Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Measurements
3.3. X-Ray Structure Determination and Structure Refinement
3.4. Synthesis of Ligand of All-bdc
3.5. Synthesis of Zn-Based MOF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
- Snyder, B.E.R.; Turkiewicz, A.B.; Furukawa, H.; Paley, M.V.; Velasquez, E.O.; Dods, M.N.; Long, J.R. A ligand insertion mechanism for cooperative NH3 capture in metal–organic frameworks. Nature 2023, 613, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-W.; Nguyen, Q.; Dieng, A.B.; Gómez-Gualdrón, D.A. Diversity-driven, efficient exploration of a MOF design space to optimize MOF properties. Chem. Sci. 2024, 15, 18903–18919. [Google Scholar] [CrossRef]
- Jin, R.; Li, R.; Ma, M.-L.; Chen, D.-Y.; Zhang, J.-Y.; Xie, Z.-H.; Ding, L.-F.; Xie, Y.; Li, J.-R. Beyond Tradition: A MOF-On-MOF Cascade Z-Scheme Heterostructure for Augmented CO2 Photoreduction. Small 2025, 2409759. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Morsali, A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord. Chem. Rev. 2020, 415, 213299. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, Y.-n.; Li, L.; Chen, W.; Li, F.; Kitagawa, S. Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures. Angew. Chem. Int. Ed. 2017, 56, 15658–15662. [Google Scholar] [CrossRef]
- Gulbalkan, H.C.; Haslak, Z.P.; Altintas, C.; Uzun, A.; Keskin, S. Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/Polymer, and COF/Polymer composites. Chem. Eng. J. 2022, 428, 131239. [Google Scholar] [CrossRef]
- Choi, S.; Kim, T.; Ji, H.; Lee, H.J.; Oh, M. Isotropic and Anisotropic Growth of Metal–Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature. J. Am. Chem. Soc. 2016, 138, 14434–14440. [Google Scholar] [CrossRef]
- Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43, 6097–6115. [Google Scholar] [CrossRef]
- Cao, Y.; Wen, Y.; Li, Y.; Cao, M.; Li, B.; Shen, Q.; Gu, W. Doping Ru on FeNi LDH/FeII/III–MOF heterogeneous core–shell structure for efficient oxygen evolution. Dalton Trans. 2024, 53, 5291–5300. [Google Scholar] [CrossRef]
- Feng, X.; Hu, D.-Y.; Liang, Z.-J.; Zhou, M.-Y.; Wang, Z.-S.; Su, W.-Y.; Lin, R.-B.; Zhou, D.-D.; Zhang, J.-P. A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chin. J. Struct. Chem. 2025, 44, 100540. [Google Scholar] [CrossRef]
- Yue, Y.; Mohamed, S.A.; Loh, N.D.; Jiang, J. Toward a Generalizable Machine-Learned Potential for Metal–Organic Frameworks. ACS Nano 2025, 19, 933–949. [Google Scholar] [CrossRef]
- Tao, Y.; Tang, Z.; Xie, L.; Xu, X.; Zhao, W.; Xu, W.; Bao, D.; Zhong, Y.; Gao, Z.; Wen, Z.; et al. Surface-enhanced light harvesting over MOF-derived porous ZnO films for highly efficient QDs-based photoelectrochemical hydrogen generation. Green Energy Environ. 2024, in press. [Google Scholar] [CrossRef]
