Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = catalyst coated membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5659 KB  
Article
Development of High-Performance Catalytic Ceramic Membrane Microchannel Reactor for Carbon Dioxide Conversion to Methanol
by Aubaid Ullah, Nur Awanis Hashim, Mohamad Fairus Rabuni, Mohd Usman Mohd Junaidi, Ammar Ahmed, Mustapha Grema Mohammed and Muhammed Sahal Siddique
Membranes 2026, 16(1), 45; https://doi.org/10.3390/membranes16010045 - 17 Jan 2026
Viewed by 342
Abstract
Conversion of carbon dioxide (CO2) to methanol in a traditional reactor (TR) with catalytic packed bed faces the challenge of lower reactant conversion due to thermodynamic limitations. On the contrary, membrane reactors selectively remove reaction products, enhancing the conversion, but it [...] Read more.
Conversion of carbon dioxide (CO2) to methanol in a traditional reactor (TR) with catalytic packed bed faces the challenge of lower reactant conversion due to thermodynamic limitations. On the contrary, membrane reactors selectively remove reaction products, enhancing the conversion, but it is still limited, and existing designs face challenges of structural integrity and scale-up complications. Therefore, for the first time, a ceramic membrane microchannel reactor (CMMR) system was developed with 500 µm deep microchannels, incorporated with catalytic membrane for CO2 conversion to methanol. Computational fluid dynamic (CFD) simulations confirmed the uniform flow distribution among the microchannels. A catalytic LTA zeolite membrane was synthesized with thin layer (~45 µm) of Cu-ZnO-Al2O3 catalyst coating and tested at a temperature of 220 °C and 3.0 MPa pressure. The results showed a significantly higher CO2 conversion of 82%, which is approximately 10 times higher than TR and 3 times higher than equilibrium conversion while 1.5 times higher than conventional tubular membrane reactor. Additionally, methanol selectivity and yield were achieved as 51.6% and 42.3%, respectively. The research outputs showed potential of replacing the current industrial process of methanol synthesis, addressing the Sustainable Development Goals of SDG-7, 9, and 13 for clean energy, industry innovation, and climate action, respectively. Full article
Show Figures

Figure 1

42 pages, 2357 KB  
Review
Advances in Materials and Manufacturing for Scalable and Decentralized Green Hydrogen Production Systems
by Gabriella Stefánia Szabó, Florina-Ambrozia Coteț, Sára Ferenci and Loránd Szabó
J. Manuf. Mater. Process. 2026, 10(1), 28; https://doi.org/10.3390/jmmp10010028 - 9 Jan 2026
Cited by 2 | Viewed by 374
Abstract
The expansion of green hydrogen requires technologies that are both manufacturable at a GW-to-TW power scale and adaptable for decentralized, renewable-driven energy systems. Recent advances in proton exchange membrane, alkaline, and solid oxide electrolysis reveal persistent bottlenecks in catalysts, membranes, porous transport layers, [...] Read more.
The expansion of green hydrogen requires technologies that are both manufacturable at a GW-to-TW power scale and adaptable for decentralized, renewable-driven energy systems. Recent advances in proton exchange membrane, alkaline, and solid oxide electrolysis reveal persistent bottlenecks in catalysts, membranes, porous transport layers, bipolar plates, sealing, and high-temperature ceramics. Emerging fabrication strategies, including roll-to-roll coating, spatial atomic layer deposition, digital-twin-based quality assurance, automated stack assembly, and circular material recovery, enable high-yield, low-variance production compatible with multi-GW power plants. At the same time, these developments support decentralized hydrogen systems that demand compact, dynamically operated, and material-efficient electrolyzers integrated with local renewable generation. The analysis underscores the need to jointly optimize material durability, manufacturing precision, and system-level controllability to ensure reliable and cost-effective hydrogen supply. This paper outlines a convergent approach that connects critical-material reduction, high-throughput manufacturing, a digitalized balance of plant, and circularity with distributed energy architectures and large-scale industrial deployment. Full article
Show Figures

