Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis
Abstract
:1. Introduction
2. Synthesis of Cobalt–Zeolite Composite Catalysts
2.1. Synthesis Method
2.2. Multiple Valence States of Co
2.3. Bimetallic Synergy
3. Application of Cobalt–Zeolite
3.1. Fischer–Tropsch Synthesis
Catalyst | T (K) | Experimental Parameters | CO Conv. (%) | Product Selectivity (%) | Ref. |
---|---|---|---|---|---|
PtCoAl2O3/SiO2 | 423 | H2/CO=2; GHSV 1000 h−1 | 87.2 | C5+: 70.6 | [44] |
Co/HZSM-5 | 513 | H2/CO=2; GHSV 0.5 h−1 | 87 | C5+: 40 | [52] |
Co3O4/Beta | 503 | H2/CO=2; GHSV 1705–1852 h−1 | 12.6 | C5+: 88.2 | [54] |
Co/NaBEA | 523 | H2/CO=2; GHSV 40–65 L·h−1·gCo−1 | 68 | C5+: 71.9 | [55] |
Co/H-ZSM-5 | 503 | H2/CO=2; GHSV 8 SL·g−1·h−1 | 14.3 | C5–12: 67.8 | [56] |
Co-MCM-22 | 523 | H2/CO=2; W/F = 5.0 g·h·mol−1 | 60 | CH4: 33.3 | [57] |
Co@ZSM-5/SiC | 673 | H2/CO=2; W/F = 10 g·h·mol−1 | 100 | C5–12: 60 | [58] |
Co/BEA | 523 | H2/CO=2; GHSV 1.7–5 L·g−1·h−1 | 22 | Ciso(5–12): 35 | [59] |
NiCoAlBeta | 533 | H2/CO=2; P = 30 atm | 100 | C5+: 100 | [60] |
Co/SBA-15 | 463 | H2/CO=2; P = 1 atm | 4 | C5+: 71.8 | [64] |
Co/MOR | 523 | H2/CO=2; GHSV 34 L·h−1·gCo−1 | 40.1 | C12+: 60.9 | [65] |
3.2. Catalytic Conversion of Nitrogen Oxides
3.2.1. Nitrous Oxide (N2O) Decomposition
3.2.2. Selective Catalytic Reduction (SCR) of NOx
Catalyst | T (K) | Reaction Mixture a | Experimental Parameters | NO Conv. (%) | Ref. |
---|---|---|---|---|---|
0.15 wt% Pd/4.8 wt% Co-HMOR | 773 | 1000 ppm NO, 2700 ppm CH4, | GHSV 30,000 h−1 | 60% | [83] |
0.31 wt% Pd/5.35 wt% Co-FER | 773 | 6% O2, 8% H2O | GHSV 14,000 h−1 | ~80% | [84] |
0.4 wt% Pd/2.3 wt% Co-HZSM-5 | 723 | 1200 ppm NO, 2400 ppm CH4, | GHSV 20,000 h−1 | ~80–90% | [85] |
0.4 wt% Pd/3.3 wt% Co/HZSM-5 | 773 | 2.6% O2, 10% H2O | cat 0.1 g; flow rate | (first 30 h) | [86] |
9.4 wt% Co/SBA-15 | 873 | 500 ppm NO, 2500 ppm CH4, | 100 cm3 min−1 | ~60% * | [91] |
2.16 wt% CoSiBEA | 673 | 5% O2, 5% H2O | GHSV 15,000 h−1 | ~65% | [92] |
0.21 wt% Ba/1.28 wt% Co/ZSM-5 | 773 | 100 ppm NO, 2000 ppm CH4, | cat 0.2 g; flow rate | ~80% | [95] |
6.9 wt% CoO-IM5 | 723 | 700 ppm NO, 380 ppm C3H8, | cat 1.0 g; flow rate | ~79% | [97] |
1.13 wt% Co/BEA | 723 | 2% O2 | 650 cm3 min−1 | ~80% | [98] |
Co-BEA | 723 | 1000 ppm NO, 1000 ppm C3H8, | GHSV 15,000 h−1 | ~90% | [99] |
2.87 wt% CoNH4-MFI | 698 | 850 ppm NO, 550 ppm C3H8, | 650 cm3 min−1 | ~90% * | [100] |
CoNa-ZSM-5 (Co/Al 0.22) | 723 | 2.5% O2 | GHSV 30,000 h−1 | ~90% * | [102] |
3.3 wt% Co-CHA | 750 | 4000 ppm NO, 4000 ppm CH4, | GHSV 7500 h−1 | ~95% * | [103] |
CoSiBEA | 650 | 2% O2 | GHSV 7500 h−1 | ~80% | [110] |
Co-HZSM-5 | 573 | 900 ppm NO, 1200 ppm CH4, | GHSV 14,000 h−1 | ~90% | [111] |
3.3. Catalytic Hydrogenation
3.4. Selective Catalytic Oxidation and the Degradation of Contaminants
3.5. Other Applications
4. Conclusions and Outlook
- (a)
- Precise identification of active species and mechanistic elucidation:
- (b)
- The creation of innovative synthesis strategies and catalysts:
- (c)
- Machine learning-guided catalyst optimization
- (d)
- The advancement of eco-friendly catalysts:
Author Contributions
Funding
Conflicts of Interest
References
- Meng, Y.; Liu, Y.Q.; Wang, C.; Si, Y.; Wang, Y.J.; Xia, W.Q.; Liu, T.; Cao, X.; Guo, Z.Y.; Chen, J.J.; et al. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat. Commun. 2024, 15, 5314. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.H.; Tian, S.N.; Liang, H.L.; Wang, H.; Gao, S.; Dai, W. Oxidative cleavage and ammoxidation of organosulfur compounds via synergistic Co-Nx sites and Co nanoparticles catalysis. Nat. Commun. 2023, 14, 2981. [Google Scholar] [CrossRef] [PubMed]
- Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; et al. Breaking structure sensitivity in CO hydrogenation by tuning metal-oxide interfaces in supported cobalt nanoparticles. Nat. Catal. 2022, 5, 1051–1060. [Google Scholar] [CrossRef]
- Scharnagl, F.K.; Hertrich, M.F.; Ferretti, F.; Kreyenschulte, C.; Lund, H.; Jackstell, R.; Beller, M. Hydrogenation of terminal and internal olefins using a biowaste-derived heterogeneous cobalt catalyst. Sci. Adv. 2018, 4, eaau1248. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, L.; Wang, F.; Deng, K.J.; Lv, K.L.; Zhang, Z.H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945. [Google Scholar] [CrossRef]
- Faculak, M.S.; Veatch, A.M.; Alexanian, E.J. Cobalt-catalyzed synthesis of amides from alkenes and amines promoted by light. Science 2024, 383, 77–81. [Google Scholar] [CrossRef]
- Alamoudi, O.M.; Khan, W.U.; Hantoko, D.; Bakare, I.A.; Ali, S.A.; Hossain, M.M. Catalytic activity of Co/γ-Al2O3 catalysts for decomposition of ammonia to produce hydrogen. Fuel 2024, 372, 132230. [Google Scholar] [CrossRef]