- Ismail, K.M.; Rashidi, F.B.; Hassan, S.S. Ultrasonic synthesis, characterization, DFT and molecular docking of a biocompatible Zn-based MOF as a potential antimicrobial, anti-inflammatory and antitumor agent. Sci. Rep. 2024, 14, 21989. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Xu, X.; Li, H.; Cui, Z.; Chu, B.; Xie, N.; Wang, Z.; Bai, P.; Guo, X.; Lyu, J. Fabrication Methods of Continuous Pure Metal–Organic Framework Membranes and Films: A Review. Molecules 2024, 29, 3885. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Q.; Zhao, N.; Li, Z.; Jiang, L.; Zhang, Z. 2D Conjugated Metal–Organic Framework-Based Composite Membranes for Nanofluidic Ionic Photoelectric Conversion. Adv. Mater. 2025, 37, 2416093. [Google Scholar] [CrossRef]
- Marquardt, N.; von der Haar, F.; Schaate, A. Transition metal and lanthanide modified MOF-808 for barcode design. Dalton Trans. 2024, 53, 8608–8618. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, T.; Iftikhar, N.; Chi, G.; Qiu, W.; Xie, Y.; Liang, Z.; Huang, C.; Su, L. Unlocking the future of brain research: MOFs, TMOs, and MOFs/TMOs for electrochemical NTMs detection and analysis. Talanta 2024, 267, 125146. [Google Scholar] [CrossRef]
- Meng, S.; Li, G.; Wang, P.; He, M.; Sun, X.; Li, Z. Rare earth-based MOFs for photo/electrocatalysis. Mater. Chem. Front. 2023, 7, 806–827. [Google Scholar] [CrossRef]
- Violet, C.; Parkinson, M.; Ball, A.K.; Kulik, H.J.; Fortner, J.D.; Elimelech, M. Tuning Metal–Organic Framework Linker Chemistry for Transition Metal Ion Separations. ACS Appl. Mater. Interfaces 2025, 17, 1911–1921. [Google Scholar] [CrossRef]
- Guo, X.; Feng, S.; Peng, Y.; Li, B.; Zhao, J.; Xu, H.; Meng, X.; Zhai, W.; Pang, H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem. 2025, 463, 141387. [Google Scholar] [CrossRef]
- Wu, X.; Omagari, S.; Gao, J.; Vacha, M. In Situ Monitoring of Nanocrystal Formation and Ion Migration in Lead Halide Perovskite Metal–Organic Framework Composites. Adv. Opt. Mater. 2024, 12, 2301479. [Google Scholar] [CrossRef]
- Ranjith Kumar, D.; Karthik, R.; Dhakal, G.; Nguyen, V.Q.; Lee, J.; Shim, J.-J. Catechol redox couple functionalized metal-organic framework UiO-66-NH2 as an efficient catalyst for chromium ion sensor in water samples. J. Clean. Prod. 2022, 374, 133731. [Google Scholar] [CrossRef]
- Devaraj, M.; Sasikumar, Y.; Rajendran, S.; Ponce, L.C. Review—Metal Organic Framework Based Nanomaterials for Electrochemical Sensing of Toxic Heavy Metal Ions: Progress and Their Prospects. J. Electrochem. Soc. 2021, 168, 037513. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Dai, Y.; Chen, L.; Li, W.; Yuan, Z.; Zhou, J.; Tang, E. A cost-effective and innovative detector for iron ions. RSC Adv. 2025, 15, 2645–2650. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, Y.; Gong, Y.; Wei, Y.; Hu, Q.; Yu, L. Hydrodynamic Fluidic Pump Empowered Sensitive Recognition and Active Transport of Hydrogen Peroxide in 1D Channels. Adv. Sci. 2025, 12, 2408755. [Google Scholar] [CrossRef]
- Janáky, C.; Rajeshwar, K. Current Trends in Semiconductor Photoelectrochemistry. ACS Energy Lett. 2017, 2, 1425–1428. [Google Scholar] [CrossRef]
