Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = catalytic membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5659 KB  
Article
Development of High-Performance Catalytic Ceramic Membrane Microchannel Reactor for Carbon Dioxide Conversion to Methanol
by Aubaid Ullah, Nur Awanis Hashim, Mohamad Fairus Rabuni, Mohd Usman Mohd Junaidi, Ammar Ahmed, Mustapha Grema Mohammed and Muhammed Sahal Siddique
Membranes 2026, 16(1), 45; https://doi.org/10.3390/membranes16010045 (registering DOI) - 17 Jan 2026
Abstract
Conversion of carbon dioxide (CO2) to methanol in a traditional reactor (TR) with catalytic packed bed faces the challenge of lower reactant conversion due to thermodynamic limitations. On the contrary, membrane reactors selectively remove reaction products, enhancing the conversion, but it [...] Read more.
Conversion of carbon dioxide (CO2) to methanol in a traditional reactor (TR) with catalytic packed bed faces the challenge of lower reactant conversion due to thermodynamic limitations. On the contrary, membrane reactors selectively remove reaction products, enhancing the conversion, but it is still limited, and existing designs face challenges of structural integrity and scale-up complications. Therefore, for the first time, a ceramic membrane microchannel reactor (CMMR) system was developed with 500 µm deep microchannels, incorporated with catalytic membrane for CO2 conversion to methanol. Computational fluid dynamic (CFD) simulations confirmed the uniform flow distribution among the microchannels. A catalytic LTA zeolite membrane was synthesized with thin layer (~45 µm) of Cu-ZnO-Al2O3 catalyst coating and tested at a temperature of 220 °C and 3.0 MPa pressure. The results showed a significantly higher CO2 conversion of 82%, which is approximately 10 times higher than TR and 3 times higher than equilibrium conversion while 1.5 times higher than conventional tubular membrane reactor. Additionally, methanol selectivity and yield were achieved as 51.6% and 42.3%, respectively. The research outputs showed potential of replacing the current industrial process of methanol synthesis, addressing the Sustainable Development Goals of SDG-7, 9, and 13 for clean energy, industry innovation, and climate action, respectively. Full article
Show Figures

