Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = catalytic leaching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1990 KiB  
Article
Selective Separation of Antimony and Preparation of Sodium Antimonate by Sodium Salt Leaching-Synergistic Oxidation from High Arsenic Antimony Residue
by Yanliang Zeng, Jun Jin, Chunfa Liao and Fupeng Liu
Metals 2025, 15(9), 929; https://doi.org/10.3390/met15090929 - 22 Aug 2025
Abstract
In this study, the catalytic air oxidation method was used to selectively form sodium antimonate from an antimony residue Na2S-NaOH leaching solution of a high arsenic copper anode slime. In the first stage, the leaching process with Na2S and [...] Read more.
In this study, the catalytic air oxidation method was used to selectively form sodium antimonate from an antimony residue Na2S-NaOH leaching solution of a high arsenic copper anode slime. In the first stage, the leaching process with Na2S and NaOH media resulted in more than 98% leaching of antimony. The synergistic oxidation method was used to selectively separate antimony in the second stage. In this study, the oxidation rate of antimony was greater than 98% at the NaOH concentration of 50 g·L−1 and a combined oxidation concentration of 0.75 g·L−1 catechol + 0.75 g·L−1 KMnO4, under the air flow rates of 1.415 m3·min−1 at 75 °C for 8 h. The pH of the crude sodium antimonate product was adjusted; subsequently, it was redissolved and precipitated to prepare refined sodium antimonate that meets the secondary product standard of China’s non-ferrous metal industry, which recommends an antimony recovery rate of >95.60%. After neutralisation, the liquid contains [As] < 0.10 g·L−1, [Sb] = 0.16–0.38 g·L−1, which can be reused in the composite leaching process. The apparent activation energy (Ea) of the catalytic oxidation reaction was 6.47 kJ·mol−1; the results suggested that the reaction process was diffusion controlled. dSbdt=8.86×105×e778.44T×Sb0.4906×[NaOH]1.190. Full article
Show Figures

Figure 1

20 pages, 7249 KiB  
Article
Enhanced Degradation of 4-Nitrophenol via a Two-Stage Co-Catalytic Fenton Packed-Bed Reactor with External Circulation
by Yan Liu, Jingyu Liu, Yongyou Hu, Yueyue Shi, Chaoyang Tang, Jianhua Cheng, Xiaoqiang Zhu, Guobin Wang and Jieyun Xie
Environments 2025, 12(8), 280; https://doi.org/10.3390/environments12080280 - 14 Aug 2025
Viewed by 381
Abstract
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade [...] Read more.
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade 4-nitrophenol (4-NP). Under suitable conditions, the ECTPBR could achieve over 91.97% 4-NP degradation, with low iron sludge production (11.97 mg/L) and minimal tungsten leaching (3.6363 mg/L). The two-stage strategy enabled spatial separation of Fe3+ reduction and Fenton reactions, minimizing the loss of active sites on DPW, ensuring long-term system stability, and reducing the toxicity of 4-NPdegradation products. In addition, external circulation enhanced mass transfer and improved resistance to shock loads. These advantages suggest that the ECTPBR may serve as an effective strategy for applying co-catalytic Fenton reactions in the treatment of toxic and refractory organic wastewater. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Remediation Technologies)
Show Figures