- Ji, Z.; Li, T.; Yaghi, O.M. Sequencing of metals in multivariate metal-organic frameworks. Science 2020, 369, 674–680. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Reddy, A.S.; Panda, A.; Sarkar, D.; Son, Y.; Yoon, M. Reversible Fluorescence Switching of Metal–Organic Framework Nanoparticles for Use as Security Ink and Detection of Pb2+ Ions in Aqueous Media. ACS Appl. Nano Mater. 2020, 3, 3684–3692. [Google Scholar] [CrossRef]
- Jones, C.W. Metal–Organic Frameworks and Covalent Organic Frameworks: Emerging Advances and Applications. JACS Au 2022, 2, 1504–1505. [Google Scholar] [CrossRef]
- Ameen, S.S.M.; Alhasan, H.S.; Khazaal, F.A.; Omer, K.M. Quantitative On-Site Instrument-Free Visual Detection of Ferric Ions in Environmental and Biological Samples Using a Novel Fluorescent Metal–Organic Framework. J. Inorg. Organomet. Polym. Mater. 2024, in press. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, X.; Chai, H.; Hu, L.; Li, H.; Qu, L.; Zhang, X.; Zhang, G. Recent advances in conductive MOF-based electrochemical sensors. Chin. Chem. Lett. 2024, 110571, in press. [Google Scholar] [CrossRef]
- Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr(iii) and Cr(vi) ions and detection of nitroaromatic explosives. J. Mater. Chem. A 2016, 4, 15494–15500. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Xia, C.; Zhu, W.; Hou, Y.; Zeng, X.; Xu, H. Calcination-induced enhancement of Cd2+ and Pb2+ electrochemical detection capabilities of nano-ag-supported CoZn bi-metal ZIFs. Environ. Sci. Nano 2024, 11, 2061–2072. [Google Scholar] [CrossRef]
- Fajal, S.; Mandal, W.; Majumder, D.; Shirolkar, M.M.; More, Y.D.; Ghosh, S.K. Cover Feature: Unfolding the Role of Building Units of MOFs with Mechanistic Insight Towards Selective Metal Ions Detection in Water (Chem. Eur. J. 21/2022). Chem. A Eur. J. 2022, 28, e202200824. [Google Scholar] [CrossRef]
- Mohammad Ameen, S.S.; Omer, K.M. Multifunctional MOF: Cold/hot adapted sustainable oxidase-like MOF nanozyme with ratiometric and color tonality for nitrite ions detection. Food Chem. 2025, 462, 141027. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, R.; Li, J.; Tang, H.; Su, H.; Feng, W.; Zhang, Z. A dual-responsive RhB-doped MOF probe for simultaneous recognition of Cu2+ and Fe3+. Sci. Rep. 2024, 14, 11740. [Google Scholar] [CrossRef]
- Mohan, B.; Ma, S.; Kumar, S.; Yang, Y.; Ren, P. Tactile Sensors: Hydroxyl Decorated Silver Metal–Organic Frameworks for Detecting Cr2O72–, MnO4–, Humic Acid, and Fe3+ Ions. ACS Appl. Mater. Interfaces 2023, 15, 17317–17323. [Google Scholar] [CrossRef]
- He, Q.-Q.; Yao, S.-L.; Zheng, T.-F.; Xu, H.; Liu, S.-J.; Chen, J.-L.; Li, N.; Wen, H.-R. A multi-responsive luminescent sensor based on a stable Eu(iii) metal–organic framework for sensing Fe3+, MnO4−, and Cr2O72− in aqueous solutions. CrystEngComm 2022, 24, 1041–1048. [Google Scholar] [CrossRef]
- Ma, J.-J.; Liu, W.-s. Effective luminescence sensing of Fe3+, Cr2O72−, MnO4− and 4-nitrophenol by lanthanide metal–organic frameworks with a new topology type. Dalton Trans. 2019, 48, 12287–12295. [Google Scholar] [CrossRef]
