Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells
Abstract
1. Introduction
2. CL Microstructure Reconstruction
3. Numerical Methods
3.1. MRT Pseudopotential Multiphase LB Model
3.2. Computational Domain and Boundary Conditions
3.3. Model Validation
4. Results and Discussion
4.1. Effect of Carbon Carrier Diameter on the Flow Behavior of Phosphoric Acid
4.2. Effect of Porosity on the Flow Behavior of Phosphoric Acid
4.3. Effect of Pt/C Mass Ratio on the Flow Behavior of Phosphoric Acid
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, D.; Lee, G.D. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). J. Power Sources 2016, 327, 119–126. [Google Scholar] [CrossRef]
- Wang, Y.; Seo, B.; Wang, B.; Zamel, N.; Jiao, K.; Adroher, X.C. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy 2020, 1, 100014. [Google Scholar] [CrossRef]
- Oh, K.; Ju, H. Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes. Int. J. Hydrogen Energy 2015, 40, 7743–7753. [Google Scholar] [CrossRef]
- Lim, K.H.; Matanovic, I.; Maurya, S.; Kim, Y.; De Castro, E.S.; Jang, J.-H.; Park, H.; Kim, Y.S. High temperature polymer electrolyte membrane fuel cells with high phosphoric acid retention. ACS Energy Lett. 2022, 8, 529–536. [Google Scholar] [CrossRef]
- Brouzgou, A.; Seretis, A.; Song, S.; Shen, P.K.; Tsiakaras, P. CO tolerance and durability study of PtMe (Me = Ir or Pd) electrocatalysts for H2-PEMFC application. Int. J. Hydrogen Energy 2020, 46, 13865–13877. [Google Scholar] [CrossRef]
- Aili, D.; Becker, H.; Reimer, U.; Andreasen, J.W.; Cleemann, L.N.; Jensen, J.O.; Pan, C.; Wang, X.; Lehnert, W.; Li, Q. Phosphoric acid dynamics in high temperature polymer electrolyte membranes. J. Electrochem. Soc. 2020, 167, 134507. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, J.N. Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid. Ind. Chem. Mater. 2024, 2, 173–190. [Google Scholar] [CrossRef]
- Haider, R.; Wen, Y.; Ma, Z.F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2020, 50, 1138–1187. [Google Scholar] [CrossRef]
- Li, J.; Ji, J.; Li, K.; Li, H.; Zhang, W.; Wang, W.; Pei, Q.; Gong, C. Progress in High Temperature Proton Exchange Membranes for Fuel Cell. J. Eng. Sdudies 2023, 15, 424–445. [Google Scholar] [CrossRef]
- Ying, J.; Liu, T.; Wang, Y.; Guo, M.; Shen, Q.; Lin, Y.; Yu, J.; Yu, Z. Perspectives on Membrane Development for High Temperature Proton Exchange Membrane Fuel Cells. Energy Fuels 2024, 38, 6613–6643. [Google Scholar] [CrossRef]
- Zakil, A.F.; Kamarudin, S.; Basri, S. Modified Nafion membranes for direct alcohol fuel cells: An overview. Renew. Sustain. Energy Rev. 2016, 65, 841–852. [Google Scholar] [CrossRef]
- Chevalier, S.; Fazeli, M.; Mack, F.; Galbiati, S.; Manke, I.; Bazylak, A.; Zeis, R. Role of the microporous layer in the redistribution of phosphoric acid in high temperature PEM fuel cell gas diffusion electrodes. Electrochim. Acta 2016, 212, 187–194. [Google Scholar] [CrossRef]
- Søndergaard, T.; Cleemann, L.N.; Becker, H.; Steenberg, T.; Hjuler, H.A.; Seerup, L.; Li, Q.; Jensen, J.O. Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters. J. Electrochem. Soc. 2018, 165, F3053–F3062. [Google Scholar] [CrossRef]
- Mack, F.; Klages, M.; Scholta, J.; Jörissen, L.; Morawietz, T.; Hiesgen, R.; Kramer, D.; Zeis, R. Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. J. Power Sources 2014, 255, 431–438. [Google Scholar] [CrossRef]
- Bevilacqua, N.; George, M.; Galbiati, S.; Bazylak, A.; Zeis, R. Phosphoric Acid Invasion in High Temperature PEM Fuel Cell Gas Diffusion Layers. Electrochim. Acta 2017, 257, 89–98. [Google Scholar] [CrossRef]