Figure 1

20 pages, 772 KiB  
Review
Treatment of Refractory Oxidized Nickel Ores (ONOs) from the Shevchenkovskoye Ore Deposit
by Chingis A. Tauakelov, Berik S. Rakhimbayev, Aliya Yskak, Khusain Kh. Valiev, Yerbulat A. Tastanov, Marat K. Ibrayev, Alexander G. Bulaev, Sevara A. Daribayeva, Karina A. Kazbekova and Aidos A. Joldassov
Metals 2025, 15(8), 876; https://doi.org/10.3390/met15080876 - 6 Aug 2025
Viewed by 378
Abstract
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from [...] Read more.
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from the Shevchenkovskoye cobalt–nickel ore deposit and other Kazakhstan deposits, highlighting the challenges they pose for conventional beneficiation and metallurgical processing. Current industrial practices are analyzed, including pyrometallurgical, hydrometallurgical, and pyro-hydrometallurgical methods, with an emphasis on their efficiency, environmental impact, and economic feasibility. Special attention is given to the potential of hydro-catalytic leaching as a flexible, energy-efficient alternative for treating low-grade ONOs under atmospheric conditions. The results underscore the necessity of developing cost-effective and sustainable technologies tailored to the unique composition of Kazakhstani ONOs, particularly those rich in iron and magnesium. This work provides a strategic framework for future research and the industrial application of advanced leaching techniques to unlock the full potential of Kazakhstan’s nickel resources. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 7046 KiB  
Article
Cu–Co–O-Codoped Graphite Carbon Nitride as an Efficient Peroxymonosulfate Activator for Sulfamethoxazole Degradation: Characterization, Performance, and Mechanism
by Qiliang Xiao and Jun Nan
Water 2025, 17(14), 2161; https://doi.org/10.3390/w17142161 - 21 Jul 2025
Viewed by 436
Abstract
This study presents the development of a novel Cu–Co–O-codoped graphitic carbon nitride (g-C3N4) catalyst for efficient peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX) in aqueous environments. The synthesized Cu–Co–O-g-C3N4 catalyst demonstrated exceptional catalytic performance, achieving 90% [...] Read more.
This study presents the development of a novel Cu–Co–O-codoped graphitic carbon nitride (g-C3N4) catalyst for efficient peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX) in aqueous environments. The synthesized Cu–Co–O-g-C3N4 catalyst demonstrated exceptional catalytic performance, achieving 90% SMX removal within 10 min—significantly outperforming pristine g-C3N4 (14%) and O-doped g-C3N4 (22%)—with a reaction rate constant of 0.63 min−1. The superior activity was attributed to the synergistic effects of Cu-Co bimetallic doping and oxygen incorporation, which enhanced the active sites, stabilized metal ions, and minimized leaching. Mechanistic studies revealed a dual-pathway degradation process: (1) a radical pathway dominated by sulfate radicals (SO4) and (2) a non-radical pathway driven by singlet oxygen (1O2), with the latter identified as the dominant species through quenching experiments. The catalyst exhibited broad pH adaptability and optimal performance at neutral to alkaline conditions. Characterization techniques (XRD, FTIR, XPS) confirmed successful doping and revealed that oxygen incorporation modified the electronic structure of g-C3N4, improving charge carrier separation. This work provides a sustainable strategy for antibiotic removal, addressing key challenges in advanced oxidation processes (AOPs), and highlights the potential of multi-heteroatom-doped carbon nitride catalysts for water purification. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 2494 KiB  
Article
Polyoxometalates Surrounded by Organic Cations or Immobilized on Functionalized Merrifield Resin as Catalysts for Oxidation of β-Myrcene and β-Caryophyllene
by Ali Al Hadi Haidar, Pascal Guillo and Dominique Agustin
Appl. Sci. 2025, 15(14), 7981; https://doi.org/10.3390/app15147981 - 17 Jul 2025
Viewed by 744
Abstract
Polyoxometalates (POMs) surrounded by organic cations and related systems composed of POMs immobilized on functionalized Merrifield resin (MR) were synthesized, characterized and tested as catalysts for the oxidation of two natural terpenes, β-myrcene and β-caryophyllene, using H2O2 and TBHP as [...] Read more.
Polyoxometalates (POMs) surrounded by organic cations and related systems composed of POMs immobilized on functionalized Merrifield resin (MR) were synthesized, characterized and tested as catalysts for the oxidation of two natural terpenes, β-myrcene and β-caryophyllene, using H2O2 and TBHP as green oxidants. The ionic immobilization enabled easy catalyst recovery and reuse. The results showed high conversion and selectivity, with some catalysts maintaining their efficiency for at least three runs without leaching. The catalytic performances of both homogeneous and heterogeneous systems, along with the necessary characterizations, are discussed. Full article
(This article belongs to the Special Issue Advances and Challenges in Biomass and Carbon Materials)
Show Figures

Figure 1

22 pages, 6102 KiB  
Review
Current Developments in Ozone Catalyst Preparation Techniques and Their Catalytic Oxidation Performance
by Jiajia Gao, Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou, Kinjal J. Shah and Yongjun Sun
Catalysts 2025, 15(7), 671; https://doi.org/10.3390/catal15070671 - 10 Jul 2025
Viewed by 489
Abstract
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of [...] Read more.
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of heterogeneous ozone catalysts through a critical evaluation of the five primary preparation techniques: ion exchange, sol–gel, coprecipitation, impregnation, and hydrothermal synthesis. Each preparation method’s inherent qualities, benefits, drawbacks, and performance variations are methodically investigated, with an emphasis on how they affect the breakdown of different resistant organic compounds. Even though heterogeneous catalysts are more stable and reusable than homogeneous catalysts, they continue to face issues like active component leaching, restricted mass transfer, and ambiguous mechanisms. In order to determine the key paths for catalyst selection in catalytic ozone treatment going forward, the main goal of this review is to provide an overview of the accomplishments in the field of the heterogeneous ozone catalyst treatment of wastewater that is difficult to degrade. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

