a LOD as low as 0.4 mU/mL. The developed aptasensor demonstrated excellent selectivity and was successfully applied to the dual-mode EC/ECL detection of CA125 in fetal bovine serum samples. Full article
Show Figures

Figure 1

14 pages, 1793 KB  
Article
Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions
by Andrés Ochoa, Belén Hernández-Arancibia, José Herrera-Muñoz, Horacio Gómez-Machuca and Claudio Saitz
Chemosensors 2025, 13(2), 48; https://doi.org/10.3390/chemosensors13020048 - 3 Feb 2025
Viewed by 1177
Abstract
In this research we have synthesized and evaluated five calix[4]arene-based receptors functionalized with thiosemicarbazone or thiourea groups, incorporating pyridinyl naphthalene or triazolopyridine chromophores in 1,3-alternate, pinched cone and cone conformations. The ion recognition capabilities of these receptors were investigated using UV-visible [...] Read more.
In this research we have synthesized and evaluated five calix[4]arene-based receptors functionalized with thiosemicarbazone or thiourea groups, incorporating pyridinyl naphthalene or triazolopyridine chromophores in 1,3-alternate, pinched cone and cone conformations. The ion recognition capabilities of these receptors were investigated using UV-visible and fluorescence spectroscopy. Receptor (I), which adopts a pinched cone conformation with thiosemicarbazone groups, demonstrated bifunctional sensing abilities by detecting both cations and anions. Receptors (II) and (III) showed remarkable selectivity and sensitivity for Cu2+ ions. Receptors (IV) and (V), in cone and 1,3-alternate conformations, respectively, where functionalized with a triazolo[1,5-a]pyridine fluorophore and exhibited highly sensitive ON-OFF fluorescence sensing for Co2+, Cu2+ and Ni2+ ions, with significant fluorescence quenching upon binding and a low detection limit of 2.94 µg/L for the Co2+ ion in receptor (IV). Ion receptor (I) demonstrates a strong performance in broad-spectrum ion detection, whereas the structural conformations of receptors (IV) and (V) play a pivotal role in their remarkable selectivity and sensitivity for specific transition metals in fluorescence-based sensing. Full article
Show Figures

Figure 1

21 pages, 5046 KB  
Article
Spermine Significantly Increases the Transfection Efficiency of Cationic Polymeric Gene Vectors
by Yue Lv, Jiaoqin Xue, Pengfei Cui and Lin Qiu
Pharmaceutics 2025, 17(1), 131; https://doi.org/10.3390/pharmaceutics17010131 - 17 Jan 2025
Viewed by 1617
Abstract
Background/Objectives: Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, [...] Read more.
Background/Objectives: Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility. Methods: In this investigation, enhanced transfection efficiency was achieved through the straightforward physical blending of PEI carriers with spermine. Results: Transfection assays explored the maximal enhancement potential conferred by spermine, alongside further methodological refinements aimed at optimizing transfection efficacy, showcasing a potential increase of up to 40.7%. Through the comparison of different addition sequences of spermine, the optimal complex PEI/Spermine/DNA for transfection efficiency was selected. Characterization of PEI/Spermine/DNA revealed that, compared to PEI/DNA, its particle size increased to approximately 150 nm. Molecular dynamics simulation results revealed that spermine can enhance the interaction between PEI and DNA, thereby forming a system with lower energy and greater stability. Mechanistic inquiries studies also disclosed that spermine augments the endosomal escape capability of PEI carriers without altering pathways involved in the cellular uptake of gene nanoparticles, thereby facilitating heightened gene expression. Conclusions: PEI-Sper emerges as a promising non-viral vector for gene delivery, distinguished by its simplicity in preparation, cost-effectiveness, and superior transfection efficiency. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

41 pages, 13240 KB  
Review
Beyond Cations: Expanding the Horizons of Ferrocene-Based Electrochemical Sensors for Neutral and Anionic Molecules
by Angel A. J. Torriero, Alma M. Torriero, Kiara T. Miller and Ashwin K. V. Mruthunjaya
Inorganics 2025, 13(1), 3; https://doi.org/10.3390/inorganics13010003 - 26 Dec 2024
Cited by 1 | Viewed by 1777
Abstract
Ferrocene (Fc) has long been celebrated for its remarkable redox properties and structural versatility, making it a cornerstone of electrochemical sensor development. While extensive research has focused on cation detection using Fc-based systems, the equally critical recognition of neutral and anionic molecules remains [...] Read more.
Ferrocene (Fc) has long been celebrated for its remarkable redox properties and structural versatility, making it a cornerstone of electrochemical sensor development. While extensive research has focused on cation detection using Fc-based systems, the equally critical recognition of neutral and anionic molecules remains underexplored despite their significance in biological, environmental, and industrial contexts. This review addresses this gap by exploring the latest advancements in Fc-based electrochemical sensors designed to overcome the unique challenges posed by these species—including diverse geometries, high hydration enthalpies, and the absence of formal charge. Molecular architectures such as amide-functionalised receptors, urea derivatives, Lewis acid-containing receptors, triazolium, and carboxylic acid-containing systems are examined, highlighting how these sensors achieve high selectivity and sensitivity. Furthermore, the influence of solvent environments on sensor performance is discussed, providing a critical analysis of how different receptor functionalities and solvents affect sensor behaviour. Emphasising the advantages of redox-based detection, this review aims to inspire further innovation in developing Fc-based technologies for detecting neutral and anionic species. Full article
(This article belongs to the Special Issue Research on Ferrocene and Ferrocene-Containing Compounds)
16 pages, 5443 KB  
Article
Post-Sterilization Physicochemical Characterization and Biological Activity of Cellulose Nanocrystals Coated with PDDA
by Ashley Donato, Siddharth Nadkarni, Lakshay Tiwari, Serafina Poran, Rajesh Sunasee and Karina Ckless
Molecules 2024, 29(23), 5600; https://doi.org/10.3390/molecules29235600 - 27 Nov 2024
Viewed by 1142
Abstract
The rapid expansion of medical nanotechnology has significantly broadened the potential applications of cellulose nanocrystals (CNCs). While CNCs were initially developed for drug delivery, they are now being investigated for a range of advanced biomedical applications. As these applications evolve, it becomes crucial [...] Read more.
The rapid expansion of medical nanotechnology has significantly broadened the potential applications of cellulose nanocrystals (CNCs). While CNCs were initially developed for drug delivery, they are now being investigated for a range of advanced biomedical applications. As these applications evolve, it becomes crucial to understand the physicochemical behavior of CNCs in biologically relevant media to optimize their design and ensure biocompatibility. Functionalized CNCs can adsorb biomolecules, forming a “protein corona” that can impact their physicochemical properties, including alterations in particle size, zeta potential, and overall functionality. In this study, CNCs were coated with low (8500 Da)- and high (400,000–500,000 Da)-molecular-weight cationic polymer (poly(diallyldimethylammonium chloride—(PDDA) via non-covalent grafting, and their physicochemical characteristics, as well as their biological effects, were assessed in physiologically relevant media after sterilization. Our findings show that autoclaving significantly alters the physicochemical properties of CNC-PDDA, particularly when coated with low-molecular-weight (LMW) polymer. Furthermore, we observed that CNC-PDDA of a high molecular weight (HMW) has a greater impact on cell viability and blood biocompatibility than its LMW counterpart. Moreover, cellular immune responses to both CNC-PDDA LMW and HMW vary in the presence or absence of serum, implying that protein adsorption influences cell-nanomaterial recognition and their biological activity. This study provides valuable insights for optimizing CNC-based nanomaterials for therapeutic applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

Back to TopTop