Figure 1

19 pages, 4926 KB  
Article
A Bipolar Membrane Containing Core–Shell Structured Fe3O4-Chitosan Nanoparticles for Direct Seawater Electrolysis
by Hyeon-Bee Song, Eun-Hye Jang and Moon-Sung Kang
Membranes 2026, 16(1), 23; https://doi.org/10.3390/membranes16010023 - 2 Jan 2026
Viewed by 559
Abstract
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation [...] Read more.
Seawater has attracted increasing attention as a promising resource for hydrogen production via electrolysis. However, multivalent ions present in seawater can reduce the efficiency of direct seawater electrolysis (DSWE) by forming inorganic precipitates at the cathode. Bipolar membranes (BPMs) can mitigate precipitate formation by regulating local pH, thereby enhancing DSWE efficiency. Accordingly, this study focuses on the fabrication of a high-performance BPM for DSWE applications. The water-splitting performance of BPMs is strongly dependent on the properties of the catalyst at the bipolar junction. Herein, iron oxide (Fe3O4) nanoparticles were coated with cross-linked chitosan to improve solvent dispersibility and catalytic activity. The resulting core–shell catalyst exhibited excellent dispersibility, facilitating uniform incorporation into the BPM. Water-splitting flux measurements identified an optimal catalyst loading of approximately 3 μg cm−2. The BPM containing Fe3O4–chitosan nanoparticles achieved a water-splitting flux of 26.2 μmol cm−2 min−1, which is 18.6% higher than that of a commercial BPM (BP-1E, Astom Corp., Tokyo, Japan). DSWE tests using artificial seawater as the catholyte and NaOH as the anolyte demonstrated lower cell voltage and stable catholyte acidification over 100 h compared to the commercial membrane. Full article
(This article belongs to the Special Issue Advanced Membrane Design for Hydrogen Technologies)
Show Figures

Graphical abstract

16 pages, 4145 KB  
Article
Experimental Study on OC PEMFC Performance Improvement and MEA Parameter Optimization Under Water Shortage Conditions
by Jianan Wang, Di Tang, Tianshu Liao, Xiangqian Zhang, Feng Cheng and Lingfeng Gao
Membranes 2025, 15(12), 356; https://doi.org/10.3390/membranes15120356 - 26 Nov 2025
Viewed by 443
Abstract
Optimizing the MEA structure is crucial for enhancing the performance of open-cathode PEMFCs under water shortage conditions. By investigating the impact of gradient ambient temperature on performance, it is highlighted that cathode catalyst layer hydration deeply affects proton conduction in the membrane and [...] Read more.
Optimizing the MEA structure is crucial for enhancing the performance of open-cathode PEMFCs under water shortage conditions. By investigating the impact of gradient ambient temperature on performance, it is highlighted that cathode catalyst layer hydration deeply affects proton conduction in the membrane and three-phase boundary formation. These issues consequently increase ohmic resistance and cathode activation resistance as seen via polarization curve comparison and the electrochemical impedance spectroscopy analysis method, ultimately degrading overall stack voltage output under the same current density. Under indoor temperature and humidity conditions, an orthogonal experiment was designed to validate the sensitivity analysis on the cathode I/C ratio (0.74–0.9) and catalyst layer thickness (8, 12 μm) by controlling the catalyst-coated membrane manufacture process; GDL thickness (185–324 μm) and pore structure were also investigated, combining parameter characterization techniques like MIP and BET. It is shown that with an I/C ratio of 0.86, a medium GDL pore structure and a higher catalyst layer thickness of 12 μm bring better performance output, especially when the OC PEMFC is 700 mA/cm2 @ 0.62 V. Full article
(This article belongs to the Special Issue Advanced Membranes for Fuel Cells and Redox Flow Batteries)
Show Figures

Figure 1

13 pages, 2511 KB  
Article
Enhancing the Mechanical Robustness of Aerosol-Based Brittle Pt/C Electrodes Through Thermal Annealing
by Nathan Heo, Won-Yong Jeong, Ji Hun Kim and Jae-Bum Pyo
Coatings 2025, 15(11), 1331; https://doi.org/10.3390/coatings15111331 - 15 Nov 2025
Viewed by 543
Abstract
Nanoporous Pt/C electrodes fabricated via aerosol coating offer excellent reactant delivery and electrochemical activity owing to their high porosity. However, the practical application prospects of such electrodes are limited by their poor mechanical properties. Herein, we quantitatively analyze the effects of thermal annealing [...] Read more.
Nanoporous Pt/C electrodes fabricated via aerosol coating offer excellent reactant delivery and electrochemical activity owing to their high porosity. However, the practical application prospects of such electrodes are limited by their poor mechanical properties. Herein, we quantitatively analyze the effects of thermal annealing (at 110, 150, 190, and 230 °C) on the mechanical stability and electrical properties of aerosol-based Pt/C electrodes. Post-annealing at an optimal temperature of 190 °C improved the tensile strength by 65.3%, increased their elongation from 0.82% to 1.78%, and decreased the electrical resistance while maintaining the secondary pore structure. Analyses of the electrode’s surface roughness, pore structure, and contact angle indicate that thermal reconstruction of the ionomer is crucial for stabilizing the electrode structure and controlling its surface properties. Finite element simulations using experimentally measured single-electrode properties enabled accurate prediction of the mechanical behavior of the membrane electrode assembly. These results provide design guidelines for balancing the process efficiency with the mechanical stability of aerosol-based Pt/C electrodes and can be used to improve their application prospects in aerosol-based fuel cell catalyst layers. Full article
Show Figures