Figure 1

15 pages, 5047 KB  
Article
Bismuth Oxychloride@Graphene Oxide/Polyimide Composite Nanofiltration Membranes with Excellent Self-Cleaning Performance
by Runlin Han, Faxiang Feng, Zanming Zhu, Jiale Li, Yiting Kou, Chaowei Yan and Hongbo Gu
Separations 2026, 13(1), 37; https://doi.org/10.3390/separations13010037 (registering DOI) - 16 Jan 2026
Abstract
Organic pollution poses a serious threat to global water safety, while traditional treatment technologies suffer from low efficiency, high costs, and secondary pollution issues. This study successfully develops a highly efficient separation and photocatalytic degradation composite bismuth oxychloride@graphene oxide/polyimide (BiOCl@GO/PI) membrane by loading [...] Read more.
Organic pollution poses a serious threat to global water safety, while traditional treatment technologies suffer from low efficiency, high costs, and secondary pollution issues. This study successfully develops a highly efficient separation and photocatalytic degradation composite bismuth oxychloride@graphene oxide/polyimide (BiOCl@GO/PI) membrane by loading GO and BiOCl photocatalysts onto PI supporting membrane. The results show that this composite membrane achieves a rejection of 99.8% for methylene blue (MB) and 87.6% for tetracycline hydrochloride (TC). Under UV irradiation, the membrane exhibits a retention rate decline of only 6.8% after five cycles, with water flux stably maintaining at 605 L m−2 h−1 bar−1. Compared to dark conditions, it demonstrates remarkable flux recovery. This is attributed to the membrane’s excellent photocatalytic degradation activity under UV irradiation. After five degradation cycles, the degradation efficiency is decreased from 97.5 to 88.3%. Studies on radical scavengers indicate that UV irradiation generates free radicals, thereby conferring excellent catalytic activity to the membrane. Its unique synergistic effect between separation and photocatalysis endows it with outstanding self-cleaning performance. This research provides an innovative integrated solution for antibiotic pollution control, demonstrating significant potential for environmental applications. Full article
(This article belongs to the Section Materials in Separation Science)
16 pages, 1760 KB  
Article
Targeting of Human Mitochondrial DNA with Programmable pAgo Nuclease
by Beatrisa Rimskaya, Ekaterina Kropocheva, Elza Shchukina, Egor Ulashchik, Daria Gelfenbein, Lidiya Lisitskaya, Vadim Shmanai, Svetlana Smirnikhina, Andrey Kulbachinskiy and Ilya Mazunin
Cells 2026, 15(2), 127; https://doi.org/10.3390/cells15020127 - 10 Jan 2026
Viewed by 193
Abstract
Manipulating the mitochondrial genome remains a significant challenge in genetic engineering, primarily due to the mitochondrial double-membrane structure. While recent advances have expanded the genetic toolkit for nuclear and cytoplasmic targets, precise editing of mitochondrial DNA (mtDNA) has remained elusive. Here we report [...] Read more.
Manipulating the mitochondrial genome remains a significant challenge in genetic engineering, primarily due to the mitochondrial double-membrane structure. While recent advances have expanded the genetic toolkit for nuclear and cytoplasmic targets, precise editing of mitochondrial DNA (mtDNA) has remained elusive. Here we report the first successful mitochondrial import of a catalytically active RNA-guided prokaryotic Argonaute protein from the mesophilic bacterium Alteromonas macleodii (AmAgo). By guiding AmAgo to the single-stranded D- or R-loop region of mtDNA using synthetic RNA guides, we observed a nearly threefold reduction in mtDNA copy number in human cell lines. This proof of concept study demonstrates that a bacterial Argonaute can remain active within the mitochondrial environment and influence mtDNA levels. These findings establish a foundational framework for further development of programmable systems for mitochondrial genome manipulation. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease—Second Edition)
Show Figures

Figure 1

17 pages, 6443 KB  
Article
Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells
by Shengzheng Ji, Guogang Yang and Hao Wang
Membranes 2026, 16(1), 30; https://doi.org/10.3390/membranes16010030 - 4 Jan 2026
Viewed by 284
Abstract
As a critical component of high-temperature proton exchange membrane fuel cells (HT-PEMFCs), the catalytic layer (CL) significantly influences the overall performance of these systems. In this study, a pore-scale lattice Boltzmann (LB) model was established to simulate the multi-component mass transport in the [...] Read more.
As a critical component of high-temperature proton exchange membrane fuel cells (HT-PEMFCs), the catalytic layer (CL) significantly influences the overall performance of these systems. In this study, a pore-scale lattice Boltzmann (LB) model was established to simulate the multi-component mass transport in the HT-PEMFC catalyst layer. Based on the reconstruction of CL, the transport behavior of phosphoric acid was simulated. The effects of different carbon carrier diameters, porosity values, and Pt/C mass ratios on the transport of phosphoric acid in CL were studied. The distribution of phosphoric acid and air concentration, as well as the electrochemical surface area, was qualitatively and quantitatively analyzed. Finally, the optimal design parameters of CL structure were determined. The results show that, with increases in carbon carrier diameter, porosity, and Pt/C mass ratio, the distribution of phosphoric acid concentration shows an upward trend, and the distribution of air concentration shows a downward trend. The optimal ranges of carbon carrier diameter, porosity, and Pt/C mass ratio are 50–80 nm, 60–70%, and 40–50%, respectively. This study provides a new idea for further understanding the mass transport mechanism in the HT-PEMFC catalyst layer and provides effective suggestions for the optimization design of the HT-PEMFC catalyst layer structure. Full article
Show Figures

