Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Shrivastava, N.K.; Chatterjee, A.; Harris, T.A.L. Effect of cell compression on the performance of a non–hot–pressed MEA for PEMFC. Int. J. Energy Res. 2019, 44, 370–387. [Google Scholar] [CrossRef]
- Mohr, S.H.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Projection of world fossil fuels by country. Fuel 2015, 141, 120–135. [Google Scholar] [CrossRef]
- Majlan, E.H.; Rohendi, D.; Daud, W.R.W.; Husaini, T.; Haque, M.A. Electrode for proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2018, 89, 117–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, J.-J.; Park, G.-S.; Lee, H.-K.; Shim, J.-P. Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs. Trans. Korean Hydrog. New Energy Soc. 2011, 22, 842–851. [Google Scholar] [CrossRef]
- Han, C.-S.; Kim, I.-T.; Sun, H.-J.; Park, G.-S.; Lee, J.-J.; Lee, H.-K.; Shim, J.-P. Effect of Carbon Content on the Physical Properties of Carbon Composite Gas Diffusion Layer in PEMFCs. Int. J. Electrochem. Sci. 2012, 7, 8627–8636. [Google Scholar] [CrossRef]
- Lee, Y.-D.; Kim, J.-Y.; Yoo, D.-J.; Ju, H.; Kim, H. Review of research trend in fuel cell: Analysis on fuel-cell-related technologies in electrode, electrolyte, separator plate, stack, system, balance of plant, and diagnosis areas. J. Hydrog. New Energy 2020, 31, 530–545. [Google Scholar] [CrossRef]
- Li, W.; Lin, R.; Yang, Y. Investigation on the reaction area of PEMFC at different position in multiple catalyst layer. Electrochim. Acta 2019, 302, 241–248. [Google Scholar] [CrossRef]
- Shim, J.-P.; Lee, C.-R.; Lee, H.-K.; Lee, J.-S.; Cairns, E.J. Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J. Power Sources 2001, 102, 172–177. [Google Scholar] [CrossRef]
- Shim, J.-P.; Yoo, D.-Y.; Lee, J.-S. Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochim. Acta 2000, 45, 1943–1951. [Google Scholar] [CrossRef]
- Shin, S.-J.; Lee, J.-K.; Ha, H.-Y.; Hong, S.-A.; Chun, H.-S.; Oh, I.-H. Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 2002, 106, 146–152. [Google Scholar] [CrossRef]
- Liu, H.; Ney, L.; Zamel, N.; Li, X. Effect of Catalyst Ink and Formation Process on the Multiscale Structure of Catalyst Layers in PEM Fuel Cells. Appl. Sci. 2022, 12, 3776. [Google Scholar] [CrossRef]
- Huang, D.-C.; Yu, P.-J.; Liu, F.-J.; Huang, S.-L.; Hsueh, K.-L.; Chen, Y.-C.; Wu, C.-H.; Chang, W.C.; Tsau, F.H. Effect of Dispersion Solvent in Catalyst Ink on Proton Exchange Membrane Fuel Cell Performance. Int. J. Electrochem. Sci. 2011, 6, 2551–2565. [Google Scholar] [CrossRef]
- Yang, D.; Guo, Y.; Tang, H.; Wang, Y.; Yang, D.; Ming, P.; Zhang, C.; Li, B.; Zhu, S. Influence of the dispersion state of ionomer on the dispersion of catalyst ink and the construction of CL. Int. J. Hydrogen Energy 2021, 46, 33300–33313. [Google Scholar] [CrossRef]
- Fernández-Alvarez, V.M.; Malek, K.; Eikerling, M.H.; Young, A.; Dutta, M.; Kjeang, E. Molecular Dynamics Study of Reaction Conditions at Active Catalyst-Ionomer Interfaces in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2022, 169, 024506. [Google Scholar] [CrossRef]
- Xie, J.; Xu, F.; Wood, D.L.; More, K.L.; Zawodzinski, T.A.; Smith, W.H. Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies. Electrochim. Acta 2010, 55, 7404–7412. [Google Scholar] [CrossRef]
- Kim, T.-H.; Yi, J.-Y.; Jung, C.-Y.; Jeong, E.-G.; Yi, S.-C. Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2017, 42, 478–485. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, K.Y.; Kim, H.J.; Cho, E.A.; Lee, S.Y.; Lim, T.H.; Yoon, S.P.; Hwang, I.C.; Jang, J.H. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method. Int. J. Hydrogen Energy 2010, 35, 2119–2126. [Google Scholar] [CrossRef]
- Wuttikid, K.; Shimpalee, S.; Punyawudho, K. Evaluation of Nafion with Various Pt-C Concentrations in MEAs for PEMFCs. Fuel Cells 2017, 17, 643–651. [Google Scholar] [CrossRef]