Figure 1

22 pages, 3810 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Viewed by 1510
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
Show Figures

Figure 1

17 pages, 2222 KB  
Article
Hydration Fingerprints: A Reproducible Protocol for Accurate Water Uptake in Anion-Exchange Membranes
by Sandra Elisabeth Temmel, Daniel Ölschläger and Ralf Wörner
Membranes 2025, 15(9), 257; https://doi.org/10.3390/membranes15090257 - 28 Aug 2025
Viewed by 1377
Abstract
Anion-exchange membranes (AEMs) not only enable the fabrication of catalyst-coated membranes without precious metals but are also projected to achieve a technology-readiness level (TRL) suitable for industrial deployment before the end of this decade. Accurate and reproducible water uptake data are essential for [...] Read more.
Anion-exchange membranes (AEMs) not only enable the fabrication of catalyst-coated membranes without precious metals but are also projected to achieve a technology-readiness level (TRL) suitable for industrial deployment before the end of this decade. Accurate and reproducible water uptake data are essential for guiding AEM design, yet conventional gravimetric methods—relying on manual blotting and loosely defined drying steps—can introduce variabilities exceeding 20%. Here, we present a standardized protocol that transforms water uptake measurements from rough estimates into precise, comparable “hydration fingerprints.” By replacing manual wiping with a calibrated pressure-blotting rig (0.44 N cm−2 for 10 s twice) and verifying both dry and wet states via ATR-FTIR spectroscopy, we dramatically reduce scatter and align our FAAM-PK-75 (Fumatech, Bietigheim, Germany) results with published benchmarks in DI water, aqueous KOH (0.1–9 M), various alcohols, and controlled humidity (39–96% RH). These uptake profiles reveal how OH screening, thermal densification at 60 °C, and PEEK reinforcement govern equilibrium hydration. A low-cost salt-bath method for vapor-phase sorption further distinguishes reinforced from unreinforced architectures. Extending the workflow to additional commercial and custom membranes confirms its broad applicability. Ultimately, this work establishes a new benchmark for AEM hydration testing and provides a predictive toolkit for correlating water content with conductivity, dimensional stability, and membrane–ink interactions during catalyst-coated membrane fabrication. Full article
(This article belongs to the Special Issue Ion Conducting Membranes and Energy Storage)
Show Figures

Figure 1

13 pages, 3611 KB  
Article
Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells
by Jaeyoung Kim, Dong-Hyun Lee, Hyun-Soo Kim, Gyungse Park, In-Tae Kim, Md. Masud Rana, Hyoung-Juhn Kim, Ho-Jung Sun and Joongpyo Shim
Catalysts 2025, 15(8), 790; https://doi.org/10.3390/catal15080790 - 19 Aug 2025
Cited by 2 | Viewed by 1730
Abstract
This study examines the effects of several commercial surfactants on the dispersion of catalyst inks for proton exchange membrane fuel cells (PEMFCs). Catalyst inks containing Pt/C were spray-coated and assembled into membrane electrode assemblies (MEAs) by hot pressing. The structural and electrochemical properties [...] Read more.
This study examines the effects of several commercial surfactants on the dispersion of catalyst inks for proton exchange membrane fuel cells (PEMFCs). Catalyst inks containing Pt/C were spray-coated and assembled into membrane electrode assemblies (MEAs) by hot pressing. The structural and electrochemical properties of the resulting catalyst layers were characterized through particle size analysis, zeta potential measurements, contact angle determinations, and single-cell performance tests. Among the formulations evaluated, the ink with non-ionic surfactant Triton X-100 (TX) delivered the best performance, achieving a current density of 1134 mA/cm2 at 0.3 V—substantially higher than that of the surfactant-free control. These findings provide practical guidance for selecting appropriate surfactants to optimize catalyst-ink preparation and enhance PEMFC performance. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