Figure 1

23 pages, 1823 KB  
Article
Experimental and Modeling Study of a Semi-Continuous Slurry Reactor–Pervaporator System for Isoamyl Acetate Production Using a Commercial Pervaporation Membrane
by Miguel-Ángel Gómez-García, Izabela Dobrosz-Gómez and Wilmar Osorio Viana
Membranes 2026, 16(1), 25; https://doi.org/10.3390/membranes16010025 - 3 Jan 2026
Viewed by 231
Abstract
Building on our previous study on batch pervaporation membrane reactors for isoamyl acetate synthesis, this work evaluates a two-step continuous process integrating a slurry reactor and a commercial pervaporator module based on a hybrid silica membrane. The system combines catalytic esterification of acetic [...] Read more.
Building on our previous study on batch pervaporation membrane reactors for isoamyl acetate synthesis, this work evaluates a two-step continuous process integrating a slurry reactor and a commercial pervaporator module based on a hybrid silica membrane. The system combines catalytic esterification of acetic acid with isoamyl alcohol with simultaneous water removal to enhance conversion and product selectivity. Operating conditions were defined using experimentally validated thermodynamic, kinetic, and mass-transport models. A hydrodynamic assessment confirmed turbulent flow within the membrane module, and model predictions were compared with experimental data for validation. The results confirmed the occurrence of reactive pervaporation and demonstrated that both the membrane area-to-reactor volume ratio and catalyst loading significantly influence the equilibrium shift. Although conversion remained limited by the available membrane area, the commercial pervaporation unit exhibited stable operation, consistent flux behavior, and effective water selectivity. These findings demonstrate the technical feasibility of the continuous slurry reactor–pervaporator configuration and establish a framework for further optimization and scale-up of isoamyl acetate production via reactive pervaporation. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Graphical abstract

19 pages, 4926 KB  
Article
A Bipolar Membrane Containing Core–Shell Structured Fe3O4-Chitosan Nanoparticles for Direct Seawater Electrolysis
by Hyeon-Bee Song, Eun-Hye Jang and Moon-Sung Kang
Membranes 2026, 16(1), 23; https://doi.org/10.3390/membranes16010023 - 2 Jan 2026
Viewed by 418
Abstract
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation [...] Read more.
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation by regulating local pH, thereby enhancing DSWE efficiency. Accordingly, this study focuses on the fabrication of a high-performance BPM for DSWE applications. The water-splitting performance of BPMs is strongly dependent on the properties of the catalyst at the bipolar junction. Herein, iron oxide (Fe3O4) nanoparticles were coated with cross-linked chitosan to improve solvent dispersibility and catalytic activity. The resulting core–shell catalyst exhibited excellent dispersibility, facilitating uniform incorporation into the BPM. Water-splitting flux measurements identified an optimal catalyst loading of approximately 3 μg cm−2. The BPM containing Fe3O4–chitosan nanoparticles achieved a water-splitting flux of 26.2 μmol cm−2 min−1, which is 18.6% higher than that of a commercial BPM (BP-1E, Astom Corp., Tokyo, Japan). DSWE tests using artificial seawater as the catholyte and NaOH as the anolyte demonstrated lower cell voltage and stable catholyte acidification over 100 h compared to the commercial membrane. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