29 pages, 7438 KiB  
Article
Comparison of High-Efficiency MgO/Na2CO3 and MgO/K2CO3 as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil
by Xiangyang Li, Xunxiang Jia, Weiji Li, Shufan Jia, Siwei Zhang, Jiliang Song and Jiao Wang
Molecules 2025, 30(13), 2876; https://doi.org/10.3390/molecules30132876 - 7 Jul 2025
Viewed by 495
Abstract
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 [...] Read more.
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 catalysts were systematically compared using soybean oil as the raw material. By regulating the calcination temperature (500–700 °C), alcohol-to-oil ratio (3:1–24:1), and metal carbonate loading (10–50%), combined with N2 adsorption–desorption, CO2-TPD, XRD, SEM-EDS, and cycling experiments, the regulatory mechanisms of the ionic radius differences between sodium and potassium on the catalyst structure and performance were revealed. The results showed that MgO/Na2CO3-600 °C achieved a FAME yield of 97.5% under optimal conditions, which was 1.7% higher than MgO/K2CO3-600 °C (95.8%); this was attributed to its higher specific surface area (148.6 m2/g vs. 126.3 m2/g), homogeneous mesoporous structure, and strong basic site density. In addition, the cycle stability of MgO/K2CO3 was significantly lower, retaining only 65.2% of the yield after five cycles, while that of MgO/Na2CO3 was 88.2%. This stability difference stems from the disparity in their solubility in the reaction system. K2CO3 has a higher solubility in methanol (3.25 g/100 g at 60 °C compared to 1.15 g/100 g for Na2CO3), which is also reflected in the ion leaching rate (27.7% for K+ versus 18.9% for Na+). This study confirms that Na+ incorporation into the MgO lattice can optimize the distribution of active sites. Although K+ surface enrichment can enhance structural stability, the higher leaching rate leads to a rapid decline in catalyst activity, providing a theoretical basis for balancing catalyst activity and durability in sustainable biodiesel production. Full article
(This article belongs to the Special Issue Catalytic Green Reductions and Oxidations, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 4223 KiB  
Article
Scalable Preparation of High-Performance Sludge Biochar with Magnetic for Acid Red G Degradation by Activating Peroxymonosulfate
by Feiya Xu, Yajun Ji, Lu Yu, Mengjie Ma, Dingcan Ma and Junguo Wei
Catalysts 2025, 15(7), 637; https://doi.org/10.3390/catal15070637 - 30 Jun 2025
Viewed by 421
Abstract
The sludge pyrolysis technology for biochar production delivers dual environmental benefits, addressing both sludge disposal challenges and enabling environmental remediation through the utilization of the resultant biochar. However, the complex multi-step procedures and low catalyst output in previous studies constrain the practical implementation [...] Read more.
The sludge pyrolysis technology for biochar production delivers dual environmental benefits, addressing both sludge disposal challenges and enabling environmental remediation through the utilization of the resultant biochar. However, the complex multi-step procedures and low catalyst output in previous studies constrain the practical implementation of this technology. A facile sludge pyrolysis method was constructed to achieve the batch production of municipal sludge biochar (MSB) in this study. Compared to municipal sludge (MS), the resultant MSB showed a higher BET surface area, more well-developed pore channel architecture, and plentiful active sites for activating peroxymonosulfate (PMS). Under the optimized conditions (CMSB = CPMS = 0.2 g/L), 93.34% of Acid Red G (ARG, 20 mg/L) was degraded after 10 min, posing an excellent rate constant of 0.278 min−1. Additionally, MSB demonstrated excellent broad pH adaptability, ion interference resistance, reusability, and recyclability for ARG elimination. It was primary Fe sites that excited PMS to generate O2 and Fe-oxo species (FeIV=O) for ARG degradation. The reaction process exhibited minimal heavy metal leaching, indicating limited environmental risk. Therefore, the practical applicability of the sludge biochar production, coupled with its scalable manufacturing capacity and exceptional catalytic activity, collectively demonstrated that this study established a viable pyrolysis methodology for municipal sludge, offering critical insights for sludge disposal and resource reutilization. Full article
Show Figures