28 pages, 2810 KB  
Article
Conceptual Recycling Chain for Proton Exchange Membrane Water Electrolyzers—Case Study Involving Review-Derived Model Stack
by Malena Staudacher, Dominik Goes, Sohyun Ahn, Dzeneta Vrucak, Tim Gießmann, Bernhard Bauer-Siebenlist, Thomas Leißner, Martin Rudolph, Jürgen Fleischer, Bernd Friedrich and Urs A. Peuker
Recycling 2025, 10(3), 121; https://doi.org/10.3390/recycling10030121 - 19 Jun 2025
Cited by 3 | Viewed by 4770
Abstract
The recycling of proton exchange membrane water electrolyzer (PEMWE) raw materials is imperative due to their scarcity, cost, complexity and environmental impact. This is particularly true in the context of expanding electrolyzer manufacturing and reducing production costs. Developing comprehensive recycling strategies requires the [...] Read more.
The recycling of proton exchange membrane water electrolyzer (PEMWE) raw materials is imperative due to their scarcity, cost, complexity and environmental impact. This is particularly true in the context of expanding electrolyzer manufacturing and reducing production costs. Developing comprehensive recycling strategies requires the creation of a model stack due to the diversity in stack design, structure and materials. The review-derived model presented here provides a sound basis and summarizes the variety of approaches found in the literature and industry. The holistically developed recycling chain, including dismantling, mechanical processing, hydrometallurgical processes and carbon reuse, is characterized by the complete recycling of materials, the reduced application of energy-intensive process steps and the avoidance of environmentally harmful processes. Emphasis is placed on demonstrating the non-destructive disassembly of joined components, the dry mechanical decoating of catalyst-coated membranes, membrane dissolution, the separation of anode and cathode particles and the environmentally friendly hydrometallurgical processing of platinum. Full article
Show Figures

Figure 1

17 pages, 6225 KB  
Article
RF Sputtering of Gold Nanoparticles in Liquid and Direct Transfer to Nafion Membrane for PEM Water Electrolysis
by Chandrakanth Reddy Chandraiahgari, Gloria Gottardi, Giorgio Speranza, Beatrice Muzzi, Domenico Dalessandro, Andrea Pedrielli, Victor Micheli, Ruben Bartali, Nadhira Bensaada Laidani and Matteo Testi
Membranes 2025, 15(4), 115; https://doi.org/10.3390/membranes15040115 - 7 Apr 2025
Cited by 1 | Viewed by 2007
Abstract
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency [...] Read more.
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency (RF) magnetron sputtering and by subsequently transferring them to Nafion ionomer, fabricating a catalyst-coated membrane (CCM), an essential component of the proton exchange membrane water electrolyzer (PEMWE). The samples were systematically characterized at different stages of process development. The innovative transfer process resulted in a monodispersed homogeneous distribution of catalyst particles inside CCM while retaining their nascent nanoscale topography. The chemical analysis confirmed the complete removal of the trapped PEG through the process optimization. The electrochemical catalytic activity of the optimized CCM was verified, and the hydrogen evolution reaction (HER) in acidic media appeared outstanding, a vital step in water electrolysis toward H2 production. Therefore, this first study highlights the advantages of RF sputtering in liquid for nanoparticle synthesis and its direct application in preparing CCM, paving the way for the development of innovative membrane preparation techniques for water electrolysis. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

14 pages, 1213 KB  
Article
Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers
by Chao Meng, Shang Li, Qianyun Wu, Mengyu Li, Shenao Tian, Haolin Tang and Mu Pan
Polymers 2025, 17(7), 840; https://doi.org/10.3390/polym17070840 - 21 Mar 2025
Cited by 1 | Viewed by 4994
Abstract
Accurately determining the Hansen solubility parameters (HSPs) of fuel cell ionomers is crucial for optimizing the dispersion and dispersive state of the ionomer in fuel cell catalyst inks. This directly impacts the structure and coating process of the catalyst layer in proton exchange [...] Read more.
Accurately determining the Hansen solubility parameters (HSPs) of fuel cell ionomers is crucial for optimizing the dispersion and dispersive state of the ionomer in fuel cell catalyst inks. This directly impacts the structure and coating process of the catalyst layer in proton exchange membrane fuel cells (PEMFCs). The Hansen solubility parameters (HSPs) of the Nafion ionomer were calculated by the Hansen solubility parameter software (HSPiP), inverse gas chromatography (IGC), and group contribution methods. The applicability and accuracy of the different algorithms are discussed. It was found that the solubility parameters (SPs) measured by the HSPiP method were higher, while the SPs measured by the IGC and group contribution methods were lower. However, for the ionomer with both a hydrophobic backbone and hydrophilic side chain, the HSPiP method offered a more reasonable HSP determination method. The dual HSPs of Nafion calculated by the HSPiP method were found to be δd = 16.4 MPa1/2 (dispersion force), δp = 10.5 MPa1/2 (polar interaction), and δh = 8.9 MPa1/2 (hydrogen bonding) for the hydrophobic backbone and δd = 15.2 MPa1/2, δp = 11.7 MPa1/2, and δh = 15.9 MPa1/2 for the hydrophilic side chain. These results provide a thermodynamic basis for solvent design in fuel cell catalyst-layer fabrication. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