13 pages, 2033 KB  
Article
Production of Methanol by CO2 Hydrogenation Using a Membrane Reactor
by Fausto Gallucci, Serena Poto, Margot Anabell Llosa Tanco and David Alfredo Pacheco Tanaka
Catalysts 2026, 16(1), 53; https://doi.org/10.3390/catal16010053 - 2 Jan 2026
Viewed by 553
Abstract
The use of e-fuels, such as methanol (MeOH), is considered an alternative for the reduction of carbon emissions. MeOH can be produced from captured CO2 and green H2, with the exothermic (equilibrium-limited) reaction favoured at low temperatures and high pressures. [...] Read more.
The use of e-fuels, such as methanol (MeOH), is considered an alternative for the reduction of carbon emissions. MeOH can be produced from captured CO2 and green H2, with the exothermic (equilibrium-limited) reaction favoured at low temperatures and high pressures. However, CO2 is a very stable molecule and requires high temperature (>200 °C) to overcome the slow activation kinetics. In this study, MeOH was synthesized from CO2 and H2 in a packed-bed membrane reactor (PBMR) using a commercial Cu/ZnO/Al2O3 catalyst and a tubular-supported, water-selective composite alumina–carbon molecular sieve membrane (Al-CMSM) immersed in the catalytic bed. A mixture of H2/CO2 (3/1) was fed into both sides of the membrane to increase the driving force of the gases produced by the reaction. The effect of the temperature of reaction (200, 220, and 240 °C), pressure difference (0 and 3 bar), and the sweep gas/reacting gas ratio (SW = 1, 3, 5) in the CO2 conversion and products yield was studied. For comparison, the reactions were also carried out in a packed-bed reactor (PBR) configuration where the tubular membrane was replaced by a metallic tube of the same size. CO2 conversion and MeOH yield are much higher in PBMR than in PBR configuration, showing the benefit of using the water-selective membrane. In PBMR, MeOH yield increases with SW and slightly decreases with the temperature, overcoming the limitation imposed by the thermodynamics. Full article
(This article belongs to the Special Issue Green Heterogeneous Catalysis for CO2 Reduction)
Show Figures

Graphical abstract

19 pages, 4005 KB  
Review
Efficient Separation of Per- and Polyfluoroalkyl Substances (PFAS) by Organic Framework Membranes: Advances, Mechanisms, and Challenges
by Jiawei Zhang, Baosheng Zhao and Hao Yang
Membranes 2026, 16(1), 19; https://doi.org/10.3390/membranes16010019 - 1 Jan 2026
Viewed by 343
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a class of highly persistent environmental contaminants with exceptional chemical stability. Efficient removal of PFAS from water poses a significant challenge for the chemical industry and constitutes a critical requirement for sustainable environmental development. Membrane technology has [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) represent a class of highly persistent environmental contaminants with exceptional chemical stability. Efficient removal of PFAS from water poses a significant challenge for the chemical industry and constitutes a critical requirement for sustainable environmental development. Membrane technology has demonstrated considerable potential in water treatment due to its low energy consumption and environmentally friendly characteristics. This review comprehensively summarizes recent advances in emerging metal–organic framework (MOF)-, covalent organic framework (COF)-, and hydrogen-bonded organic framework (HOF)-based membranes for highly efficient separation and catalytic degradation of PFAS. We provide a detailed analysis of design strategies for various organic framework membranes (OFMs) and their synergistic separation mechanisms, including size exclusion, electrostatic interactions, adsorption, as well as catalytic degradation based on advanced oxidation processes. Furthermore, we systematically evaluate the performance and applicability of these membranes in practical aquatic environments. Finally, this review outlines future directions toward developing integrated “separation-degradation” membrane processes for practical applications by discussing current challenges concerning material stability, manufacturing costs, and long-term operational efficiency. This review aims to provide theoretical guidance and technical insights for developing next-generation high-performance membranes for PFAS removal. Full article
Show Figures

