Hypoxia as a Central Regulator of Plasma Membrane Phosphohydrolase Enzymes: Possible Roles in Extracellular Phosphate Generation and Adenosine Metabolism
Abstract
1. Introduction
2. Non-Small Lung Cancer
3. Colorectal Cancer
4. Breast Cancer
5. Prostate Cancer
6. Melanoma
7. Gastric Cancer
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADA | Adenosine deaminase |
| ADP | Adenosine diphosphate |
| ALP | Alkaline phosphatase |
| AMP | Adenosine monophosphate |
| APCP | Aminophenylmethyl diphosphonate (CD73 inhibitor) |
| ATP | Adenosine triphosphate |
| BALB/c | Mouse strain used for orthotopic transplantation |
| BT-474 | Human luminal A breast cancer cell line |
| BGC-823 | Human gastric carcinoma cell line |
| CD | Cluster of differentiation |
| CD39 | Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) |
| CD73 | Ecto-5′-nucleotidase (E-5NT; NT5E) |
| CoCl2 | Cobalt(II) chloride (chemical hypoxia inducer) |
| EMT | Epithelial–mesenchymal transition |
| ENTPDase | Ectonucleoside triphosphate diphosphohydrolase |
| E-NPP | Ectonucleotide pyrophosphatase/phosphodiesterase |
| E-5NT | Ecto-5′-nucleotidase |
| H2O2 | Hydrogen peroxide |
| HCC | Hepatocellular carcinoma |
| HGC-27 | Human gastric carcinoma cell line |
| HIF-1α | Hypoxia-inducible factor-1α |
| LDHA | Lactate dehydrogenase A |
| MCF-7 | Human luminal A breast cancer cell line |
| MDA-MB-231 | Human triple-negative breast cancer cell line |
| MDSC | Myeloid-derived suppressor cell |
| mCRC | Metastatic colorectal cancer |
| MeoE2 | 2-Methoxyestradiol (HIF-1α inhibitor) |
| NDP | Nucleoside diphosphate |
| NMP | Nucleoside monophosphate |
| NPP1 | Ectonucleotide pyrophosphatase/phosphodiesterase 1 |
| NSCLC | Non-small cell lung cancer |
| NTP | Nucleoside triphosphate |
| O2 | Molecular oxygen |
| pNPP | p-Nitrophenylphosphate |
| Pi | Inorganic phosphate |
| PKC | Protein kinase C |
| PPi | Inorganic pyrophosphate |
| ROS | Reactive oxygen species |
| SGC-7901 | Human gastric carcinoma cell line |
| SNP | Single-nucleotide polymorphism |
| TME | Tumour microenvironment |
| TM-PAP | Transmembrane prostatic acid phosphatase |
| TNBC | Triple-negative breast cancer |
| VEGF | Vascular endothelial growth factor |
| 4T1 | Murine mammary carcinoma cell line |
References
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015, 3, 83–92. [Google Scholar] [CrossRef]
- Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer 2014, 14, 430–439. [Google Scholar] [CrossRef]
- Castelli, S.; Ciccarone, F.; Tavian, D.; Ciriolo, M.R. ROS-dependent HIF-1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. J. Exp. Clin. Cancer Res. 2021, 40, 94. [Google Scholar] [CrossRef] [PubMed]
- Lacerda-Abreu, M.A.; Meyer-Fernandes, J.R. Inorganic phosphate (Pi) in the breast cancer microenvironment: Production, transport and signal transduction as potential targets for anticancer strategies. Curr. Cancer Drug Targets 2023, 23, 187–198. [Google Scholar] [CrossRef]
- Falzoni, S.; Donvito, G.; Di Virgilio, F. Detecting adenosine triphosphate in the pericellular space. Interface Focus 2013, 3, 20120101. [Google Scholar] [CrossRef] [PubMed]
- Trabanelli, S.; Ocadlíková, D.; Gulinelli, S.; Curti, A.; Salvestrini, V.; Vieira, R.P.; Idzko, M.; Di Virgilio, F.; Ferrari, D.; Lemoli, R.M. Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation. J. Immunol. 2012, 189, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, H. Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal. 2009, 5, 273–275. [Google Scholar] [CrossRef]
- Zimmermann, H. Extracellular ATP and other nucleotides—Ubiquitous triggers of intercellular messenger release. Purinergic Signal. 2016, 12, 25–57. [Google Scholar] [CrossRef]