- Jeletic, M.S.; Helm, M.L.; Hulley, E.B.; Mock, M.T.; Appel, A.M.; Linehan, J.C. A Cobalt Hydride Catalyst for the Hydrogenation of CO: Pathways for Catalysis and Deactivation. ACS Catal. 2014, 4, 3755–3762. [Google Scholar] [CrossRef]
- Xia, W.; Salmeia, K.A.; Vagin, S.I.; Rieger, B. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO Copolymerization. Chem.-Eur. J. 2015, 21, 4384–4390. [Google Scholar] [CrossRef]
- Eschemann, T.O.; de Jong, K.P. Deactivation Behavior of Co/TiO2 Catalysts during Fischer-Tropsch Synthesis. ACS Catal. 2015, 5, 3181–3188. [Google Scholar] [CrossRef]
- Gorshkov, A.S.; Sineva, L.V.; Gryaznov, K.O.; Asalieva, E.Y.; Mordkovich, V.Z. Deactivation and Regeneration of a Zeolite-Containing Cobalt Catalyst in a Fisher-Tropsch Synthesis Reactor. Catal. Ind. 2023, 15, 152–164. [Google Scholar] [CrossRef]
- Moodley, D.J.; van de Loosdrecht, J.; Saib, A.M.; Overett, M.J.; Datye, A.K.; Niemantsverdriet, J.W. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions. Appl. Catal. A-Gen. 2009, 354, 102–110. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.H. Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, S.Q.; Yu, J.H. Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chem. Rev. 2023, 123, 6039–6106. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Xiao, F.S. Metal@Zeolite Hybrid Materials for Catalysis. ACS Cent. Sci. 2020, 6, 1685–1697. [Google Scholar] [CrossRef]
- Gomez-Hortiguela, L.; Perez-Pariente, J. Synthesis and Properties of Zeolite Materials Guided by Periodic Considerations. In Periodic Table II: Catalytic, Materials, Biological and Medical Applications; Mingos, D.M.P., Ed.; Springer Nature: Berlin, Germany, 2019; pp. 53–88. [Google Scholar]
- Wu, S.M.; Yang, X.Y.; Janiak, C. Confinement Effects in Zeolite-Confined Noble Metals. Angew. Chem.-Int. Ed. 2019, 58, 12340–12354. [Google Scholar] [CrossRef]
- Otto, T.; Zones, S.I.; Hong, Y.C.; Iglesia, E. Synthesis of highly dispersed cobalt oxide clusters encapsulated within LTA zeolites. J. Catal. 2017, 356, 173–185. [Google Scholar] [CrossRef]
- Han, S.; Tang, X.; Ma, Y.; Wu, Q.; Shi, J.; Li, J.; Meng, X.; Zheng, A.; Xiao, F.-S. Design of Cobalt-Amine Complex as an Efficient Structure-Directing Agent for One-Pot Synthesis of Co-SSZ-13 Zeolite. J. Phys. Chem. C 2021, 125, 16343–16349. [Google Scholar] [CrossRef]
- Jin, S.M.; Lee, K.-Y.; Lee, D.-W. Ozone-induced lean methane oxidation over cobalt ion-exchanged BEA catalyst under dry reaction conditions. J. Ind. Eng. Chem. 2022, 112, 296–306. [Google Scholar] [CrossRef]
- Guo, H.; He, H.; Miao, C.; Hua, W.; Yue, Y.; Gao, Z. Ethane conversion in the presence of CO2 over Co-based ZSM-5 zeolite: Co species controlling the reaction pathway. Mol. Catal. 2022, 519, 112155. [Google Scholar] [CrossRef]
- Crawford, J.M.; Smoljan, C.S.; Lucero, J.; Carreon, M.A. Deoxygenation of Stearic Acid over Cobalt-Based NaX Zeolite Catalysts. Catalysts 2019, 9, 42. [Google Scholar] [CrossRef]
- Jentys, A.; Lugstein, A.; Vinek, H. Co-containing zeolites prepared by solid-state ion exchange. J. Chem. Soc. Faraday Trans. 1997, 93, 4091–4094. [Google Scholar] [CrossRef]
- van der Meer, J.; Bardez, I.; Bart, F.; Albouy, P.A.; Wallez, G.; Davidson, A. Dispersion of CoO nanoparticles within SBA-15 using alkane solvents. Microporous Mesoporous Mater. 2009, 118, 183–188. [Google Scholar] [CrossRef]
- Liang, W.; Xu, G.; Fu, Y. Selective photocatalytic oxidation of furfural to C4 compounds with metal-TS-1 zeolite. Appl. Catal. B Environ. 2024, 340, 123220. [Google Scholar] [CrossRef]
- Khemthong, P.; Klysubun, W.; Prayoonpokarach, S.; Wittayakun, J. Reducibility of cobalt species impregnated on NaY and HY zeolites. Mater. Chem. Phys. 2010, 121, 131–137. [Google Scholar] [CrossRef]
- Bania, K.K.; Deka, R.C. Influence of Zeolite Framework on the Structure, Properties, and Reactivity of Cobalt Phenanthroline Complex: A Combined Experimental and Computational Study. J. Phys. Chem. C 2011, 115, 9601–9607. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Shamzhy, M.; Molitorisova, S.; Opanasenko, M.; Giroir-Fendler, A. Total Oxidation of Toluene and Propane over Supported Co3O4 Catalysts: Effect of Structure/Acidity of MWW Zeolite and Cobalt Loading. ACS Appl. Mater. Interfaces 2021, 13, 15143–15158. [Google Scholar] [CrossRef]
- Lónyi, F.; Solt, H.E.; Valyon, J.; Boix, A.; Gutierrez, L.B. The activation of NO and CH for NO-SCR reaction over In- and Co-containing H-ZSM-5 catalysts. J. Mol. Catal. A-Chem. 2011, 345, 75–80. [Google Scholar] [CrossRef]