Figure 1

24 pages, 3128 KiB  
Review
Biochar-Based Materials for Catalytic CO2 Valorization
by Shahab Zomorodbakhsh, Lucas D. Dias, Mário J. F. Calvete, Andreia F. Peixoto, Rui M. B. Carrilho and Mariette M. Pereira
Catalysts 2025, 15(6), 568; https://doi.org/10.3390/catal15060568 - 8 Jun 2025
Viewed by 1660
Abstract
Biochar-based materials have gathered increasing attention as sustainable catalysts for carbon dioxide (CO2) valorization, offering a green alternative to traditional metal-based systems. Produced from renewable biomass through pyrolysis, biochar possesses key features—such as high surface area, rich porosity and tunable surface [...] Read more.
Biochar-based materials have gathered increasing attention as sustainable catalysts for carbon dioxide (CO2) valorization, offering a green alternative to traditional metal-based systems. Produced from renewable biomass through pyrolysis, biochar possesses key features—such as high surface area, rich porosity and tunable surface chemistry—that make it particularly suited for heterogeneous catalysis. This review highlights recent advances in the use of biochar-derived catalysts for key CO2 conversion reactions, focusing on cycloaddition to epoxides, dry reforming of methane and catalytic biomass upgrading. Emphasis is given to the role of biochar’s origin and preparation methods, which critically influence its structure, surface functionality and catalytic performance. Feedstocks rich in mineral content or oxygenated groups, for instance, can enhance CO2 activation and product selectivity. Furthermore, tailored modifications—such as doping with heteroatoms or supporting metal nanoparticles—further boost catalytic activity and stability by tuning acid–base behavior, while maintaining low toxicity and cost-effectiveness. Compared to conventional catalysts, biochar-based systems offer advantages in low cost, recyclability and resistance to deactivation. Challenges remain in standardizing production methods, controlling structural variability, minimizing metal leaching and scaling up. This review presents biochar as a versatile, renewable platform for CO2 utilization, highlighting the importance of rational design, feedstock selection and functionalization strategies for developing efficient, sustainable catalytic systems, in line with green chemistry and circular economy principles. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Graphical abstract

27 pages, 3166 KiB  
Review
Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater
by Jannat Javed, Yuting Zhou, Saad Ullah, Tianjiu Gao, Caiyun Yang, Ying Han and Hao Wu
Molecules 2025, 30(10), 2194; https://doi.org/10.3390/molecules30102194 - 17 May 2025
Viewed by 960
Abstract
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes [...] Read more.
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes (AOPs) as catalysts because of their unique Fe-S structure, ability to undergo redox cycling, and environmental friendliness. This review explores recent advances in pyrite-derived materials for AOP applications, focusing on their synthesis, catalytic mechanisms, and pollutant degradation. It examines how pyrite activates oxidants such as hydrogen peroxide (H2O2), peracetic acid (PAA), and peroxymonosulfate (PMS) can be used to generate reactive oxygen species (ROS). The role of multi-dimensional pyrite architectures (0D–3D) in enhancing charge transfer, catalytic activity, and recyclability is also discussed. Key challenges, including catalyst stability, industrial scalability, and Fe/S leaching, are addressed alongside potential solutions. Future directions include the integration of pyrite-based catalysts with hybrid materials, as well as green synthesis to improve practical applications. This review provides researchers and engineers with valuable insights into developing sustainable wastewater treatment technologies. Full article
Show Figures