Graphical abstract

39 pages, 4489 KB  
Article
High-Resolution 1H NMR Investigation of the Speciation Status of Nickel(II) and Copper(II) Ions in a Cell Culture Medium: Relevance to Their Toxicological Actions
by Deepinder K. Kalra, Kayleigh Hunwin, Katie Hewitt, Olivia Steel and Martin Grootveld
Molecules 2026, 31(1), 85; https://doi.org/10.3390/molecules31010085 - 24 Dec 2025
Viewed by 384
Abstract
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation [...] Read more.
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation of these in cell culture media can establish novel chemical interactions, with their speciation status markedly influencing characteristics, including cell maturation, and cellular uptake mechanisms. Thus, the primary objective of this study was to investigate and determine the speciation status (i.e., complexation) of nickel(II) and copper(II) ions by biomolecules present in RPMI 1640 mammalian cell culture medium using virtually non-invasive high-resolution proton NMR analysis, an investigation of much relevance to now routine studies of their toxicological actions towards cultured cells. Samples of the above aqueous culture medium were 1H NMR-titrated with increasing added concentrations of 71–670 µmol/L Ni(II)(aq.), and 0.71–6.7, 7.1–67 and 71–670 µmol/L Cu(II)(aq.), in duplicate or triplicate. 1H NMR spectra were acquired on a JEOL ECZ-600 spectrometer at 298 K. Results demonstrated that addition of increasing concentrations of Ni(II) and Cu(II) ions to the culture medium led to the selective broadening of a series of biomolecule resonances, results demonstrating their complexation by these agents. The most important complexants for Ni(II) were histidine > glutamine > acetate ≈ methionine ≈ lysine ≈ threonine ≈ branched-chain amino acids (BCAAs) > asparagine ≈ aspartate > tyrosine ≈ tryptophan, whereas for Cu(II) they were found to be histidine > glutamine > phenylalanine ≈ tyrosine ≈ nearly all remaining aliphatic metabolites (particularly the wealth of amino acids detectable) > 4-hydroxyphenylacetate (trace culture medium contaminant), in these orders. However, Cu(II) had the ability to influence the linewidths of these signals at much lower added levels (≤7 µmol/L) than that of Ni(II), the broadening effects of the latter occurring at concentrations which were approximately 10-fold greater. Virtually all of these added metal ion-induced resonance modifications were, as expected, reversible on addition of equivalent or excess levels of the chelator EDTA. From this study, changes in the co-ordination sphere of metal ions in physiological environments can give rise to marked modifications in their physicochemical properties (e.g., redox potentials, electronic charges, the potential catalytic generation of reactive oxygen species (ROS), and cell membrane passages). Moreover, given that the above metabolites may also function as potent hydroxyl radical (OH) scavengers, these findings suggest that generation of this aggressively reactive oxidant directly from Cu(II) and Ni(II) ions in physiologically-relevant complexes may be scavenged in a ‘site-dependent’ manner. This study is of further relevance to trace metal ion research in general since it enhances our understanding of the nature of their interactions with culture medium biomolecules, and therefore provides valuable information regarding their overall chemical and biological activities, and toxicities. Full article
Show Figures

Figure 1

21 pages, 43352 KB  
Article
Green Synthesis of Copper-Doped ZrO2 Nanoparticles Using Calendula officinalis Flower Extract: Comprehensive Characterization, Biocompatibility, and Anticancer Evaluation
by Dhruv Suraneni, Balasubramanian Deepika, Kavinithi Jaganathan Mahadevan, Sanjana Raghupathy, Shangavy Pandiarajan, Devadass Jessy Mercy, Agnishwar Girigoswami, Sanjay Kisan Metkar, Surajit Hansda and Koyeli Girigoswami
Physchem 2026, 6(1), 1; https://doi.org/10.3390/physchem6010001 - 23 Dec 2025
Viewed by 352
Abstract
The field of nanotechnology has witnessed a paradigm shift towards eco-friendly and sustainable synthesis methods for nanoparticles due to increasing concerns over environmental toxicity and resource sustainability. Among various metal oxide nanoparticles, zirconium dioxide (ZrO2) nanoparticles have garnered significant attention owing [...] Read more.
The field of nanotechnology has witnessed a paradigm shift towards eco-friendly and sustainable synthesis methods for nanoparticles due to increasing concerns over environmental toxicity and resource sustainability. Among various metal oxide nanoparticles, zirconium dioxide (ZrO2) nanoparticles have garnered significant attention owing to their exceptional thermal stability, biocompatibility, mechanical strength, and catalytic properties. Doping ZrO2 with transition metals such as copper (Cu) further enhances its physicochemical attributes, including antibacterial activity, redox behaviour, and electronic properties, rendering it suitable for a diverse range of biomedical and industrial applications. In the present study, we report the green synthesis of copper-doped ZrO2 nanoparticles (Cu-ZrO2-CO NPs) using an aqueous extract of Calendula officinalis (marigold) flowers as a natural reducing and stabilizing agent. The complete characterization was performed using UV–vis spectrophotometry, dynamic light scattering (DLS), zeta potential, FTIR, SEM, EDAX, and XRD, revealing its size to be around 20–40 nm and zeta potential as −20 mV, indicating nano size and stability. The biocompatibility of the as-synthesized nanoparticle was analyzed in vitro using fibroblast cell viability and haemolysis assay, and in vivo using brine shrimp assay. The nanoparticles were safe up to a dose of 50 μg/mL, showing more than 95% cell viability and less than 2% haemolysis, which is within an acceptable range. Finally, the anticancer activity was explored for A549 cells by MTT assay and live-dead assay, with an IC50 value of 38.63 μg/mL. The chorioallantoic membrane (CAM) model was used to assess the anti-angiogenesis potential of the Cu-ZrO2-CO NPs. The results showed that the nanoparticles could kill the cancer cells via apoptosis, and one of the reasons for the anticancer effect was angiogenesis inhibition. Further research is needed using other cancer cell lines and animal tumour models. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Graphical abstract