- Xu, Y.B.; Yu, W.D.; Zhang, H.; Xin, J.; He, X.H.; Liu, B.; Jiang, F.; Liu, X.H. Suppressing C–C Bond Dissociation for Efficient Ethane Dehydrogenation over the Isolated Co(II) Sites in SAPO-34. ACS Catal. 2021, 11, 13001–13019. [Google Scholar] [CrossRef]
- Sadek, R.; Chalupka-Spiewak, K.; Krafft, J.-M.; Millot, Y.; Valentin, L.; Casale, S.; Gurgul, J.; Dzwigaj, S. The Synthesis of Different Series of Cobalt BEA Zeolite Catalysts by Post-Synthesis Methods and Their Characterization. Catalysts 2022, 12, 1644. [Google Scholar] [CrossRef]
- Lee, J.H.; Bonte, W.; Corthals, S.; Krumeich, F.; Ruitenbeek, M.; van Bokhoven, J.A. Zeolite Nanoreactor for Investigating Sintering Effects of Cobalt-Catalyzed Fischer-Tropsch Synthesis. Ind. Eng. Chem. Res. 2019, 58, 5140–5145. [Google Scholar] [CrossRef]
- Tang, Q.H.; Zhang, Q.H.; Wang, P.; Wang, Y.; Wan, H.L. Characterizations of cobalt oxide nanoparticles within faujasite zeolites and the formation of metallic cobalt. Chem. Mater. 2004, 16, 1967–1976. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Wang, D.G.; Feng, P.; Shi, S.; Wang, C.X.; Zheng, A.D.; Lu, G.; Tian, Z.J. Synthesis of zeolite Beta containing ultra-small CoO particles for ethylbenzene oxidation. Chin. J. Catal. 2017, 38, 1207–1215. [Google Scholar] [CrossRef]
- Alhashmi, E.; Ebri, G.; Hellgardt, K. Highly Active and Stable Single-Atom Cobalt in Zeolite for Acetylene Semihydrogenation. ACS Catal. 2015, 15, 4121–4140. [Google Scholar] [CrossRef]
- Zhou, H.; Huan, L.; Wang, L.; Chu, S.; Liu, L.; Qi, J.; Ren, Z.; Cai, A.; Hui, Y.; Qin, Y.; et al. Cobaltosilicate zeolite beyond platinum catalysts for propane dehydrogenation. Nat. Catal. 2025, 8, 357–367. [Google Scholar] [CrossRef]
- Lira, E.; López, C.M.; Oropeza, F.; Bartolini, M.; Alvarez, J.; Goldwasser, M.; Linares, F.; Lamonier, J.; Zurita, M. HMS mesoporous silica as cobalt support for the Fischer–Tropsch Synthesis: Pretreatment, cobalt loading and particle size effects. J. Mol. Catal. A Chem. 2008, 281, 146–153. [Google Scholar] [CrossRef]
- Liang, J.; Fu, L.; Gao, K.; Duan, X. Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation. Appl. Catal. B Environ. 2022, 315, 121542. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G.; Peng, W. Photo-accelerated Co3+/Co2+ transformation on cobalt and phosphorus co-doped g-C3N4 for Fenton-like reaction. J. Mater. Chem. A 2021, 9, 22399–22409. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, D.; Lu, Y.; Li, Y.; Yang, Q.; Di, J.; Liang, H.; Qiao, Y.; Tian, Y.; Gai, X. Embedded catalysts prepared by grinding crystallization and their catalytic performance in dry reforming of methane: Domain-limited nanostructures for high activity and stability. Int. J. Hydrogen Energy 2024, 73, 895–904. [Google Scholar] [CrossRef]
- Zhang, J.; Bo, S.; Liao, W.; Yang, K.; Su, T.; Lue, H.; Zhu, Z. Zeolitic framework Sn boosts the 2,5-dimethylfuran selectivity for the hydrodeoxygenation of 5-hydroxymethylfurfural over Co/Sn-Beta catalyst. Chem. Eng. J. 2024, 484, 149511. [Google Scholar] [CrossRef]
- Wei, Z.; Bai, X.; Maximov, A.L.; Wu, W. Ultrasound-assisted preparation of PdCo bimetallic nanoparticles loaded on beta zeolite for efficient catalytic hydrogen production from dodecahydro-N-ethylcarbazole. Ultrason. Sonochem. 2024, 103, 106793. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, A.; Shi, C. Enhanced Low-Temperature Activity of Ag-Promoted Co-ZSM-5 for the CH4-SCR of NO. Catal. Lett. 2011, 141, 207–212. [Google Scholar] [CrossRef]
- Yakovenko, R.E.; Zubkov, I.N.; Papeta, O.P.; Kataria, Y.V.; Bakun, V.G.; Svetogorov, R.D.; Savost’yanov, A.P. The Influence of Platinum on the Catalytic Properties of Bifunctional Cobalt Catalysts for the Synthesis of Hydrocarbons from CO and H2. Catalysts 2024, 14, 351. [Google Scholar] [CrossRef]
- Telaar, P.; Diehl, P.; Muhler, M. Bridging Homogeneously and Heterogeneously Catalyzed Higher-Alcohol Synthesis via Cobalt-Based Catalysts. Chem. Ing. Tech. 2024, 9, 1244–1255. [Google Scholar] [CrossRef]
- Sineva, L.; Mordkovich, V.; Asalieva, E.; Smirnova, V. Zeolite-Containing Co Catalysts for Fischer-Tropsch Synthesis with Tailor-Made Molecular-Weight Distribution of Hydrocarbons. Reactions 2023, 4, 22. [Google Scholar] [CrossRef]
- Mazurova, K.; Miyassarova, A.; Eliseev, O.; Stytsenko, V.; Glotov, A.; Stavitskaya, A. Fischer-Tropsch Synthesis Catalysts for Selective Production of Diesel Fraction. Catalysts 2023, 13, 1215. [Google Scholar] [CrossRef]
- Martínez, A.; Rollán, J.; Arribas, M.A.; Cerqueira, H.S.; Costa, A.F.; Aguiar, E.F.S. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Tropsch catalysts. J. Catal. 2007, 249, 162–173. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Kang, J.C.; Wang, Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. Chemcatchem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Wang, C. Research progress on the direct catalytic conversion of syngas to light olefins. Chem. Ind. Eng. Prog. 2022, 41, 4754–4766. [Google Scholar] [CrossRef]
- Xulu Martinez-Vargas, D.; Sandoval-Rangel, L.; Campuzano-Calderon, O.; Romero-Flores, M.; Lozano, F.J.; Nigam, K.D.P.; Mendoza, A.; Montesinos-Castellanos, A. Recent Advances in Bifunctional Catalysts for the Fischer-Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Ind. Eng. Chem. Res. 2019, 58, 15872–15901. [Google Scholar] [CrossRef]
- Dalil, M.; Sohrabi, M.; Royaee, S.J. Application of nano-sized cobalt on ZSM-5 zeolite as an active catalyst in Fischer-Tropsch synthesis. J. Ind. Eng. Chem. 2012, 18, 690–696. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wang, D.; Chen, J.F.; Zhang, Y. Cobalt nanoparticles imbedded into zeolite crystals: A tailor-made catalyst for one-step synthesis of gasoline from syngas. Int. J. Hydrogen Energy 2016, 41, 21965–21978. [Google Scholar] [CrossRef]
- Nakanishi, M.; Uddin, M.A.; Kato, Y.; Nishina, Y.; Hapipi, A.M. Effects of preparation method on the properties of cobalt supported β-zeolite catalysts for Fischer-Tropsch synthesis. Catal. Today 2017, 291, 124–132. [Google Scholar] [CrossRef]
- Flores, C.; Batalha, N.; Marcilio, N.R.; Ordomsky, V.V.; Khodakov, A.Y. Influence of Impregnation and Ion Exchange Sequence on Metal Localization, Acidity and Catalytic Performance of Cobalt BEA Zeolite Catalysts in Fischer-Tropsch Synthesis. Chemcatchem 2019, 11, 568–574. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Zhao, Y.; Lyu, S.; Wei, L.; Li, X.; Zhang, Y.; Li, J. Nano-ZSM-5-supported cobalt for the production of liquid fuel in Fischer-Tropsch synthesis: Effect of preparation method and reaction temperature. Zurita 2020, 263, 116619. [Google Scholar] [CrossRef]
- Ren, H.-P.; Xie, Z.-X.; Tian, S.-P.; Ding, S.-Y.; Ma, Q.; Zhao, Y.-Z.; Zhang, Z.; Fu, J.-J.; Hao, Q.-Q. Physical Grinding of Prefabricated Co3O4 and MCM-22 Zeolite for Fischer-Tropsch Synthesis: Impact of Pretreatment Procedure on the Dispersion and Catalytic Performance. Molecules 2024, 29, 1283. [Google Scholar] [CrossRef]
- Qi, H.; Xing, C.; Huang, W.; Li, M.; Jiang, Y.; Sun, X.; Liu, H.; Lu, P.; Chen, J.; Chen, S. Design of a hierarchical Co@ZSM-5/SiC capsule catalyst for direct conversion of syngas to middle olefin. Microporous Mesoporous Mater. 2022, 343, 112134. [Google Scholar] [CrossRef]
- Carvalho, A.; Marinova, M.; Batalha, N.; Marcilio, N.R.; Khodakov, A.Y.; Ordomsky, V.V. Design of nanocomposites with cobalt encapsulated in the zeolite micropores for selective synthesis of isoparaffins in Fischer-Tropsch reaction. Catal. Sci. Technol. 2017, 7, 5019–5027. [Google Scholar] [CrossRef]
- Khatrin, I.; Abdullah, I.; McCue, A.J.; Krisnandi, Y.K. Mesoporous configuration effects on the physicochemical features of hierarchical ZSM-5 supported cobalt oxide as catalysts in methane partial oxidation. Microporous Mesoporous Mater. 2024, 365, 112896. [Google Scholar] [CrossRef]
- Sadek, R.; Chalupka, K.A.; Mierczynski, P.; Maniukiewicz, W.; Rynkowski, J.; Gurgul, J.; Lason-Rydel, M.; Casale, S.; Brouri, D.; Dzwigaj, S. The Catalytic Performance of Ni-Co/Beta Zeolite Catalysts in Fischer-Tropsch Synthesis. Catalysts 2020, 10, 112. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Griboval-Constant, A.; Bechara, R.; Zholobenko, V.L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas. J. Catal. 2002, 206, 230–241. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Bechara, R.; Griboval-Constant, A. Fischer-Tropsch synthesis over silica supported cobalt catalysts: Mesoporous structure versus cobalt surface density. Appl. Catal. A-Gen. 2003, 254, 273–288. [Google Scholar] [CrossRef]
- Subramanian, V.; Zholobenko, V.L.; Cheng, K.; Lancelot, C.; Heyte, S.; Thuriot, J.; Paul, S.; Ordomsky, V.V.; Khodakov, A.Y. The Role of Steric Effects and Acidity in the Direct Synthesis of Paraffins from Syngas on Cobalt Zeolite Catalysts. Chemcatchem 2016, 8, 380–389. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S.; Vazzana, F.; Marella, M.; Tomaselli, M.; Mantegazza, M. Novel catalysts and catalytic technologies for NO removal from industrial emissions containing O2, H2O and SO2. Adv. Environ. Res. 2000, 4, 325–338. [Google Scholar] [CrossRef]
- Roy, S.; Hegde, M.S.; Madras, G. Catalysis for NO abatement. Appl. Energy 2009, 86, 2283–2297. [Google Scholar] [CrossRef]
- Iwamoto, M.; Hamada, H. Removal of Nitrogen Monoxide from Exhaust Gases through Novel Catalytic Processes. Catal. Today 1991, 10, 57–71. [Google Scholar] [CrossRef]
- Li, Y.J.; Armor, J.N. Catalytic Decomposition of Nitrous-Oxide on Metal Exchanged Zeolites. Appl. Catal. B-Environ. 1992, 1, 21–29. [Google Scholar] [CrossRef]
- Chang, Y.F.; Mccarty, J.G.; Wachsman, E.D.; Wong, V.L. Catalytic Decomposition of Nitrous-Oxide over Ru-Exchanged Zeolites. Appl. Catal. B-Environ. 1994, 4, 283–299. [Google Scholar] [CrossRef]
- De Correa, C.M.; Villa, A.L.; Zapata, M. Decomposition of nitrous oxide in excess oxygen over Co- and Cu-exchanged MFI zeolites. Catal. Lett. 1996, 38, 27–32. [Google Scholar] [CrossRef]
- Armor, J.N.; Farris, T.S. The Unusual Hydrothermal Stability of Co-Zsm-5. Appl. Catal. B-Environ. 1994, 4, 11–17. [Google Scholar] [CrossRef]
- da Cruz, R.S.; Mascarenhas, A.J.S.; Andrade, H.M.C. Co-ZSM-5 catalysts for NO decomposition. Appl. Catal. B-Environ. 1998, 18, 223–231. [Google Scholar] [CrossRef]
- Ghahri, A.; Golbabaei, F.; Vafajoo, L.; Mireskandari, S.M.; Yaseri, M.; Shahtaheri, S.J. Removal of Greenhouse Gas (NO) by Catalytic Decomposition on Natural Clinoptilolite Zeolites Impregnated with Cobalt. Int. J. Environ. Res. 2017, 11, 327–337. [Google Scholar] [CrossRef]
- Smeets, P.J.; Meng, Q.G.; Corthals, S.; Leeman, H.; Schoonheydt, R.A. Co-ZSM-5 catalysts in the decomposition of NO and the SCR of NO with CH: Influence of preparation method and cobalt loading. Appl. Catal. B-Environ. 2008, 84, 505–513. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Shen, Q.; He, C.; Wang, Y.F.; Cheng, J.; Hao, Z.P. CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide. J. Hazard. Mater. 2011, 192, 1756–1765. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Shen, Q.; He, C.; Ma, C.Y.; Cheng, J.; Liu, Z.M.; Hao, Z.P. Decomposition of nitrous oxide over Cobalt-zeolite catalysts: Role of zeolite structure and active site. Catal. Sci. Technol. 2012, 2, 1249–1258. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Schwieger, W.; Unger, A. Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method. Appl. Catal. B-Environ. 2008, 84, 277–288. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Schwieger, W. Self oscillatory behaviour in NO decomposition over Co-ZSM-5 catalysts. Appl. Catal. B-Environ. 2009, 85, 120–130. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Shang, R.; Zhao, J.; Xu, Q.; Wang, H.; Liu, J. Multiple cobalt species on HZSM-5 cooperative catalyzing N2O decomposition. Mol. Catal. 2024, 552, 113706. [Google Scholar] [CrossRef]
- Kang, B.; Li, M.; Di, Z.; Guo, X.; Wei, Y.; Jia, J.; Zhang, R. Role of Al pairs on effective N2O decomposition over the ZSM-5 zeolite catalyst. Catal. Today 2022, 402, 17–26. [Google Scholar] [CrossRef]
- Tabata, T.; Kokitsu, M.; Ohtsuka, H.; Okada, O.; Sabatino, L.M.F.; Bellussi, G. Study on catalysts of selective reduction of NOx using hydrocarbons for natural gas engines. Catal. Today 1996, 27, 91–98. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.Y.; Sachtler, W.M.H. Mechanism of the selective reduction of NO over Co/MFI: Comparison with Fe/MFI. J. Catal. 2001, 197, 281–291. [Google Scholar] [CrossRef]
- Bustamante, F.; Córdoba, F.; Yates, M.; de Correa, C.M. The promotion of cobalt mordenite by palladium for the lean CH-SCR of NO in moist streams. Appl. Catal. A-Gen. 2002, 234, 127–136. [Google Scholar] [CrossRef]
- Lee, T.J.; Nam, I.S.; Ham, S.W.; Baek, Y.S.; Shin, K.H. Effect of Pd on the water tolerance of Co-ferrierite catalyst for NO reduction-by CH. Appl. Catal. B-Environ. 2003, 41, 115–127. [Google Scholar] [CrossRef]
- Pieterse, J.A.Z.; van den Brink, R.W.; Booneveld, S.; de Bruijn, F.A. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NO with methane. Appl. Catal. B-Environ. 2003, 46, 239–250. [Google Scholar] [CrossRef]
- Ogura, M.; Kage, S.; Shimojo, T.; Oba, J.; Hayashi, M.; Matsukata, M.; Kikuchi, E. Co cation effects on activity and stability of isolated Pd(II) cations in zeolite matrices for selective catalytic reduction of nitric oxide with methane. J. Catal. 2002, 211, 75–84. [Google Scholar] [CrossRef]
- Lee, J.; Chen, J.; Giewont, K.; Mon, T.; Liu, C.-H.; Walker, E.A.; Kyriakidou, E.A. Effect of cobalt incorporation on the stability of ionic Pd in the presence of carbon monoxide over Pd/BEA passive NOx adsorbers. Chem. Eng. J. 2022, 440, 135834. [Google Scholar] [CrossRef]
- Pieterse, J.A.Z.; van den Brink, R.W.; Booneveld, S.; de Bruijn, F.A. Durability of ZSM5-supported Co-Pd catalysts in the reduction of NO with methane. Appl. Catal. B-Environ. 2002, 39, 167–179. [Google Scholar] [CrossRef]
- Ogura, M.; Sugiura, Y.; Hayashi, M.; Kikuchi, E. Reduction of nitric oxide with methane on Pd/Co/H-ZSM-5 catalysts: Cooperative effects of Pd and Co. Catal. Lett. 1996, 42, 185–189. [Google Scholar] [CrossRef]
- Guo, A.Q.; Liu, H.B.; Li, Y.T.; Luo, Y.H.; Ye, D.Q.; Jiang, J.X.; Chen, P.R. Recent progress in novel zeolite catalysts for selective catalytic reduction of nitrogen oxides. Catal. Today 2023, 422, 114212. [Google Scholar] [CrossRef]
- Bin, F.; Song, C.L.; Lv, G.; Song, J.O.; Cao, X.F.; Pang, H.T.; Wang, K.P. Structural Characterization and Selective Catalytic Reduction of Nitrogen Oxides with Ammonia: A Comparison Between Co/ZSM-5 and Co/SBA-15. J. Phys. Chem. C 2012, 116, 26262–26274. [Google Scholar] [CrossRef]
- Baran, R.; Krafft, J.M.; Onfroy, T.; Grzybek, T.; Dzwigaj, S. Influence of the nature and environment of cobalt on the catalytic activity of Co-BEA zeolites in selective catalytic reduction of NO with ammonia. Microporous Mesoporous Mater. 2016, 225, 515–523. [Google Scholar] [CrossRef]
- Boron, P.; Chmielarz, L.; Gil, B.; Marszalek, B.; Dzwigaj, S. Experimental evidence of NO SCR mechanism in the presence of the BEA zeolite with framework and extra-framework cobalt species. Appl. Catal. B-Environ. 2016, 198, 457–470. [Google Scholar] [CrossRef]
- Mrad, R.; Aissat, A.; Cousin, R.; Courcot, D.; Siffert, S. Catalysts for NO selective catalytic reduction by hydrocarbons (HC-SCR). Appl. Catal. A-Gen. 2015, 504, 542–548. [Google Scholar] [CrossRef]
- Stakheev, A.Y.; Lee, C.W.; Park, S.J.; Chong, P.J. Selective catalytic reduction of NO with propane over CoZSM-5 containing alkaline earth cations. Appl. Catal. B-Environ. 1996, 9, 65–76. [Google Scholar] [CrossRef]
- Ohtsuka, H.; Tabata, T.; Okada, O.; Sabatino, L.M.F.; Bellussi, G. A study on the roles of cobalt species in NO reduction by propane on Co-Beta. Catal. Today 1998, 42, 45–50. [Google Scholar] [CrossRef]
- Palomares, A.E.; Prato, J.G.; Corma, A. Co-exchanged IM5, a stable zeolite for the selective catalytic reduction of NO in the presence of water and SO. Ind. Eng. Chem. Res. 2003, 42, 1538–1542. [Google Scholar] [CrossRef]
- Chen, H.H.; Shen, S.C.; Chen, X.Y.; Kawi, S. Selective catalytic reduction of NO over Co/beta-zeolite: Effects of synthesis condition of beta-zeolites, Co precursor, Co loading method and reductant. Appl. Catal. B-Environ. 2004, 50, 37–47. [Google Scholar] [CrossRef]
- Palomares, A.E.; Franch, C.; Corma, A. Determining the characteristics of a Cobalt-zeolite to be active for the selective catalytic reduction of NO with hydrocarbons. Catal. Today 2011, 176, 239–241. [Google Scholar] [CrossRef]
- Resini, C.; Montanari, T.; Nappi, L.; Bagnasco, G.; Turco, M.; Busca, G.; Bregani, F.; Notaro, M.; Rocchini, G. Selective catalytic reduction of NO by methane over Co-H-MFI and Co-H-FER zeolite catalysts: Characterisation and catalytic activity. J. Catal. 2003, 214, 179–190. [Google Scholar] [CrossRef]
- Kaucky, D.; Vondrová, A.; Dedecek, J.; Wichterlová, B. Activity of Co ion sites in ZSM-5, ferrierite, and mordenite in selective catalytic reduction of NO with methane. J. Catal. 2000, 194, 318–329. [Google Scholar] [CrossRef]
- Dedecek, J.; Kaucky, D.; Wichterlová, B. Does density of cationic sites affect catalytic activity of Co zeolites in selective catalytic reduction of NO with methane? Top. Catal. 2002, 18, 283–290. [Google Scholar] [CrossRef]
- Lim, J.B.; Shin, J.; Ahn, N.H.; Heo, I.; Hong, S.B. Selective catalytic reduction of NO with CH over cobalt-exchanged cage-based, small-pore zeolites with different framework structures. Appl. Catal. B-Environ. 2020, 267, 118710. [Google Scholar] [CrossRef]
- Lónyi, F.; Solt, H.E.; Pászti, Z.; Valyon, J. Mechanism of NO-SCR by methane over Co,H-ZSM-5 and Co,H-mordenite catalysts. Appl. Catal. B-Environ. 2014, 150, 218–229. [Google Scholar] [CrossRef]
- Sazama, P.; Pilar, R.; Mokrzycki, L.; Vondrova, A.; Kaucky, D.; Plsek, J.; Sklenak, S.; Stastny, P.; Klein, P. Remarkably enhanced density and specific activity of active sites in Al-rich Cu-, Fe- and Co-beta zeolites for selective catalytic reduction of NO. Appl. Catal. B-Environ. 2016, 189, 65–74. [Google Scholar] [CrossRef]
- Bellmann, A.; Atia, H.; Bentrup, U.; Brückner, A. Mechanism of the selective reduction of NO by methane over Co-ZSM-5. Appl. Catal. B-Environ. 2018, 230, 184–193. [Google Scholar] [CrossRef]
- Adelman, B.J.; Beutel, T.; Lei, G.D.; Sachtler, W.M.H. Mechanistic cause of hydrocarbon specificity over Cu/ZSM-5 and Co/ZSM-5 catalysts in the selective catalytic reduction of Nox. J. Catal. 1996, 158, 327–335. [Google Scholar] [CrossRef]
- Cant, N.W.; Liu, I.O.Y. The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts. Catal. Today 2000, 63, 133–146. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.F.; Qin, M.Y.; Li, Q.B. Selective catalytic reduction of NO with CH over zeolite catalysts: Research progress, challenges and perspectives. J. Environ. Chem. Eng. 2022, 10, 107270. [Google Scholar] [CrossRef]
- Janas, J.; Machej, T.; Gurgul, J.; Socha, R.P.; Che, M.; Dzwigaj, S. Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol: Nature of the cobalt species. Appl. Catal. B-Environ. 2007, 75, 239–248. [Google Scholar] [CrossRef]
- Niu, J.H.; Yang, X.F.; Zhu, A.M.; Shi, L.L.; Sun, Q.; Xu, Y.; Shi, C. Plasma-assisted selective catalytic reduction of NO by CH over Co-HZSM-5 catalyst. Catal. Commun. 2006, 7, 297–301. [Google Scholar] [CrossRef]
- Praserthdam, P.; Chaisuk, C.; Panit, A.; Kraiwattanawong, K. Some aspects about the nature of surface species on Pt-based and MFI-based catalysts for the selective catalytic reduction of NO by propene under lean-burn condition. Appl. Catal. B-Environ. 2002, 38, 227–241. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.Y.; Sachtler, W.M.H. Catalytic reduction of NO by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods. Appl. Catal. B-Environ. 2000, 26, 227–239. [Google Scholar] [CrossRef]
- Suib, S.L.; Zhang, Z.C. Structure-Sensitive Reactions of Cyclopropane with Cobalt and Iron Zeolite Catalysts. ACS Symp. Ser. 1988, 368, 569–578. [Google Scholar] [CrossRef]
- Pedrosa, A.M.G.; Souza, M.J.B.; Melo, D.M.A.; Araujo, A.S. Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties. Mater. Res. Bull. 2006, 41, 1105–1111. [Google Scholar] [CrossRef]
- Upare, D.P.; Park, S.; Kim, M.S.; Kim, J.; Lee, D.; Lee, J.; Chang, H.; Choi, W.; Choi, S.; Jeon, Y.P.; et al. Cobalt promoted Mo/beta zeolite for selective hydrocracking of tetralin and pyrolysis fuel oil into monocyclic aromatic hydrocarbons. J. Ind. Eng. Chem. 2016, 35, 99–107. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Muraza, O.; Jamil, A.K.; Shafei, E.N.; Yamani, Z.H.; Choi, K.H. Steam Catalytic Cracking of -Dodecane over Ni and Ni/Co Bimetallic Catalyst Supported on Hierarchical BEA Zeolite. Energy Fuels 2017, 31, 5482–5490. [Google Scholar] [CrossRef]
- Zula, M.; Grilc, M.; Likozar, B. Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chem. Eng. J. 2022, 444, 136564. [Google Scholar] [CrossRef]
- Ayodele, O.B. Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels. Sci. Rep. 2017, 7, 10008. [Google Scholar] [CrossRef]
- Wu, G.J.; Zhang, N.; Dai, W.L.; Guan, N.J.; Li, L.D. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-Range Alkanes. Chemsuschem 2018, 11, 2179–2188. [Google Scholar] [CrossRef]
- Weilbeer, C.; Selent, D.; Dyballa, K.M.; Franke, R.; Spannenberg, A.; Börner, A. Evaluation of Organoselenium Based Compounds as Co-Catalysts in Rhodium-Catalyzed Hydroformylation. Chemistryselect 2016, 1, 5421–5429. [Google Scholar] [CrossRef]
- Qi, L.; Das, S.; Zhang, Y.; Nozik, D.; Gates, B.C.; Bell, A.T. Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta. J. Am. Chem. Soc. 2023, 145, 2911–2929. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Guo, L.S.; Cui, Y.; Zhang, P.P.; Yoneyama, Y.; Yang, G.H.; Tsubaki, N. NaBH4 Reduced Cobalt Catalyst Supported on Zeolite A for 1-Hexene Hydroformylation. Chemistryselect 2019, 4, 10447–10451. [Google Scholar] [CrossRef]
- Lee, S.; Byun, S.W.; Kweon, S.; Shin, H.; Min, H.K.; Park, M.B.; Kang, S.B. Bi-functional two-dimensional cobalt silicate catalyst for selective catalytic oxidation of ammonia. Appl. Catal. B-Environ. 2024, 340, 123264. [Google Scholar] [CrossRef]
- Han, Z.; Chu, Q.; Wang, H.; Jia, X.; Jiang, P.; Li, T. Synthesis of Novel Catalytic Styrene Aerobic Oxidation Catalysts via Embedding Co and Ce. Catal. Lett. 2024, 154, 3787–3797. [Google Scholar] [CrossRef]
- Joseph, T.; Sawant, D.P.; Gopinath, C.S.; Halligudi, S.B. Zeolite encapsulated ruthenium and cobalt schiff base complexes catalyzed allylic oxidation of α-pinene. J. Mol. Catal. A-Chem. 2002, 184, 289–299. [Google Scholar] [CrossRef]
- Dang, J.; Li, W.; Qin, B.; Chai, Y.; Wu, G.; Li, L. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst. Chin. J. Catal. 2024, 57, 133–142. [Google Scholar] [CrossRef]
- Xu, D.; Lv, H.; Liu, B. Encapsulation of Metal Nanoparticle Catalysts Within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Front. Chem. 2018, 6, 550. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wang, Z.H.; Jian, P.M.; Jian, R.Q. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst. J. Colloid Interface Sci. 2018, 517, 144–154. [Google Scholar] [CrossRef]
- Tang, Q.H.; Wang, Y.; Liang, J.; Wang, P.; Zhang, Q.H.; Wan, H.L. CO-Exchanged faujasite zeolites as efficient heterogeneous catalysts for epoxidation of styrene with molecular oxygen. Chem. Commun. 2004, 4, 440–441. [Google Scholar] [CrossRef]
- Wang, K.; Wang, F.; Zhai, Y.; Zhang, X.; Jiang, L.; Xu, Z.; Li, M.; Li, M.; Zhang, X.; Sun, M. Alkali metal ion assisted preparation of zeolite encapsulated small cobalt cluster CoOx for direct styrene oxidation to benzaldehyde. Microporous Mesoporous Mater. 2022, 345, 112259. [Google Scholar] [CrossRef]
- Khan, N.A.; Kennedy, E.M.; Dlugogorski, B.Z.; Adesina, A.A.; Stockenhuber, M. Partial oxidation of methane with nitrous oxide forms synthesis gas over cobalt exchanged ZSM-5. Catal. Commun. 2014, 53, 42–46. [Google Scholar] [CrossRef]
- Hou, Y.H.; Nagamatsu, S.; Asakura, K.; Fukuoka, A.; Kobayashi, H. Trace mono-atomically dispersed rhodium on zeolite-supported cobalt catalyst for the efficient methane oxidation. Commun. Chem. 2018, 1, 41. [Google Scholar] [CrossRef]
- Tabor, E.; Lemishka, M.; Sobalik, Z.; Mlekodaj, K.; Andrikopoulos, P.C.; Dedecek, J.; Sklenak, S. Low-temperature selective oxidation of methane over distant binuclear cationic centers in zeolites. Commun. Chem. 2019, 2, 71. [Google Scholar] [CrossRef]
- Beznis, N.V.; van Laak, A.N.C.; Weckhuysen, B.M.; Bitter, J.H. Oxidation of methane to methanol and formaldehyde over Co-ZSM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Microporous Mesoporous Mater. 2011, 138, 176–183. [Google Scholar] [CrossRef]
- Beznis, N.V.; Weckhuysen, B.M.; Bitter, J.H. Partial Oxidation of Methane Over Co-ZSM-5: Tuning the Oxygenate Selectivity by Altering the Preparation Route. Catal. Lett. 2010, 136, 52–56. [Google Scholar] [CrossRef]
- Vanoppen, D.L.; Devos, D.E.; Genet, M.J.; Rouxhet, P.G.; Jacobs, P.A. Cobalt-Containing Molecular-Sieves as Catalysts for the Low Conversion Autoxidation of Pure Cyclohexane. Angew. Chem.-Int. Ed. Engl. 1995, 34, 560–563. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.P.; Yan, Y. High efficiency of isopropanol combustion over cobalt oxides modified ZSM-5 zeolite membrane catalysts on paper-like stainless steel fibers. J. Solid State Chem. 2017, 251, 55–60. [Google Scholar] [CrossRef]
- Blanch-Raga, N.; Palomares, A.E.; Martínez-Triguero, J.; Valencia, S. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Appl. Catal. B-Environ. 2016, 187, 90–97. [Google Scholar] [CrossRef]
- Rokicinska, A.; Drozdek, M.; Dudek, B.; Gil, B.; Michorczyk, P.; Brouri, D.; Dzwigaj, S.; Kustrowski, P. Cobalt-containing BEA zeolite for catalytic combustion of toluene. Appl. Catal. B-Environ. 2017, 212, 59–67. [Google Scholar] [CrossRef]
- Aziz, A.; Sajjad, M.; Kim, M.; Kim, K.S. An efficient Co-ZSM-5 catalyst for the abatement of volatile organics in air: Effect of the synthesis protocol. Int. J. Environ. Sci. Technol. 2018, 15, 707–718. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, W.; Xu, Z.; Xu, Z.; Wang, X.; Wei, Q.; Zhou, Y. In situ synthesis of Co modified SAPO-5 molecular sieves and the application in quinoline hydrodenitrogenation of their NiWS supported catalysts. Chem. Eng. Sci. 2024, 284, 119428. [Google Scholar] [CrossRef]
- Franken, J.; Kirschhock, C.E.A.; Mathys, G.M.; Martens, J.A. Design of a Cobalt-Zeolite Catalyst for Semi-Linear Higher-Olefin Synthesis. Chemcatchem 2012, 4, 1245–1248. [Google Scholar] [CrossRef]
- Matsubara, H.; Tsuji, E.; Moriwaki, Y.; Okumura, K.; Yamamoto, K.; Nakamura, K.; Suganuma, S.; Katada, N. Selective Formation of Active Cobalt Species for Direct Methylation of Benzene with Methane on MFI Zeolite by Co-presence of Secondary Elements. Catal. Lett. 2019, 149, 2627–2635. [Google Scholar] [CrossRef]
- Cao, Y.; Zhuang, T.T.; Yang, J.; Liu, H.D.; Huang, W.; Zhu, J.H. Promoting zeolite NaY as efficient nitrosamines trap by cobalt oxide modification. J. Phys. Chem. C 2007, 111, 538–548. [Google Scholar] [CrossRef]
- Tran, H.L.; Kuo, M.S.; Yang, W.D.; Huang, Y.C. Hydrogen sulfide adsorption by thermally treated cobalt (II)-exchanged NaX zeolite. Adsorpt. Sci. Technol. 2016, 34, 275–286. [Google Scholar] [CrossRef]
- Xue, B.; Zong, X.M.; Wang, C.; Zhang, H.Y.; Luo, J. Corrosion Inhibition of a Sol-Gel Coating Modified with Cobalt-Enriched Zeolite on AA2024-T3 Aluminum Alloy. Int. J. Electrochem. Sc. 2019, 14, 10966–10982. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Xu, G. Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis. Chemistry 2025, 7, 81. https://doi.org/10.3390/chemistry7030081
Liang W, Xu G. Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis. Chemistry. 2025; 7(3):81. https://doi.org/10.3390/chemistry7030081
Chicago/Turabian StyleLiang, Wanying, and Guangyue Xu. 2025. "Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis" Chemistry 7, no. 3: 81. https://doi.org/10.3390/chemistry7030081
APA StyleLiang, W., & Xu, G. (2025). Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis. Chemistry, 7(3), 81. https://doi.org/10.3390/chemistry7030081