- Xia, L.; Ni, M.; He, Q.; Xu, Q.; Cheng, C. Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Appl. Energy 2021, 300, 117357. [Google Scholar] [CrossRef]
- Xia, L.; Xu, Q.; He, Q.; Ni, M.; Seng, M. Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design. Int. J. Hydrogen Energy 2021, 46, 21098–21111. [Google Scholar] [CrossRef]
- Sousa, T.; Mamlouk, M.; Scott, K. A Non—Isothermal Model of a Laboratory Intermediate Temperature Fuel Cell Using PBI Doped Phosphoric Acid Membranes. Fuel Cells 2010, 10, 993–1012. [Google Scholar] [CrossRef]
- Sousa, T.; Mamlouk, M.; Scott, K. An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Chem. Eng. Sci. 2009, 65, 2513–2530. [Google Scholar] [CrossRef]
- Sousa, T.; Mamlouk, M.; Scott, K. A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. Int. J. Hydrogen Energy 2010, 32, 12065–12080. [Google Scholar] [CrossRef]
- Sousa, T.; Mamlouk, M.; Scott, K.; Rangel, C.M. Three dimensional model of a high temperature PEMFC. Study of the flow field effect on performance. Fuel Cells 2012, 12, 566–576. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Akbari, M.H. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method. Korean J. Chem. Eng. 2015, 32, 397−405. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Saeidi Googarchin, H.; Qasemian Moqaddam, A. Lattice Boltzmann simulation of proton exchange membrane fuel cells—A review on opportunities and challenges. Int. J. Hydrogen Energy 2016, 41, 22221−22245. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Akbari, M.H. Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method. Int. J. Hydrogen Energy 2014, 39, 8401–8409. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, S.; Liao, X.; Jia, Y.; Xu, H.; Wang, C.; He, W.; Zhao, Y. Lattice Boltzmann study of the effect of catalyst layer structure on oxygen reduction reaction within a PEMFC. Int. J. Hydrogen Energy 2024, 52, 1105–1114. [Google Scholar] [CrossRef]
- Yang, X.; Yang, G.; Wang, H.; Xu, Z.; Ji, S.; Sun, H.; Miao, H.; Yuan, J. Pore-scale investigation of methane steam transport in porous anodes of solid oxide fuel cells with varying structures. J. Power Sources 2025, 628, 235881. [Google Scholar] [CrossRef]
- Duan, K.; Zhu, L.; Li, M.; Xiao, L.; Bevilacqua, N.; Eifert, L.; Manke, I.; Markötter, H.; Zhang, R.; Zeis, R. Multiphase and Pore Scale Modeling on Catalyst Layer of High-Temperature Polymer Electrolyte Membrane Fuel Cell. J. Electrochem. Soc. 2021, 168, 054521. [Google Scholar] [CrossRef]
- Zhan, Z.; Song, H.; Yang, X.; Jiang, P.; Chen, R.; Harandi, H.B.; Zhang, H.; Pan, M. Microstructure reconstruction and multiphysics dynamic distribution simulation of the catalyst layer in PEMFC. Membranes 2022, 12, 1001. [Google Scholar] [CrossRef]
- Salomov, U.R.; Chiavazzo, E.; Asinari, P. Pore-scale modeling of fluid flow through gas diffusion and catalyst layers for high temperature proton exchange membrane (HT-PEM) fuel cells. Comput. Math. Appl. 2014, 67, 393–411. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, H.; Pan, F.; Chen, W.; Du, Q.; Jiao, K. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Appl. Energy 2019, 253, 113561. [Google Scholar] [CrossRef]
- Kim, S.H.; Pitsch, H. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc. 2009, 156, B673. [Google Scholar] [CrossRef]
- Lange, J.K.; Sui, P.; Djilali, N. Pore Scale Simulation of Transport and Electrochemical Reactions in Reconstructed PEMFC Catalyst Layers. J. Electrochem. Soc. 2010, 157, B1434–B1442. [Google Scholar] [CrossRef]
- Chen, L.; Wu, G.; Holby, E.F.; Zelenay, P.; Tao, W.-Q.; Kang, Q. Lattice Boltzmann pore-scale investigation of coupled physical-electrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells. Electrochim. Acta 2015, 158, 175–186. [Google Scholar] [CrossRef]