14 pages, 3350 KB  
Article
Optimizing Physical Factors for the Ammonium Removal from Wastewater Using Bio-Electrochemical Systems
by Aparna Sharma, Anup Gurung, Syed Ejaz Hussain Mehdi, Suleman Shahzad, Fida Hussain, Woochang Kang, Sandesh Pandey, Aqib Hassan Ali Khan and Sang-Eun Oh
Sustainability 2025, 17(6), 2543; https://doi.org/10.3390/su17062543 - 13 Mar 2025
Cited by 2 | Viewed by 1575
Abstract
Waste streams, leachates, and wastewater often contain high-strength ammonia, which can be challenging to manage. Microbial fuel cells (MFCs) offer a promising solution for treating such a nuisance of high-strength ammonia. However, optimizing MFC operating conditions, at lower technology readiness levels, is crucial [...] Read more.
Waste streams, leachates, and wastewater often contain high-strength ammonia, which can be challenging to manage. Microbial fuel cells (MFCs) offer a promising solution for treating such a nuisance of high-strength ammonia. However, optimizing MFC operating conditions, at lower technology readiness levels, is crucial to achieve a sustainable and economically viable application. This study investigates the factors affecting ammonia nitrogen removal in MFCs. MFCs with a cation exchange membrane (CEM) exhibit a higher diffusion rate of ammonium ions from the anode to the cathode compared to those with a proton exchange membrane (PEM). In close circuit mode (CCM), MFCs with a Pt-coated cathode electrode achieved an ammonium removal efficiency of 96% in the cathode chamber. Moreover, a plain carbon cathode electrode yielded an 87.1% removal efficiency. These results indicate that the combination of a catalyst (Pt) and oxygen in the cathode chamber can effectively remove or recover ammonia nitrogen from wastewater. Simultaneously, the removal of ammonia nitrogen in a microbial electrolysis cell (MEC) was studied. At an applied potential of 1.0 V, an ammonium removal efficiency of 87.5% was achieved. It was concluded that ammonium losses in MFCs can occur through electron migration, volatilization, and biological processes such as nitrification and denitrification. Full article
Show Figures

Figure 1

29 pages, 5737 KB  
Review
Recent Progress in Materials Design and Fabrication Techniques for Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cells
by Xinhai Deng, Liying Ma, Chao Wang, Hao Ye, Lin Cao, Xinxing Zhan, Juan Tian and Xin Tong
Catalysts 2025, 15(1), 74; https://doi.org/10.3390/catal15010074 - 14 Jan 2025
Cited by 11 | Viewed by 6268
Abstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are widely regarded as promising clean energy technologies due to their high energy conversion efficiency, low environmental impact, and versatile application potential in transportation, stationary power, and portable devices. Central to the operation and performance of PEMFCs [...] Read more.
Proton Exchange Membrane Fuel Cells (PEMFCs) are widely regarded as promising clean energy technologies due to their high energy conversion efficiency, low environmental impact, and versatile application potential in transportation, stationary power, and portable devices. Central to the operation and performance of PEMFCs are advancements in materials and manufacturing processes that directly influence their efficiency, durability, and scalability. This review provides a comprehensive overview of recent progress in these areas, emphasizing the critical role of membrane electrode assembly (MEA) technology and its constituent components, including catalyst layers, membranes, and gas diffusion layers (GDLs). The MEA, as the heart of PEMFCs, has seen significant innovations in its structure and manufacturing methodologies to ensure optimal performance and durability. At the material level, catalyst layer advancements, including the development of platinum-group metal catalysts and cost-effective non-precious alternatives, have focused on improving catalytic activity, durability, and mass transport. Similarly, the evolution of membranes, particularly advancements in perfluorosulfonic acid membranes and alternative hydrocarbon-based or composite materials, has addressed challenges related to proton conductivity, mechanical stability, and operation under harsh conditions such as low humidity or high temperature. Additionally, innovations in gas diffusion layers have optimized their porosity, hydrophobicity, and structural properties, ensuring efficient reactant and product transport within the cell. By examining these interrelated aspects of PEMFC development, this review aims to provide a holistic understanding of the state of the art in PEMFC materials and manufacturing technologies, offering insights for future research and the practical implementation of high-performance fuel cells. Full article
(This article belongs to the Special Issue Advances in Catalyst Design and Application for Fuel Cells)
Show Figures