23 pages, 1563 KB  
Article
Sustainable Lipase Immobilization on Eggshell Membrane Carriers: Economic and LCA Insights at Laboratory Scale
by Marija Stjepanović, Marta Ostojčić, Ivica Strelec, Natalija Velić, Nghiep Nam Tran, Volker Hessel, Marc Escribà-Gelonch and Sandra Budžaki
Sustainability 2026, 18(1), 134; https://doi.org/10.3390/su18010134 - 22 Dec 2025
Viewed by 245
Abstract
This study presents a comprehensive economic and environmental evaluation of immobilized lipases produced on eggshell membrane-based carriers from eggshell waste, based on laboratory-scale experiments. By integrating economic analysis (EA) and life cycle analysis (LCA), the key factors affecting the economic viability and environmental [...] Read more.
This study presents a comprehensive economic and environmental evaluation of immobilized lipases produced on eggshell membrane-based carriers from eggshell waste, based on laboratory-scale experiments. By integrating economic analysis (EA) and life cycle analysis (LCA), the key factors affecting the economic viability and environmental impact of the process were identified, supporting sustainable and circular biorefinery concepts. The EA estimated the total process cost at EUR 25.63 for 15 g of product, while the effective net cost was negative (EUR −14.81) due to the valorization of anhydrous calcium chloride as a valuable by-product. The effective net cost reduction from by-product valorization of the immobilized lipase was estimated at 0.99 EUR/g as the minimum selling price (MSP). When expressed per unit of enzymatic activity, the immobilized lipase on the eggshell waste membrane-based carrier shows a substantially lower cost (EUR/U) compared with representative commercial immobilized lipases, demonstrating clear catalytic cost-efficiency advantages. The cradle-to-gate life cycle assessment, conducted using ReCiPe 2016 quantification methods, highlighted electricity consumption during drying as the primary environmental hotspot, accounting for up to 57% of the global warming potential. Sensitivity and uncertainty analyses showed that energy consumption strongly influences the impact in terms of climate change and fossil resource depletion, while the impact of chemical use was minimal. These results show that energy-efficient process optimization, especially in the drying phase, is crucial for further improving environmental and economic performance. These results indicate that optimizing energy efficiency, especially during the drying phase, is crucial for further improving the production process of immobilized lipases on eggshell membrane-based carriers, both environmentally and economically. Full article
Show Figures