- Su, F.; Liu, X.-Y.; Li, S.-D.; Sun, L.; Wu, L.-T.; Han, C.; Wang, Z.-J. A water-stable Y(III)-MOF as multi-responsive luminescent sensor for high-efficiency detection of Fe3+, Cu2+, and MnO4- ions in aqueous solutions. J. Mol. Struct. 2024, 1298, 136975. [Google Scholar] [CrossRef]
- Chen, J.-K.; Yang, S.-M.; Li, B.-H.; Lin, C.-H.; Lee, S. Fluorescence Quenching Investigation of Methyl Red Adsorption on Aluminum-Based Metal–Organic Frameworks. Langmuir 2018, 34, 1441–1446. [Google Scholar] [CrossRef]
- Amani, V.; Norouzi, F.; Akrami, Z. A review of UiO-based MOF detection and removal strategies for antibiotics in water. New J. Chem. 2024, 48, 18600–18617. [Google Scholar] [CrossRef]
- Sharma, A.; Kim, D.; Park, J.-H.; Rakshit, S.; Seong, J.; Jeong, G.H.; Kwon, O.-H.; Lah, M.S. Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Commun. Chem. 2019, 2, 39. [Google Scholar] [CrossRef]
- Chen, H.; Fan, P.; Tu, X.; Min, H.; Yu, X.; Li, X.; Zeng, J.-L.; Zhang, S.; Cheng, P. A Bifunctional Luminescent Metal–Organic Framework for the Sensing of Paraquat and Fe3+ Ions in Water. Chem. Asian J. 2019, 14, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-Q.; Fu, L.; Cui, G.-H. Two chemically robust Cd(ii)-frameworks for efficient sensing of levofloxacin, benzaldehyde, and Fe3+ ions. Dalton Trans. 2021, 50, 15743–15753. [Google Scholar] [CrossRef]
- Wu, Y.-B.; Ren, L.; Dong, G.-Y. Syntheses, crystal structures, luminescent sensing and photocatalytic properties of two 2D cadmium(II) coordination polymers constructed from mixed ligands. Inorganica Chim. Acta 2022, 530, 120703. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, W.; Ding, H.; Du, H.; Li, S.J. Surface-effect on detection ability of fluorescent Eu(btc) metal-organic frameworks to metal ions. J. Rare Earths 2021, 39, 446–452. [Google Scholar] [CrossRef]
- Mao, X.; Li, H.; Shi, Y.; Liu, J.; Kuai, L.; Yang, F.; Wu, C. A multifunctional fluorescence sensor based Zn(II) metal-organic framework for rapid and sensitive detection Fe3+ and Al3+. Polyhedron 2024, 264, 117246. [Google Scholar] [CrossRef]
- Safaei, S.; Wang, J.; Junk, P.C. Incorporation of thiazolothiazole fluorophores into a MOF structure: A highly luminescent Zn(II)-based MOF as a selective and reversible sensor for Cr2O72− and MnO4− anions. J. Solid State Chem. 2021, 294, 121762. [Google Scholar] [CrossRef]
- Su, Y.-Q.; Wang, R.-T.; Blatova, O.A.; Shi, Y.-S.; Cui, G.-H. Two robust Zn(ii)-organic frameworks as dual-functional fluorescent probes for efficient sensing of enrofloxacin and MnO4− anions. CrystEngComm 2022, 24, 182–191. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, J.; Xi, L.; Xie, J.; Wang, X.; Ma, Y.; Li, L. Two Novel Lanthanide Metal–Organic Frameworks: Selective Luminescent Sensing for Nitrobenzene, Cu2+, and MnO4–. Cryst. Growth Des. 2020, 20, 5225–5234. [Google Scholar] [CrossRef]
- Xu, Z.; Su, M.; He, X.; Zhang, B.; Wang, Y.; Li, H. A porous luminescent Zn-MOF for selective probing Fe3+ and nitrophenolic compounds. Inorg. Chem. Commun. 2020, 111, 107644. [Google Scholar] [CrossRef]