- Zhang, R.; Min, T.; Chen, L.; Kang, Q.; He, Y.-L.; Tao, W.-Q. Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells. Appl. Energy 2019, 253, 113590. [Google Scholar] [CrossRef]
- Deng, H.; Hou, Y.; Chen, W.; Pan, F.; Jiao, K. Lattice Boltzmann simulation of oxygen diffusion and electrochemical reaction inside catalyst layer of PEM fuel cells. Int. J. Heat Mass Transf. 2019, 143, 118538. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, H.; Du, Q.; Jiao, K. Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in flow channel of fuel cell. J. Power Sources 2018, 393, 83–91. [Google Scholar] [CrossRef]
- Hou, Y.; Deng, H.; Zamel, N.; Du, Q.; Jiao, K. 3D lattice Boltzmann modeling of droplet motion in PEM fuel cell channel with realistic GDL microstructure and fluid properties. Int. J. Hydrogen Energy 2020, 45, 12476–12488. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, G.; Shen, Q.; Li, S.; Liao, J.; Yang, X.; Sun, J. Liquid water transport phenomena in the porous transport layer of proton exchange membrane fuel cell based on lattice Boltzmann simulation. Mater. Today Commun. 2023, 37, 107633. [Google Scholar] [CrossRef]
- Liao, J.; Yang, G.; Li, S.; Shen, Q.; Jiang, Z.; Wang, H.; Li, Z. Study of droplet flow characteristics on a wetting gradient surface in a proton exchange membrane fuel cell channel using lattice Boltzmann method. J. Power Sources 2022, 529, 231245. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Xu, B.; Li, P.; Wang, Z.; Jiang, S. Multiple-relaxation-time lattice Boltzmann simulation of flow and heat transfer in porous volumetric solar receivers. J. Energy Resour. Technol. 2018, 140, 082003. [Google Scholar] [CrossRef]
- Liao, J.; Yang, G.; Li, S.; Shen, Q.; Jiang, Z.; Wang, H. Lattice Boltzmann simulation of droplet growth processes in flow channel of proton exchange membrane fuel cell. In Proceedings of the International Conference on Energy Power and Automation Engineering, Huzhou, China, 9–11 June 2023. [Google Scholar]
- Li, Q.; Luo, K.H. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys. Rev. E 2013, 88, 053307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, Y.; Shang, W.; Wang, Z.; Xu, B.; Jiang, S. Simulation of droplet impacting a square solid obstacle in microchannel with different wettability by using high density ratio pseudopotential multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Can. J. Phys. 2019, 97, 93–113. [Google Scholar] [CrossRef]
- Kharmiani, S.F.; Passandideh-Fard, M.; Niazmand, H. Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method. J. Mol. Liq. 2016, 222, 1172–1182. [Google Scholar] [CrossRef]











| Parameter | Value |
|---|---|
| 1800 | |
| 21,450 | |
| 2000 | |
| 0.8 | |
| 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ji, S.; Yang, G.; Wang, H. Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells. Membranes 2026, 16, 30. https://doi.org/10.3390/membranes16010030
Ji S, Yang G, Wang H. Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells. Membranes. 2026; 16(1):30. https://doi.org/10.3390/membranes16010030
Chicago/Turabian StyleJi, Shengzheng, Guogang Yang, and Hao Wang. 2026. "Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells" Membranes 16, no. 1: 30. https://doi.org/10.3390/membranes16010030
APA StyleJi, S., Yang, G., & Wang, H. (2026). Lattice Boltzmann Simulation of Mass Transfer Characteristics in Catalyst Layer of High-Temperature Proton Exchange Membrane Fuel Cells. Membranes, 16(1), 30. https://doi.org/10.3390/membranes16010030