Figure 1

21 pages, 8040 KB  
Article
Functionalization of Microfiltration Media Towards Catalytic Hydrogenation of Selected Halo-Organics from Water
by Subrajit Bosu, Samuel S. Thompson, Doo Young Kim, Noah D. Meeks and Dibakar Bhattacharyya
Nanomaterials 2026, 16(1), 14; https://doi.org/10.3390/nano16010014 - 22 Dec 2025
Viewed by 361
Abstract
Contaminated water detoxification remains difficult due to the presence of persistent halo-organic contaminants, such as perfluorooctanoic acid (PFOA) and chlorophenols, which are chemically stable and resist conventional purification methods. Functionalized membrane-based separation and decontamination have garnered immense attention in recent years. Commercially available [...] Read more.
Contaminated water detoxification remains difficult due to the presence of persistent halo-organic contaminants, such as perfluorooctanoic acid (PFOA) and chlorophenols, which are chemically stable and resist conventional purification methods. Functionalized membrane-based separation and decontamination have garnered immense attention in recent years. Commercially available microfiltration membrane (PVDF) and polymeric non-woven fiber filters (glass and composite) are functionalized with poly(methacrylic acid) (PMAA) that shows outstanding pH-responsive performance and tunable water permeability under ambient conditions perfect for environmental applications. Polymer loading based on weight gain measurements on PMAA–microglass composite fibers (137%) and microglass fibers (116%) confirmed their extent of functionalization, which was significantly greater than that of PVDF (25%) due to its widely effective pore diameter. Presence of chemically active hydrogel within PVDF matrix was validated by FTIR (hydroxyl/carbonyl) stretch peak, substantial decrease in contact angle (68.8° ± 0.5° to 30.8° ± 1.9°), and decrease in pure water flux from 509 to 148 LMH/bar. Nanoparticles are generated both in solution and within PVDF using simple redox reactions. This strategy is extended to PVDF-PMAA membranes, which are loaded with Fe/Pd nanoparticles for catalytic conversion of 4-chlorophenol and PFOA, forming Fe/Pd-PVDF-PMAA systems. A total of 0.25 mg/L Fe/Pd nanoparticles synthesized in solution displayed alloy-type structures and demonstrated a strong catalytic performance, achieving complete hydrogenation of 4-chlorophenol to phenol and 67% hydrogenation of PFOA to its reduced form at 22–23 °C with ultrapure hydrogen gas supply at pH 5.7. These results underscore the potential of hybrid polymer–nanoparticle systems as a novel remediation strategy, integrating tunable separation with catalytic degradation to overcome the limitations of conventional water treatment methods. Full article
(This article belongs to the Special Issue Advances in Nanotechnology for Pollutant Degradation)
Show Figures

Graphical abstract

22 pages, 1684 KB  
Review
Recent Advances in Endolysin Engineering
by Mackenzie Aitken, Gayan Abeysekera, Craig Billington and Renwick C. J. Dobson
Antibiotics 2025, 14(12), 1285; https://doi.org/10.3390/antibiotics14121285 - 18 Dec 2025
Viewed by 676
Abstract
Antimicrobial resistance threatens a new “dark age” in medical practice. Chronic antibiotic overuse has driven the rise in antimicrobial resistance and promoted the emergence of multidrug-resistant organisms. To address this problem, researchers have developed new approaches. Antimicrobials derived from bacteriophage, which are viruses [...] Read more.
Antimicrobial resistance threatens a new “dark age” in medical practice. Chronic antibiotic overuse has driven the rise in antimicrobial resistance and promoted the emergence of multidrug-resistant organisms. To address this problem, researchers have developed new approaches. Antimicrobials derived from bacteriophage, which are viruses that target bacteria, are promising candidates. Amongst these candidates, bacteriophage enzymes used in the viral replication cycle are of significant interest. Specifically, endolysins are used by bacteriophage to lyse the bacterial cell wall, leading to structural collapse and cell lysis. Researchers are increasingly applying these proteins externally to multidrug-resistant organisms as a novel antimicrobial treatment. Following this increased interest, many studies have presented protein engineering methods to further enhance the effectiveness of endolysins as antimicrobials. These methods include attachment of membrane-permeabilizing peptides, domain-swapping, and catalytic-site modification. Recent advances in all three fields have seen the implementation of tools like novel in silico design pipelines and library-based screening methods. This review summarizes these recent advances in the rapidly developing field of endolysin engineering and discusses potential future directions in this field. Full article
(This article belongs to the Special Issue Bacteriophages and Phage-Derived Enzymes as Antibacterial Agents)
Show Figures