Figure 1

17 pages, 9938 KB  
Article
A Finite-Element-Based Investigation of the Influence of the Production Environment on Fuel Cell Membrane Electrode Assemblies During Manufacturing
by Ling Ma, Zhuoqi Yan, Sebastian Schabel and Jürgen Fleischer
Energies 2024, 17(22), 5737; https://doi.org/10.3390/en17225737 - 16 Nov 2024
Cited by 2 | Viewed by 1687
Abstract
The manufacturing process for membrane electrode assemblies (MEAs), from coating to stack assembly, is typically performed under climate-controlled conditions due to the hygroscopic properties of catalyst-coated membranes (CCMs). Large climate-controlled areas in the assembly line not only increase the energy consumption but also [...] Read more.
The manufacturing process for membrane electrode assemblies (MEAs), from coating to stack assembly, is typically performed under climate-controlled conditions due to the hygroscopic properties of catalyst-coated membranes (CCMs). Large climate-controlled areas in the assembly line not only increase the energy consumption but also limit the scalability of the production line. In this study, experiments were conducted to analyze the effects of ambient humidity on the mechanical properties of a CCM. The hygroscopic swelling behavior of a commercial CCM with an ePTFE-reinforced membrane was also characterized. Using the finite element method, a 3D numerical model covering the entire MEA assembly process was developed, allowing for a numerical investigation of different climate control strategies. The influence of ambient humidity on the dimensional changes in the CCM, which leads to significant stress on the CCM due to mechanical constraints and thus to deformation of the MEA product, was simulated and validated experimentally using optical measurements. Finally, the critical steps during MEA assembly were identified, and a recommendation for the optimal humidity range for climate control was derived. Full article
Show Figures

Figure 1

15 pages, 2795 KB  
Article
Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH
by Ataollah Niyati, Arianna Moranda, Pouya Beigzadeh Arough, Federico Maria Navarra and Ombretta Paladino
Energies 2024, 17(15), 3703; https://doi.org/10.3390/en17153703 - 26 Jul 2024
Cited by 5 | Viewed by 2091
Abstract
Transition metals such as nickel and cobalt as an alternative to Pt and Pd can be used for oxygen evolution reactions (OERs) and hydrogen production reactions (HERs) in alkaline environments, facilitating green hydrogen production as a sustainable alternative to fossil fuels. In this [...] Read more.
Transition metals such as nickel and cobalt as an alternative to Pt and Pd can be used for oxygen evolution reactions (OERs) and hydrogen production reactions (HERs) in alkaline environments, facilitating green hydrogen production as a sustainable alternative to fossil fuels. In this study, an NiCo2O4 catalyst was produced by a sono-hydrothermal method using urea as a hydrolysis agent. The electrochemical performance of the catalyst-coated NiFelt electrode was evaluated at different KOH concentrations (0.25, 0.5, and 1 M) and four operating temperatures in the interval of 20–80 °C. The electrode characteristics were investigated via electrochemical spectroscopy (cyclic voltammetry, EIS, multistep chronopotentiometry, multistep chronoamperometry) using two different reference electrodes (Ag/AgCl and Hg/HgO), to obtain insight into the anodic and cathodic peaks. XRD, SEM, EDS, and TEM analyses confirmed the purity, structure, and nanoscale particle size (20–45 nm) of the NiCo2O4 catalyst. The electrode showed symmetric CV with Ag/AgCl, making this reference electrode more appropriate for capacitance measurements, while Hg/HgO proved advantageous for EIS in alkaline solutions due to reduced noise. The overpotential of the catalyst-coated NiFelt decreased by 108 mV at 10 mA/cm2 compared to bare NiFelt, showing a good potential for its application in anion exchange membranes and alkaline electrolyzers at an industrial scale. Full article
(This article belongs to the Collection Advanced Materials for Energy Conversion and Storage Devices)
Show Figures

Figure 1

Back to TopTop