Figure 1

24 pages, 2538 KiB  
Review
Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis
by Wanying Liang and Guangyue Xu
Chemistry 2025, 7(3), 81; https://doi.org/10.3390/chemistry7030081 - 16 May 2025
Viewed by 1002
Abstract
Cobalt–zeolite composite catalysts (Co–zeolite) and their heterogeneous catalytic systems have garnered significant research attention owing to their superior catalytic activity and cost-effectiveness. The speciation of cobalt within these catalysts—either through impregnation onto the zeolite framework or structural incorporation within the aluminosilicate matrix—is critically [...] Read more.
Cobalt–zeolite composite catalysts (Co–zeolite) and their heterogeneous catalytic systems have garnered significant research attention owing to their superior catalytic activity and cost-effectiveness. The speciation of cobalt within these catalysts—either through impregnation onto the zeolite framework or structural incorporation within the aluminosilicate matrix—is critically governed by the employed synthesis methodology, which subsequently dictates their distinct catalytic advantages in targeted reaction systems. Compared to homogeneous catalytic systems, heterogeneous Co–zeolite configurations demonstrate enhanced structural integrity that effectively mitigates cobalt leaching, thereby improving catalyst recyclability while minimizing environmental contamination. This review systematically examines recent advancements in Co–zeolite fabrication techniques and their catalytic performance across diverse applications, including Fischer–Tropsch synthesis, nitrogen oxide abatement, hydrogenation processes, and oxidative transformations. Particular emphasis is placed on elucidating the metal-framework interactions, with analysis of synergistic effects arising from multi-valent cobalt speciation and bimetallic cooperativity between cobalt and secondary transition metals. This work critically evaluates current challenges in Co–zeolite catalyst design. Finally, we propose future research directions focusing on a precise identification of active species and mechanistic elucidation, innovative synthesis strategies for cobalt speciation control, machine learning-guided catalyst optimization, and the advancement of eco-friendly catalysts. Full article
Show Figures

Figure 1

19 pages, 5657 KiB  
Article
Optimized Hydrometallurgical Extraction of Molybdenum via Mechanoactivation and Nitric–Sulfuric Leaching
by Bagdaulet Kenzhaliyev, Almagul Ultarakova, Nina Lokhova, Arailym Mukangaliyeva and Kaisar Kassymzhanov
Processes 2025, 13(5), 1486; https://doi.org/10.3390/pr13051486 - 13 May 2025
Cited by 1 | Viewed by 708
Abstract
This study explores the intensification of molybdenite concentrate processing through a synergistic hydrometallurgical approach using sulfuric acid, nitric acid, and their combination to enhance leaching efficiency while minimizing environmental impact. Molybdenum, a strategic metal widely used in advanced engineering and catalytic systems, presents [...] Read more.
This study explores the intensification of molybdenite concentrate processing through a synergistic hydrometallurgical approach using sulfuric acid, nitric acid, and their combination to enhance leaching efficiency while minimizing environmental impact. Molybdenum, a strategic metal widely used in advanced engineering and catalytic systems, presents extraction challenges due to the refractory nature of molybdenite (MoS2). The experimental approach incorporated oxygen sparging and mechanoactivation to improve dissolution kinetics and molybdenum availability. A central composite design (CCD) of response surface methodology (RSM) was employed to develop a predictive model for optimizing the leaching parameters. Acid concentration, temperature, and leaching time were systematically varied, allowing for the identification of statistically significant factor interactions and optimal operating conditions. The model demonstrated strong predictive capability with high adjusted and predicted R2 values, validating its suitability for process optimization. Optimal leaching conditions were identified as 50 g/dm3 HNO3 + 200 g/dm3 H2SO4, a temperature of 95 °C, a leaching time of 240 min, and a solid-to-liquid ratio of 1:6, resulting in a maximum molybdenum extraction efficiency of 72.6%. This performance was attributed to enhanced oxidative decomposition and stable complexation of molybdenum species. This study provides a scalable and environmentally conscious framework for molybdenum extraction, with implications for sustainable metallurgy and industrial applications. Full article
(This article belongs to the Special Issue Process Systems Engineering for Environmental Protection)
Show Figures

Figure 1

27 pages, 937 KiB  
Review
Use of Hydrogen Peroxide as Oxidizing Agent in Chalcopyrite Leaching: A Review
by Danny J. Flores, Teófilo A. Graber, Alejandro H. Angel-Castillo, Pía C. Hernández and María E. Taboada
Metals 2025, 15(5), 531; https://doi.org/10.3390/met15050531 - 8 May 2025
Cited by 2 | Viewed by 1455
Abstract
Leaching represents a significant challenge for the mining industry due to its slow and incomplete kinetics under ambient conditions (20 °C, 1 atm) and its increased prevalence in global ore deposits. In this context, the use of hydrogen peroxide (H2O2 [...] Read more.
Leaching represents a significant challenge for the mining industry due to its slow and incomplete kinetics under ambient conditions (20 °C, 1 atm) and its increased prevalence in global ore deposits. In this context, the use of hydrogen peroxide (H2O2) has proved to be a promising oxidizing agent for improving process efficiency. This article reviews the most recent breakthroughs in the use of H2O2 for chalcopyrite leaching, analyzing the experimental conditions that maximize copper extraction, including combinations with novel leachants such as organic systems, inorganic salts, and amino acids. In addition, the main challenges associated with the use of H2O2, such as its catalytic decomposition and thermal stability, are highlighted, along with strategies to overcome these limitations. Perspectives and challenges for its application are presented, emphasizing the need for hybrid and optimized approaches to integrate this oxidizing agent in sustainable hydrometallurgical processes. The objective of this paper is to make an exhaustive review of what has been published on chalcopyrite leaching in order to find ways to leach it in large quantities and in a simple way. Full article
Show Figures