Figure 1

16 pages, 5463 KB  
Article
Preparation of Cu-MnO2/GO/PVDF Catalytic Membranes via Phase Inversion Method and Application for Separation Removal of Dyes
by Fei Wang, Xinyu Hou, Runze He, Jiachen Song, Yifan Xie, Zhaohui Yang and Xiao Liu
Membranes 2025, 15(12), 384; https://doi.org/10.3390/membranes15120384 - 18 Dec 2025
Viewed by 401
Abstract
To address the issues of hydrophobicity, easy fouling, and limited application of polyvinylidene fluoride (PVDF) membranes in water treatment processes, this study prepared Cu-MnO2/GO/PVDF catalytic membranes via the immersion precipitation phase inversion method. Graphene oxide (GO) was incorporated to facilitate the [...] Read more.
To address the issues of hydrophobicity, easy fouling, and limited application of polyvinylidene fluoride (PVDF) membranes in water treatment processes, this study prepared Cu-MnO2/GO/PVDF catalytic membranes via the immersion precipitation phase inversion method. Graphene oxide (GO) was incorporated to facilitate the construction of good water channels, while copper-doped manganese dioxide (Cu-MnO2) was added to enhance catalytic activity. The structure, morphology, and performance of the membranes were characterized comprehensively. Results showed that Cu-MnO2 was well interspersed between GO sheets, thereby increasing membrane surface roughness, effective filtration area, and hydrophilicity. The best catalytic membrane CM-5 exhibited the highest pure water flux (1391.20 L·m−2·h−1) and methyl blue (MBE) rejection rate (98.06%), and it also displayed excellent reusability and stability. EPR tests confirmed the generation of HO· and HOO· in the Fenton-like system, which mediated dye degradation. The Cu-MnO2/GO/PVDF catalytic membrane demonstrated excellent hydrophilicity, antifouling properties, and catalytic efficiency, thus providing a viable solution for dye wastewater treatment. Full article
Show Figures

Figure 1

10 pages, 778 KB  
Perspective
Hypoxia as a Central Regulator of Plasma Membrane Phosphohydrolase Enzymes: Possible Roles in Extracellular Phosphate Generation and Adenosine Metabolism
by Pedro Henrique Silva de Oliveira, Beatriz Bereda Silva-Freitas, José Roberto Meyer-Fernandes and Marco Antonio Lacerda-Abreu
Membranes 2025, 15(12), 381; https://doi.org/10.3390/membranes15120381 - 15 Dec 2025
Viewed by 526
Abstract
This article presents a conceptual perspective proposing that hypoxia acts as a unifying regulator of plasma membrane phosphohydrolases. We propose that oxygen sensing at the cell surface integrates adenosine and phosphate metabolism to sustain tumour adaptation. Within the oxygen- and nutrient-deprived tumour microenvironment, [...] Read more.
This article presents a conceptual perspective proposing that hypoxia acts as a unifying regulator of plasma membrane phosphohydrolases. We propose that oxygen sensing at the cell surface integrates adenosine and phosphate metabolism to sustain tumour adaptation. Within the oxygen- and nutrient-deprived tumour microenvironment, inorganic phosphate (Pi) and adenosine function as metabolic substrates and signalling mediators that promote cell proliferation, survival, and immune evasion. Stabilisation of hypoxia-inducible factor-1α (HIF-1α) enhances the expression and catalytic activity of specific phosphohydrolases, notably the ectonucleotidases CD39 (NTPDase1) and CD73 (ecto-5′-nucleotidase), which drive adenosine accumulation and immunosuppression. Conversely, the activity of transmembrane prostatic acid phosphatase (TM-PAP), responsible for hydrolysing phosphate esters such as p-nitrophenylphosphate (pNPP) and AMP, is inhibited under hypoxia through oxidative and kinase-dependent mechanisms. Collectively, these mechanisms characterise the plasma membrane as a dynamic metabolic interface, where oxygen sensing coordinates adenosine and phosphate turnover, thereby promoting tumour adaptation across hypoxic environments. We propose that hypoxia orchestrates a dual regulatory loop connecting adenosine accumulation and phosphate turnover at the tumour cell surface, providing a conceptual basis for future mechanistic studies. Full article
Show Figures

Figure 1

Back to TopTop