- Abdollahi, N.; Morsali, A. Highly sensitive fluorescent metal-organic framework as a selective sensor of MnVII and CrVI anions (MnO4−/Cr2O72−/CrO42−) in aqueous solutions. Anal. Chim. Acta 2019, 1064, 119–125. [Google Scholar] [CrossRef]
- Liu, X.; Shi, T.; Xu, C.; Zhu, M.; Wang, Y. A highly selective and sensitive ICT-based Cu(2+) fluorescent probe and its application in bioimaging. Ecotoxicol. Environ. Saf. 2023, 262, 115127. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Zhang, Z.; Wang, Z.; Gong, Z.; Fan, M. Functionalized fluorescent Zr-MOF based on photoinduced electron transfer for highly sensitive detection of nitroaromatic explosives. Dye. Pigment. 2023, 210, 111035. [Google Scholar] [CrossRef]
- Liu, H.-b.; Tao, X.-m.; Li, H.; Lv, R.; Liu, X.; Gu, W. Exciting high symmetric 24-nuclear copper cluster with excellent selective adsorption capacity for cationic dyes. Inorg. Chem. Commun. 2016, 74, 102–105. [Google Scholar] [CrossRef]
MOF Fluorescent Probe | Detection Limits (μM) | Ref. | |
---|---|---|---|
Fe3+ | MnO4− | ||
Zn-based MOF | 4.33 | – | [45] |
Cd-based MOF | 4.01 | – | [46] |
Cd-based MOF | 3.56 | – | [47] |
Eu-based MOF | 3.13 | – | [48] |
Zn-based MOF | 0.18 | – | [49] |
Zn-based MOF | – | 4 | [50] |
Y-based MOF | 2.38 | 1.29 | [41] |
Zn-based MOF | – | 0.24 | [51] |
Eu-based MOF | – | 1.36 | [52] |
Tb-based MOF | – | 0.0448 | [40] |
Zn-based MOF | 0.95 | 0.13 | This Work |
Complex | Zn(All-bdc)(Py) |
---|---|
Structural formula | Zn(all-bdc)(Py) |
Empirical formula | C22H18N4O5Zn |
Formula weight | 483.78 |
Temperature/K | 386.3 |
Crystal system | monoclinic |
Space group | P21/c |
a/Å | 15.564(2) |
b/Å | 16.3295(16) |
c/Å | 15.6433(19) |
α/° | 90.00 |
β/° | 110.266(4) |
γ/° | 90.00 |
Volume/Å3 | 3729.6(8) |
Z | 4 |
ρcalcg/cm3 | 0.862 |
μ/mm−1 | 0.683 |
F(000) | 992.0 |
Crystal size/mm3 | 0.2 × 0.2 × 0.2 |
Independent reflections | 8486 [Rint = 0.0414, Rsigma = 0.0338] |
Data/restraints/parameters | 8486/0/298 |
Goodness-of-fit on F2 | 1.374 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.06820, wR2 = 0.2125 |
Final R indexes [all data] | R1 = 0.0700, wR2 = 0.2243 |
Largest diff. peak/hole/e Å−3 | 2.05/−0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhao, Y.; Huang, B.; Liu, H.; Zhang, P.; Gu, W.; Ma, T. Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions. Int. J. Mol. Sci. 2025, 26, 3566. https://doi.org/10.3390/ijms26083566
Liu H, Zhao Y, Huang B, Liu H, Zhang P, Gu W, Ma T. Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions. International Journal of Molecular Sciences. 2025; 26(8):3566. https://doi.org/10.3390/ijms26083566
Chicago/Turabian StyleLiu, Hongbin, Yue Zhao, Biyi Huang, Hui Liu, Putao Zhang, Wen Gu, and Tingli Ma. 2025. "Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions" International Journal of Molecular Sciences 26, no. 8: 3566. https://doi.org/10.3390/ijms26083566
APA StyleLiu, H., Zhao, Y., Huang, B., Liu, H., Zhang, P., Gu, W., & Ma, T. (2025). Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions. International Journal of Molecular Sciences, 26(8), 3566. https://doi.org/10.3390/ijms26083566