- Yan, F.; Teng, Y.; Li, X.; Zhong, Y.; Li, C.; Yan, F.; He, X. Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol. Ther. 2024, 25, 2304161. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Chen, X.; Li, L.; Li, Y.; Ping, Y.; Huang, L.; Yue, D.; Zhang, Z.; Wang, F.; et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 2017, 6, e1320011. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Kouroupi, M.; Pouliliou, S.; Mitrakas, A.; Hasan, F.; Pappa, A.; Koukourakis, M.I. Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates to hypoxia and immunosuppressive pathways. Life Sci. 2020, 259, 118389. [Google Scholar] [CrossRef]
- Tokunaga, R.; Cao, S.; Naseem, M.; Lo, J.H.; Battaglin, F.; Puccini, A.; Berger, M.D.; Soni, S.; Millstein, J.; Zhang, W.; et al. Prognostic effect of adenosine-related genetic variants in metastatic colorectal cancer treated with bevacizumab-based chemotherapy. Clin. Color. Cancer 2019, 18, e8–e19. [Google Scholar] [CrossRef]
- Petruk, N.; Tuominen, S.; Åkerfelt, M.; Mattsson, J.; Sandholm, J.; Nees, M.; Yegutkin, G.G.; Jukkola, A.; Tuomela, J.; Selander, K.S. CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci. Rep. 2021, 11, 6035. [Google Scholar] [CrossRef]
- Maralbashi, S.; Aslan, C.; Kahroba, H.; Asadi, M.; Soltani-Zangbar, M.S.; Haghnavaz, N.; Jadidi, F.; Salari, F.; Kazemi, T. Docosahexaenoic acid (DHA) impairs hypoxia-induced cellular and exosomal overexpression of immune checkpoints and immunomodulatory molecules in different subtypes of breast cancer cells. BMC Nutr. 2024, 10, 41. [Google Scholar] [CrossRef]
- Lacerda-Abreu, M.A.; Carvalho-Kelly, L.F.; Meyer-Fernandes, J.R. Hypoxia modulates transmembrane prostatic acid phosphatase (TM-PAP) in MCF-7 breast cancer cells. Int. J. Mol. Sci. 2025, 26, 1918. [Google Scholar] [CrossRef] [PubMed]
- Losenkova, K.; Zuccarini, M.; Karikoski, M.; Laurila, J.; Boison, D.; Jalkanen, S.; Yegutkin, G.G. Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia. J. Cell Sci. 2020, 133, jcs241463. [Google Scholar] [CrossRef]
- Vignali, P.D.A.; DePeaux, K.; Watson, M.J.; Ye, C.; Ford, B.R.; Lontos, K.; McGaa, N.K.; Scharping, N.E.; Menk, A.V.; Robson, S.C.; et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol. 2023, 24, 267–279. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, Z.; Cao, Y.; Hu, J.; Min, M. CD73 is a hypoxia-responsive gene and promotes the Warburg effect of human gastric cancer cells dependent on its enzyme activity. J. Cancer 2021, 12, 6372–6382. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Ogawa, M.; Zhou, Y.; Namba, K.; Hendrickson, R.C.; Miele, M.M.; Li, Z.; Klimstra, D.S.; Buckley, P.G.; Gulcher, J.; et al. Proteogenomic characterization of primary colorectal cancer and metastatic progression identifies proteome-based subtypes and signatures. Cell Rep. 2024, 43, 113810. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Sun, Z.; Hong, H.; Yang, Y.; Chen, J.; Gao, Z.; Gu, J. Novel hypoxia- and lactate metabolism-related molecular subtyping and prognostic signature for colorectal cancer. J. Transl. Med. 2024, 22, 587. [Google Scholar] [CrossRef] [PubMed]
- Zhi, S.; Chen, C.; Huang, H.; Zhang, Z.; Zeng, F.; Zhang, S. Hypoxia-inducible factor in breast cancer: Role and target for breast cancer treatment. Front. Immunol. 2024, 15, 1370800. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, O.A.A.; Tesen, H.S.; Hany, M.; Sherif, A.; Abdelwahab, M.M.; Elnaggar, M.H. The role of hypoxia on prostate cancer progression and metastasis. Mol. Biol. Rep. 2023, 50, 3873–3884. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Jeon, M.; Choi, S.; Yoo, S.; Park, S.; Lee, M.; Kim, I. Hypoxia in skin cancer: Molecular basis and clinical implications. Int. J. Mol. Sci. 2023, 24, 4430. [Google Scholar] [CrossRef]