Figure 1

16 pages, 4796 KiB  
Article
Study on the Oxidation Inhibition of Pyrite by 2-Mercaptobenzimidazole in the Presence of Acidithiobacillus ferrooxidans
by Junjie Huang, Xiang Li, Jingxu Yang, Xiaolong Wang, Yeyang Zhou, Bing Liu and Yansheng Zhang
Minerals 2025, 15(5), 487; https://doi.org/10.3390/min15050487 - 6 May 2025
Viewed by 540
Abstract
Acid mine drainage (AMD) is the result of the oxidation of pyrite and other sulfide ores, and the catalytic action of microorganisms accelerates the generation of AMD. In this paper, the interaction between 2-mercaptobenzimidazole (MBI) and pyrite in the presence of Acidithiobacillus ferrooxidans [...] Read more.
Acid mine drainage (AMD) is the result of the oxidation of pyrite and other sulfide ores, and the catalytic action of microorganisms accelerates the generation of AMD. In this paper, the interaction between 2-mercaptobenzimidazole (MBI) and pyrite in the presence of Acidithiobacillus ferrooxidans (At. ferrooxidans) was studied. The results of leaching experiments showed that when the dosage of MBI was more than or equal to 6 g/kg, the oxidation of pyrite was obviously inhibited, and the inhibition rate of 9 g/kg MBI was the best, reaching 97.1%. Electrochemical tests show that when the amount of MBI exceeds 16.8 mg, the pyrite surface treated with MBI will show good oxidation corrosion resistance, and the corrosion resistance will be enhanced with the increase in MBI dosage. Subsequently, the influence of MBI on bacterial growth was ruled out by experiments, and the surface of passivated pyrite was observed and characterized. The results showed that MBI could chelate with iron on the surface of pyrite through -C=N and -SH in the molecule, which enhanced the hydrophobicity of pyrite, thus reducing the contact between pyrite and the external environment and effectively inhibiting the oxidation of pyrite. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

18 pages, 7664 KiB  
Article
Single-Atom and Sub-Nano Ruthenium Cluster Catalysts—Application to Biomass Upgrading into Biofuel Additive
by Chaima Z. Tabet-Zatla, Sumeya Bedrane, José Juan Calvino, Miguel Ángel Cauqui, Fayçal Dergal, Redouane Bachir, Chewki Ziani-Cherif and Juan Carlos Hernández-Garrido
Catalysts 2025, 15(5), 449; https://doi.org/10.3390/catal15050449 - 3 May 2025
Viewed by 858
Abstract
Sub-nano metal clusters have important physicochemical features that lead to a wide range of applications. Herein, we point out an unfailing reproducible protocol to synthesize ruthenium single-atom catalysts and ultra-small clusters supported on various silica–alumina mixed oxides. The catalysts were synthesized via a [...] Read more.
Sub-nano metal clusters have important physicochemical features that lead to a wide range of applications. Herein, we point out an unfailing reproducible protocol to synthesize ruthenium single-atom catalysts and ultra-small clusters supported on various silica–alumina mixed oxides. The catalysts were synthesized via a dendrimer-free, sonication-assisted route, with ruthenium loadings up to 2 wt%. Raman spectroscopy mapping revealed a wide coverage of the materials’ surfaces by ruthenium, while HAADF-STEM evidenced that 100% of the ruthenium was at the sub-nano scale, with up to 74% of the single atoms and metal clusters having an average size between 0.3 and 0.7 nm, independently of the support or the metal’s loading. These materials exhibited highly selective size-dependent catalytic performances in upgrading biomass-derived furfural into transportation biofuel additive 2,2′-difurfurylether, with turnover frequencies up to 1148 h−1. Ruthenium single atoms and sub-nano clusters showed an exceptional resistance to sintering, with a size variation of ±0.1 nm before and after reaction, and no metal leaching was observed. Full article
Show Figures

Graphical abstract

Back to TopTop