- Passos, R.R.; Paganin, V.A.; Ticianelli, E.A. Studies of the performance of PEMFC cathodes with the catalyst layer directly applied on Nafion membranes. Electrochim. Acta 2006, 51, 5239–5245. [Google Scholar] [CrossRef]
- Suzuki, A.; Sen, U.; Hattori, T.; Miura, R.; Nagumo, R.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Williams, M.C.; et al. Ionomer content in the catalyst layer of polymer electrolyte membrane fuel cell (PEMFC): Effects on diffusion and performance. Int. J. Hydrogen Energy 2011, 36, 2221–2229. [Google Scholar] [CrossRef]
- Miguel, L.H.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P.H.; Pascale, B.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, W.; Tang, L.; Chen, X.; Wang, F. Effect of carbon material and surfactant on ink property and resulting surface cracks of fuel-cell microporous layers. Chin. J. Chem. Eng. 2024, 69, 1–12. [Google Scholar] [CrossRef]
- Özdemir, J.H.; Haşimoğlu, A.; Elçiçek, H.; Özdemir, O.K.; Akkaş, N. Production of Highly Efficient Pt/C for PEM Fuel Cell Applications. Electrocatalysis 2025, 16, 379–390. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yu, T.L.; Lin, H.L. Influence of the composition of IPA/water mixture solvents in catalyst ink solutions on PEMFC performance. J. Power Sources 2013, 225, 293–303. [Google Scholar] [CrossRef]
- Ren, H.; Meng, X.; Lin, Y.; Shao, Z. Microstructure formation mechanism of catalyst layer and its effect on fuel cell performance: Effect of dispersion medium composition. J. Energy Chem. 2022, 73, 588–598. [Google Scholar] [CrossRef]
- Orfanidi, A.; Rheinländer, P.J.; Gasteiger, H.A. Ink solvent dependence of the ionomer distribution in the catalyst layerof a PEMFC. J. Electrochem. Soc. 2018, 165, 1254. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, D.; Guo, Y.; Li, B. Effect of the physical adsorption of ionomer on Pt particles on the fluid characteristics of PEMFC catalyst ink. Int. J. Hydrogen Energy 2023, 48, 318–326. [Google Scholar] [CrossRef]
- Du, S.; Li, W.; Wu, H.; Chuang, P.Y.A.; Pan, M.; Sui, P.C. Effects of ionomer and dispersion methods on rheological behavior of proton exchange membrane fuel cell catalyst layer ink. Int. J. Hydrogen Energy 2020, 45, 29430–29441. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lee, J.-S.; Park, H.-Y.; Park, H.-S.; Lee, S.-Y.; Song, K.-H.; Kim, H.-J. Improvement of fuel cell performances through the enhanced dispersion of the PTFE binder in electrodes for use in HT-PEMFC. Int. J. Hydrogen Energy 2020, 45, 32825–32833. [Google Scholar] [CrossRef]
- Bharti, A.; Cheruvally, G. Surfactant assisted synthesis of Pt-Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2018, 43, 14729–14741. [Google Scholar] [CrossRef]
- Mulmi, S.; Park, C.-H.; Kim, H.-K.; Lee, C.-H.; Park, H.-B.; Lee, Y.-M. Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. J. Membr. Sci. 2009, 344, 288–296. [Google Scholar] [CrossRef]
- Krause, B.; Mende, M.; Pötschke, P.; Petzold, G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 2010, 48, 2746–2754. [Google Scholar] [CrossRef]
- Yang, D.; Yan, Z.; Li, B.; Higgins, D.C.; Wang, J.; Lv, H.; Chen, Z.; Zhang, C. Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrogen Energy 2016, 41, 18592–18601. [Google Scholar] [CrossRef]
- Inaba, M.; Quinson, J.; Arenz, M. pH matters: The influence of the catalyst ink on the oxygen reduction activity determined in thin film rotating disk electrode measurements. J. Power Sources 2017, 353, 19–27. [Google Scholar] [CrossRef]
- Bapat, S.; Giehl, C.; Kohsakowski, S.; Peinecke, V.; Schäffler, M.; Segets, D. On the state and stability of fuel cell catalyst inks. Adv. Powder Technol. 2021, 32, 3845–3859. [Google Scholar] [CrossRef]
- Haubold, H.-G.; Vad, T.; Jungbluth, H.; Hiller, P. Nano structure of NAFION: A SAXS study. Electrochim. Acta 2001, 46, 1559–1563. [Google Scholar] [CrossRef]
- Curtin, D.E.; Lousenberg, R.D.; Henry, T.J.; Tangeman, P.C.; Tisack, M.E. Advanced materials for improved PEMFC performance and life. J. