Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = catalytic and noncatalytic reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3805 KiB  
Article
Ferrocene-Catalyzed Aromatization and Competitive Oxidative Ring Transformations of 1,2-Dihydro-1-Arylpyridazino[4,5-d]Pyridazines
by Dániel Hutai, Tibor Zs. Nagy, Veronika Emődi and Antal Csámpai
Catalysts 2025, 15(8), 742; https://doi.org/10.3390/catal15080742 - 4 Aug 2025
Viewed by 109
Abstract
This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined [...] Read more.
This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined tarry materials; nevertheless, the ferrocene-catalyzed reactions of the 5,8-bis(methylthio)-substituted precursors gave the aromatic products the expected aromatic products in low yields. Their formation was accompanied by ring transformations proceeding via aryne-generating fragmentation/Diels–Alder (DA)/N2-releasing retro Diels–Alder (rDA) sequence to construct arene-fused phthalazines. On the other hand, neither the noncatalytic nor the catalytic reactions of the 8-pyrazolyl-5-methylthio-substituted dihydroaromatics yielded the expected aromatic products. Instead, depending on their substitution pattern, the catalytic reactions of these pyrazolyl-substituted precursors also led to the formation of dearylated arene-fused phthalazines competing with an unprecedented multistep fragmentation sequence terminated by the hydrolysis of cationic intermediates to give 4-(methylthio)pyridazino[4,5-d]pyridazin-1(2H)-one and the corresponding 3,5-dimethyl-1-aryl-1H-pyrazole. When 0.6 equivalents of DDQ were applied in freshly absolutized THF, a representative pyrazolyl-substituted model underwent an oxidative coupling to give a dimer formed by the interaction of the cationic intermediate, and a part of the N-nucleophilic precursor remained intact. A systematic computational study was conducted on these intriguing reactions to support their complex mechanisms proposed on the basis of the structures of the isolated products. Full article
(This article belongs to the Special Issue Catalysis in Heterocyclic and Organometallic Synthesis, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 4619 KiB  
Article
Modeling and Optimization of Natural Gas Non-Catalytic Partial Oxidation with Hierarchical-Integrated Mechanism
by Wanqiu Yu, Haotian Ye, Wei Liu, Qiyao Wang and Hongguang Dong
Processes 2025, 13(7), 2287; https://doi.org/10.3390/pr13072287 - 17 Jul 2025
Viewed by 424
Abstract
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed [...] Read more.
Non-catalytic partial oxidation (POX) of natural gas is gaining importance in low-carbon energy systems for methane conversion to acetylene, syngas, and olefins. However, uncontrolled polycyclic aromatic hydrocarbons (PAHs) and soot formation remain challenges. This work developed a Hierarchical-Integrated Mechanism (HI-Mechanism) by constructing detailed C0-C6, C5-C15 and C16 mechanisms, and then hierarchically simplifying C5-C15 subsystems, ultimately integrating them into a final mechanism with 397 species and 5135 reactions. The HI-Mechanism accurately predicted shock tube ignition delays and major species concentrations. Microkinetic analyses, including production rates and reaction sensitivity, revealed key pathways and enabled reliable product distribution prediction. The HI-Mechanism provides theoretical guidance for optimizing POX of natural gas processes and can be extended to complex systems like heavy oil cracking, supporting clean energy technology development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

19 pages, 3792 KiB  
Article
Experiment and Simulation of the Non-Catalytic Reforming of Biomass Gasification Producer Gas for Syngas Production
by Yongbin Wang, Guoqiang Cao, Zhongren Ba, Hao Cheng, Donghai Hu, Jonas Baltrusaitis, Chunyu Li, Jiantao Zhao and Yitian Fang
Energies 2025, 18(11), 2945; https://doi.org/10.3390/en18112945 - 3 Jun 2025
Viewed by 473
Abstract
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene [...] Read more.
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene (C10H8), toluene (C7H8), benzene (C6H6), and phenol (C6H5OH). The experiments were conducted using a high-temperature fixed-bed reactor under varying temperatures (1100–1500 °C) and equivalence ratios (ERs, 0.10–0.30). The results obtained from the experiment, namely the measured mole concentration of H2, CO, CH4, CO2, H2O, soot, and tar suggested that both reactor temperature and O2 content had an important effect. Increasing the temperature significantly promotes the formation of H2 and CO. At 1500 °C and a residence time of 0.01 s, the product gas achieved CO and H2 concentrations of 28.02% and 34.35%, respectively, while CH4, tar, and soot were almost entirely converted. Conversely, the addition of O2 reduces the concentrations of H2 and CO. Increasing ER from 0.10 to 0.20 could reduce CO from 22.25% to 16.11%, and H2 from 13.81% to 10.54%, respectively. Experimental results were used to derive a kinetic model to accurately describe the non-catalytic reforming of producer gas. Furthermore, the maximum of the Root Mean Square Error (RMSE) and the Relative Root Mean Square Error (RRMSE) between the model predictions and experimental data are 2.42% and 11.01%, respectively. In particular, according to the kinetic model, the temperature increases predominantly accelerated endothermic reactions, including the Boudouard reaction, water gas reaction, and CH4 steam reforming, thereby significantly enhancing CO and H2 production. Simultaneously, O2 content primarily influenced carbon monoxide oxidation, hydrogen oxidation, and partial carbon oxidation. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

17 pages, 6112 KiB  
Article
Adsorption and Decomposition Mechanisms of Vapor Growth Carbon Fiber on SiO2 in Non-Catalytic Conditions: A First-Principles Study
by Chen Ma, Fanguang Zeng and Shenbo Yang
Crystals 2025, 15(2), 195; https://doi.org/10.3390/cryst15020195 - 18 Feb 2025
Viewed by 599
Abstract
In this study, the authors employed first-principles calculations to investigate the adsorption and decomposition processes involved in non-catalytic growth of vapor-growth carbon fiber (VGCF) using a non-catalytic growth method. The adsorption and decomposition mechanisms of methane and its decomposition products on the substrate [...] Read more.
In this study, the authors employed first-principles calculations to investigate the adsorption and decomposition processes involved in non-catalytic growth of vapor-growth carbon fiber (VGCF) using a non-catalytic growth method. The adsorption and decomposition mechanisms of methane and its decomposition products on the substrate were investigated with the adsorption energy, transition state analysis, and projected density of states (PDOS). The results indicated that the surface adsorption difficulty for CH4 and its decomposition products followed the following order: H > CH4 ≈ CH3 > CH2 > CH > C. The adsorption energy analysis indicates that the adsorption of CH4, CH3, and H is classified as physical adsorption, whereas the adsorption of CH2, CH, and C is classified as chemical adsorption. Adsorption of all particles is exothermic and adsorption can occur. The transition state calculations indicate that the decomposition of CH4 is the rate-determining step in the decomposition reaction. PDOS analysis not only verified the results of adsorption energy analysis but also investigated the effect of adsorption particles. This work is helpful for advancing the application of non-catalytic growth processes to the synthesis of VGCF and enhancing the understanding of the mechanisms governing non-catalytic VGCF formation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 7115 KiB  
Article
Effect of Selective Non-Catalytic Reduction Reaction on the Combustion and Emission Performance of In-Cylinder Direct Injection Diesel/Ammonia Dual Fuel Engines
by Zhongcheng Wang, Ruhong Li, Jie Zhu and Zhenqiang Fu
Energies 2025, 18(3), 565; https://doi.org/10.3390/en18030565 - 25 Jan 2025
Cited by 1 | Viewed by 637
Abstract
Ammonia, as a hydrogen carrier and an ideal zero-carbon fuel, can be liquefied and stored under ambient temperature and pressure. Its application in internal combustion engines holds significant potential for promoting low-carbon emissions. However, due to its unique physicochemical properties, ammonia faces challenges [...] Read more.
Ammonia, as a hydrogen carrier and an ideal zero-carbon fuel, can be liquefied and stored under ambient temperature and pressure. Its application in internal combustion engines holds significant potential for promoting low-carbon emissions. However, due to its unique physicochemical properties, ammonia faces challenges in achieving ignition and combustion when used as a single fuel. Additionally, the presence of nitrogen atoms in ammonia results in increased NOx emissions in the exhaust. High-temperature selective non-catalytic reduction (SNCR) is an effective method for controlling flue gas emissions in engineering applications. By injecting ammonia as a NOx-reducing agent into exhaust gases at specific temperatures, NOx can be reduced to N2, thereby directly lowering NOx concentrations within the cylinder. Based on this principle, a numerical simulation study was conducted to investigate two high-pressure injection strategies for sequential diesel/ammonia dual-fuel injection. By varying fuel spray orientations and injection durations, and adjusting the energy ratio between diesel and ammonia under different operating conditions, the combustion and emission characteristics of the engine were numerically analyzed. The results indicate that using in-cylinder high-pressure direct injection can maintain a constant total energy output while significantly reducing NOx emissions under high ammonia substitution ratios. This reduction is primarily attributed to the role of ammonia in forming NH2, NH, and N radicals, which effectively reduce the dominant NO species in NOx. As the ammonia substitution ratio increases, CO2 emissions are further reduced due to the absence of carbon atoms in ammonia. By adjusting the timing and duration of diesel and ammonia injection, tailpipe emissions can be effectively controlled, providing valuable insights into the development of diesel substitution fuels and exhaust emission control strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

12 pages, 4576 KiB  
Article
The Combustion of Lean Ethanol–Air Mixtures in a Swiss-Roll Combustor
by Dmitry Podlesniy, Eugene Polianczyk, Maxim Tsvetkov, Leonid Yanovsky and Andrey Zaichenko
Processes 2024, 12(12), 2690; https://doi.org/10.3390/pr12122690 - 28 Nov 2024
Viewed by 864
Abstract
A novel meso-scale 3-channel 5-turn Swiss-roll type combustor was designed and tested. The non-catalytic combustion of lean ethanol–air mixtures was experimentally investigated in relation to the oxygen excess ratio (α), which varied from 1.5 to 7. Depending on the control parameters used, two [...] Read more.
A novel meso-scale 3-channel 5-turn Swiss-roll type combustor was designed and tested. The non-catalytic combustion of lean ethanol–air mixtures was experimentally investigated in relation to the oxygen excess ratio (α), which varied from 1.5 to 7. Depending on the control parameters used, two distinct regimes of combustion were experimentally observed: one with a combustion zone within the central chamber and another with a combustion zone in the inflow channel. The combustion temperature was virtually independent of stoichiometry. For richer mixtures and lower flow rates, the combustion zone is established in the inflow channel, thus limiting the combustion temperature. A qualitative model was proposed for the process and solved analytically; it described how the combustion regime self-adjusted, with the reaction zone moving into the inflow channel from the central chamber. This study confirmed the possibility of the sustainable combustion of ultra-lean fuel mixtures in a Swiss-roll combustor. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

19 pages, 10744 KiB  
Article
Assessment of the Influences of Numerical Models on Aerodynamic Performances in Hypersonic Nonequilibrium Flows
by Wenqing Zhang, Zhijun Zhang and Hualin Yang
Processes 2024, 12(12), 2629; https://doi.org/10.3390/pr12122629 - 22 Nov 2024
Cited by 1 | Viewed by 901
Abstract
In this paper, the aerodynamic performances including shock wave standoff distance (SSD) and heat flux of ELECTRE vehicle at 53.3 km and 4230 m/s for several types of numerical models are investigated. The numerical models include thermal equilibrium/nonequilibrium (1T/2T) assumption, three surface boundary [...] Read more.
In this paper, the aerodynamic performances including shock wave standoff distance (SSD) and heat flux of ELECTRE vehicle at 53.3 km and 4230 m/s for several types of numerical models are investigated. The numerical models include thermal equilibrium/nonequilibrium (1T/2T) assumption, three surface boundary conditions (no-slip/non-catalytic, slip/non-catalytic, slip/fully-catalytic), four chemical kinetic models (DK, Park, Gupta, and No Reaction (NR)) and two controlling temperatures (Ttr0.7Tve0.3, Ttr0.5Tve0.5). The results show that the chemical kinetic model significantly affects the SSD, and its value gradually decreases with the increase in chemical reaction rate. The SSD predicted by the NR model is 20.7% larger than that of the Park model. The SSD is also affected by the proportion of vibro-electronic temperature (Tve) in the controlling temperature, and the higher the proportion, the larger the SSD. Regarding the heat flux, the catalytic surface setting is crucial, where the value predicted by the fully-catalytic model is 62.2% higher than that by the non-catalytic model. As the chemical reaction rate of Gupta, DK, and Park models increases sequentially, the calculated heat flux decreases in turn. The heat flux predicted by the 2T model is lower than that by the 1T model, and the higher Tve proportion in the controlling temperature, the smaller the heat flux. The fundamental reason is that the trans-rotational convective heat flux of the 2T model is much lower than that of the 1T model, and the trans-rotational convective heat flux decreases with an increase in the Tve proportion. Full article
Show Figures

Figure 1

12 pages, 856 KiB  
Article
Evaluation of Selected Plant Phenolics via Beta-Secretase-1 Inhibition, Molecular Docking, and Gene Expression Related to Alzheimer’s Disease
by Tugba Uçar Akyürek, Ilkay Erdogan Orhan, F. Sezer Şenol Deniz, Gokcen Eren, Busra Acar and Alaattin Sen
Pharmaceuticals 2024, 17(11), 1441; https://doi.org/10.3390/ph17111441 - 28 Oct 2024
Viewed by 1888
Abstract
Background: The goal of the current study was to investigate the inhibitory activity of six phenolic compounds, i.e., rosmarinic acid, gallic acid, oleuropein, epigallocatechin gallate (EGCG), 3-hydroxytyrosol, and quercetin, against β-site amyloid precursor protein cleaving enzyme-1 (BACE1), also known as β-secretase or memapsin [...] Read more.
Background: The goal of the current study was to investigate the inhibitory activity of six phenolic compounds, i.e., rosmarinic acid, gallic acid, oleuropein, epigallocatechin gallate (EGCG), 3-hydroxytyrosol, and quercetin, against β-site amyloid precursor protein cleaving enzyme-1 (BACE1), also known as β-secretase or memapsin 2, which is implicated in the pathogenesis of Alzheimer’s disease (AD). Methods and Results: The inhibitory potential against BACE1, molecular docking simulations, as well as neurotoxicity and the effect on the AD-related gene expression of the selected phenolics were tested. BACE1 inhibitory activity was carried out using the ELISA microplate assay via fluorescence resonance energy transfer (FRET) technology. Molecular docking experiments were performed in the human BACE1 active site (PDB code: 2WJO). Neurotoxicity of the compounds was carried out in SH-SY5Y, a human neuroblastoma cell line, by the Alamar Blue method. A gene expression analysis of the compounds on fourteen genes linked to AD was conducted using the real-time polymerase chain reaction (RT-PCR) method. Rosmarinic acid, EGCG, oleuropein, and quercetin (also used as the reference) were able to inhibit BACE1 with their respective IC50 values 4.06 ± 0.68, 1.62 ± 0.12, 9.87 ± 1.01, and 3.16 ± 0.30 mM. The inhibitory compounds were observed to occupy the non-catalytic site of the BACE1. However, hydrogen bonds were found to be present between rosmarinic acid and EGCG and aspartic amino acid D228 in the catalytic site. Oleuropein and quercetin effectively suppressed the expression of PSEN, APOE, and CLU, which are recognized to be linked to the pathogenesis of AD. Conclusions: The outcomes of the work bring quercetin, EGCG, and rosmarinic acid to the forefront as promising BACE1 inhibitors. Full article
Show Figures

Figure 1

29 pages, 4414 KiB  
Review
Use of In-Situ ESR Measurements for Mechanistic Studies of Free Radical Non-Catalytic Thermal Reactions of Various Unconventional Oil Resources and Biomass
by Hajra Maqsood, Basim Abu-Jdayil and Joy H. Tannous
Int. J. Mol. Sci. 2024, 25(20), 11047; https://doi.org/10.3390/ijms252011047 - 15 Oct 2024
Cited by 2 | Viewed by 1620
Abstract
The exhaustion of conventional light oils necessitates the shift towards unconventional sources such as biomass, heavy oil, oil shale, and coal. Non-catalytic thermal cracking by a free radical mechanism is at the heart of the upgrading, prior to refining into valuable products. However, [...] Read more.
The exhaustion of conventional light oils necessitates the shift towards unconventional sources such as biomass, heavy oil, oil shale, and coal. Non-catalytic thermal cracking by a free radical mechanism is at the heart of the upgrading, prior to refining into valuable products. However, thermal pyrolysis is hindered by the formation of asphaltenes, precursors to coke, limiting cracking, causing equipment fouling, and reducing product stability. Free radicals are inherently present in heavy fractions and are generated during thermal processes. This makes these reactive intermediates central to understanding these mechanisms and limiting coking. Electron spin resonance (ESR) spectroscopy facilitates such mechanistic studies. Over the past decade, there has been no review of using in-situ ESR for studying thermal processes. This work begins with a brief description of free radicals’ chain reactions during thermal reactions and the wealth of information ESR provides. We then critically review the literature that uses ESR for mechanistic studies in thermal pyrolysis of biomass, heavy oil, shales, and coal. We conclude that limited literature exist, and more investigations are necessary. The key findings from existing literature are summarized to know the current state of knowledge. We also explicitly highlight the research gaps. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

10 pages, 1992 KiB  
Article
NO Emission Characteristics of Pulverized Coal Combustion in O2/N2 and O2/H2O Atmospheres in a Drop-Tube Furnace
by Liang Zhang, Jun Fan, Changlin Wang, Jiaqi Yuan, Cen Hao and Shiying Cao
Materials 2024, 17(20), 4997; https://doi.org/10.3390/ma17204997 - 12 Oct 2024
Viewed by 995
Abstract
Oxy-steam combustion is a new oxy-fuel combustion technology. This paper focuses on the NO emission characteristics during the combustion of SF (Shen Fu) coal in O2/N2 and O2/H2O mixtures. Experiments were performed in a drop-tube furnace. [...] Read more.
Oxy-steam combustion is a new oxy-fuel combustion technology. This paper focuses on the NO emission characteristics during the combustion of SF (Shen Fu) coal in O2/N2 and O2/H2O mixtures. Experiments were performed in a drop-tube furnace. Combustion tests were carried out in O2/N2 and O2/H2O atmospheres for various O2 concentrations (21%, 30%, 40%, and 60%) at different temperatures (1173 K, 1273 K, and 1373 K). In addition, combustion experiments at different excess oxygen ratios (λ) were conducted in O2/N2 and O2/H2O atmospheres. The influences of the atmosphere, oxygen concentration, temperature, and excess oxygen ratio on NO emissions were analyzed. The results show that the NO concentrations of SF coal combustion in the 21% O2/79% H2O atmosphere were much lower than those in the 21% O2/79% N2 atmosphere at the three temperatures considered. This was because a large amount of NO was decomposed during the SF coal combustion in the O2/H2O atmospheres. The reasons for the decomposition of NO include the selective non-catalytic reaction (SNCR) mechanism and char’s important role as a catalyst for the destruction of NO, either directly or by reacting with CO or H2. In oxy-steam combustion, the NO concentrations significantly increased with the increase in the oxygen concentration from 21 vol.% to 60 vol.% and the temperature from 1173 K to 1373 K. The excess oxygen ratio (λ) slightly impacted the NO emissions in the O2/H2O atmosphere. Full article
Show Figures

Figure 1

19 pages, 3927 KiB  
Article
Novel Determination of Functional Groups in Partially Acrylated Epoxidized Soybean Oil
by Olga Gómez-de-Miranda-Jiménez-de-Aberasturi, Javier Calvo, Ingemar Svensson, Noelia Blanco, Leire Lorenzo and Raquel Rodriguez
Molecules 2024, 29(19), 4582; https://doi.org/10.3390/molecules29194582 - 26 Sep 2024
Cited by 2 | Viewed by 1311
Abstract
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties [...] Read more.
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties such as molecular size distribution, crosslinking degree, and glass transition temperature (Tg). The accurate identification of epoxide and acrylated groups in triglyceride molecules helps to predict their behavior during the polymerization process. A methodology based on analytical spectrometric techniques, such as direct infusion, mass spectrometry with electrospray ionization, and ultra-high-performance liquid chromatography, is used in combination with FTIR and 1H NMR to characterize the epoxy and acrylic functionalities in the fatty chains with different numbers of carbon atoms of partially acrylated triglycerides obtained by a non-catalytic reaction. Full article
Show Figures

Figure 1

14 pages, 3640 KiB  
Article
Experimental Device for the “Green” Synthesis of Unbranched Aliphatic Esters C4–C8 Using an Audio Frequency Electric Field
by Ioan-Alexandru Udrea, Alexandra Teodora Lukinich-Gruia, Cristina Paul, Maria-Alexandra Pricop, Mircea Dan, Virgil Păunescu, Alexandru Băloi, Călin A. Tatu, Nicolae Vaszilcsin and Valentin L. Ordodi
Processes 2024, 12(9), 1891; https://doi.org/10.3390/pr12091891 - 3 Sep 2024
Cited by 1 | Viewed by 1618
Abstract
One of the most important reactions in organic synthesis is esterification, and the compounds generated using this process are esters with a wide range of applications in various industries. Numerous approaches have been employed to enhance the ester yield and reaction rate and [...] Read more.
One of the most important reactions in organic synthesis is esterification, and the compounds generated using this process are esters with a wide range of applications in various industries. Numerous approaches have been employed to enhance the ester yield and reaction rate and establish equilibrium in esterification reactions. This study uses a non-catalytic thermal esterification method to obtain unbranched aliphatic esters C4–C8. The effect of an audio frequency electric field instead of a catalyst on the esterification reaction between acetic acid and linear C4–C8 aliphatic alcohols was studied. The main goal of this study was to design and implement a lab-scale device for the synthesis of aliphatic esters in an environmentally sustainable manner using only specific raw materials and an audio frequency electric field at 3 and 6 kHz at 20 °C and 50 °C. A mechanism for the esterification reaction using an audio frequency electric field is also suggested. The proposed experimental device is designed to produce esters in a green and cost-effective manner and could be used on a large scale in the food, cosmetics, and pharmaceutical industries. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 10122 KiB  
Article
A Study of Hydroxyl-Terminated Block Copolyether-Based Binder Curing Kinetics
by Wu Yang, Zhengmao Ding, Cong Zhu, Tianqi Li, Wenhao Liu and Yunjun Luo
Polymers 2024, 16(16), 2246; https://doi.org/10.3390/polym16162246 - 7 Aug 2024
Viewed by 1280
Abstract
In order to determine the curing reaction model and corresponding parameters of hydroxyl-terminated block copolyether (HTPE) and provide a theoretical reference for its practical application, the non-isothermal differential scanning calorimetry (DSC) method was used to analyze the curing processes of three curing systems [...] Read more.
In order to determine the curing reaction model and corresponding parameters of hydroxyl-terminated block copolyether (HTPE) and provide a theoretical reference for its practical application, the non-isothermal differential scanning calorimetry (DSC) method was used to analyze the curing processes of three curing systems with HTPE and N-100 (an aliphatic polyisocyanate curing agent), isophorone diisocyanate (IPDI), and a mixture of N-100 and IPDI as curing agents. The results show that the curing activation energy of N-100 and HTPE was about 69.37 kJ/mol, slightly lower than the curing activation energy of IPDI and HTPE (75.60 kJ/mol), and the curing activation energy of the mixed curing agent and HTPE was 69.79 kJ/mol. The curing process of HTPE conformed to the autocatalytic reaction model. The non-catalytic reaction order (n) of N-100 and HTPE was about 1.2, and the autocatalytic order (m) was about 0.3, both lower than those of IPDI and HTPE. The reaction kinetics parameters of the N-100 and IPDI mixed curing agent with HTPE were close to those of N-100 and HTPE. The verification results indicate a high degree of overlap between the experimental data and the calculated data. Full article
(This article belongs to the Special Issue Eco-Friendly Coatings and Adhesive Technology)
Show Figures

Figure 1

26 pages, 8687 KiB  
Article
Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts
by Kapil Khandelwal and Ajay K. Dalai
Molecules 2024, 29(4), 911; https://doi.org/10.3390/molecules29040911 - 19 Feb 2024
Cited by 7 | Viewed by 2205
Abstract
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass [...] Read more.
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass such as canola straw suffers from low hydrogen yield, hydrogen selectivity, and conversion efficiencies. Cost-effective and sustainable catalysts with high catalytic activity for supercritical water gasification are increasingly becoming a focal point of interest. In this research study, novel wet-impregnated nickel-based catalysts supported on carbon-negative hydrochar obtained from hydrothermal liquefaction (HTL-HC) and hydrothermal carbonization (HTC-HC) of canola straw, along with other nickel-supported catalysts such as Ni/Al2O3, Ni/ZrO2, Ni/CNT, and Ni/AC, were synthesized for gasification of canola straw on previously optimized reaction conditions of 500 °C, 60 min, 10 wt%, and 23–25 MPa. The order of hydrogen yield for the six supports was (10.5 mmol/g) Ni/ZrO2 > (9.9 mmol/g) Ni/Al2O3 > (9.1 mmol/g) Ni/HTL-HC > (8.8 mmol/g) Ni/HTC-HC > (7.7 mmol/g) Ni/AC > (6.8 mmol/g) Ni/CNT, compared to 8.1 mmol/g for the non-catalytic run. The most suitable Ni/ZrO2 catalyst was further modified using promotors such as K, Zn, and Ce, and the performance of the promoted Ni/ZrO2 catalysts was evaluated. Ni-Ce/ZrO2 showed the highest hydrogen yield of 12.9 mmol/g, followed by 12.0 mmol/g for Ni-Zn/ZrO2 and 11.6 mmol/g for Ni-K/ZrO2. The most suitable Ni-Ce/ZrO2 catalysts also demonstrated high stability over their repeated use. The superior performance of the Ni-Ce/ZrO2 was due to its high nickel dispersion, resilience to sintering, high thermal stability, and oxygen storage capabilities to minimize coke deposition. Full article
(This article belongs to the Special Issue Advances in Thermochemical Conversion of Solid Wastes)
Show Figures

Figure 1

12 pages, 3836 KiB  
Article
Luminescent Bacteria as Bioindicators in Screening and Selection of Enzymes Detoxifying Various Mycotoxins
by Elena Efremenko, Ilya Lyagin, Nikolay Stepanov, Olga Senko, Olga Maslova, Aysel Aslanli and Natalia Ugarova
Sensors 2024, 24(3), 763; https://doi.org/10.3390/s24030763 - 24 Jan 2024
Cited by 3 | Viewed by 1550
Abstract
Interest in enzymes capable of neutralizing various mycotoxins is quite high. The methods used for the screening and selection of enzymes that catalyze the detoxification of mycotoxins should be sensitive and fast. However toxic compounds can be generated under the action of such [...] Read more.
Interest in enzymes capable of neutralizing various mycotoxins is quite high. The methods used for the screening and selection of enzymes that catalyze the detoxification of mycotoxins should be sensitive and fast. However toxic compounds can be generated under the action of such enzymes. Thus, the assessment of the overall reduction in the toxic properties of reaction media towards bioluminescent bacteria seems to be the most reasonable control method allowing a quick search for the effective enzymatic biocatalysts. The influence of a wide range of mycotoxins and glucanases, which hydrolyze toxins with different chemical structures, on the analytical characteristics of luminescent photobacteria as a biosensing element has been studied. Different glucanases (β-glucosidase and endoglucanase) were initially selected for reactions with 10 mycotoxins based on the results of molecular docking which was performed in silico with 20 mycotoxins. Finally, the biorecognizing luminescent cells were used to estimate the residual toxicity of reaction media with mycotoxins after their interaction with enzymes. The notable non-catalytic decrease in toxicity of media containing deoxynivalenol was revealed with luminous cells for both types of tested glucanases, whereas β-glucosidase provided a significant catalytic detoxification of media with aflatoxin B2 and zearalenone at pH 6.0. Full article
Show Figures

Graphical abstract

Back to TopTop