- Wei, Z.; Li, J.; Zhong, L.; Yang, D.; Li, W.; Chen, W.; Zhou, H.; He, Y.; Song, W.; Wang, B.; et al. DDR1 drives malignant progression of gastric cancer by suppressing HIF-1α ubiquitination and degradation. Adv. Sci. 2024, 11, e2308395. [Google Scholar] [CrossRef]


| Cancer Type | Model | Ectoenzyme | Hypoxia Conditions | Main Findings | Reference |
|---|---|---|---|---|---|
| Non-small cell lung cancer (NSCLC) | Patient blood and tumour samples; MDSCs and A549 cells | CD39, CD73 | CoCl2; 1.5% O2 | HIF-1α activation upregulated CD39/CD73 on MDSCs, enhancing immunosuppression and chemoresistance independently of mTOR. | [11] |
| A549 and H1299 cells | CD73 | 1% O2, 48 h | Hypoxia increased CD73 and LDHA, reinforcing adenosine production and immune evasion. | [12] | |
| Colorectal cancer | FIRE-3 and TRIBE clinical trials (n = 451 patients) | CD39, CD73 | Not experimentally induced | CD39/CD73 polymorphisms correlated with survival under bevacizumab; the HIF-1α–adenosine pathway is linked to VEGF-blockade resistance. | [13] |
| Breast cancer | 4T1 and MDA-MB-231 cells; BALB/c mice | CD73 | 1–5% O2 | Hypoxia elevated CD73 expression and EMT; CD73 inhibition reduced migration, viability, and lung metastases. | [14] |
| BT-474 and MDA-MB-231 cells | CD39, CD73 | CoCl2 (25 µM, 24 h) | Hypoxia upregulated CD39/CD73, predominantly in TNBC, promoting immune evasion. | [15] | |
| MCF-7 cells | TM-PAP | 5% O2, 1 h | Hypoxia reduced ectophosphatase activity (pNPP and AMP hydrolysis) via H2O2 generation and PKC activation. | [16] | |
| Prostate cancer | PC3 cells; xenografts in SCID mice | CD73 | 1% O2 (≤24 h); reoxygenation 1 h | Hypoxia doubled CD73 activity and AMP hydrolysis; NPP1 and ADA were unchanged; high ecto5′nucleotidase activity occurred in hypoxic xenografts. | [17] |
| Melanoma | B16-F10 murine model; T cells in vitro | CD39 | 1.5% O2 | HIF-1α-dependent CD39 expression on exhausted CD8+ T cells enhanced immunosuppression; hypoxia relief restored immunity. | [18] |
| Gastric cancer | BGC-823, HGC-27, SGC-7901 cells; xenografts | CD73 | 1% O2 or CoCl2 | HIF-1α-mediated CD73 induction promoted adenosine production and the Warburg effect, enhancing tumour growth. | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, P.H.S.; Silva-Freitas, B.B.; Meyer-Fernandes, J.R.; Lacerda-Abreu, M.A. Hypoxia as a Central Regulator of Plasma Membrane Phosphohydrolase Enzymes: Possible Roles in Extracellular Phosphate Generation and Adenosine Metabolism. Membranes 2025, 15, 381. https://doi.org/10.3390/membranes15120381
de Oliveira PHS, Silva-Freitas BB, Meyer-Fernandes JR, Lacerda-Abreu MA. Hypoxia as a Central Regulator of Plasma Membrane Phosphohydrolase Enzymes: Possible Roles in Extracellular Phosphate Generation and Adenosine Metabolism. Membranes. 2025; 15(12):381. https://doi.org/10.3390/membranes15120381
Chicago/Turabian Stylede Oliveira, Pedro Henrique Silva, Beatriz Bereda Silva-Freitas, José Roberto Meyer-Fernandes, and Marco Antonio Lacerda-Abreu. 2025. "Hypoxia as a Central Regulator of Plasma Membrane Phosphohydrolase Enzymes: Possible Roles in Extracellular Phosphate Generation and Adenosine Metabolism" Membranes 15, no. 12: 381. https://doi.org/10.3390/membranes15120381
APA Stylede Oliveira, P. H. S., Silva-Freitas, B. B., Meyer-Fernandes, J. R., & Lacerda-Abreu, M. A. (2025). Hypoxia as a Central Regulator of Plasma Membrane Phosphohydrolase Enzymes: Possible Roles in Extracellular Phosphate Generation and Adenosine Metabolism. Membranes, 15(12), 381. https://doi.org/10.3390/membranes15120381
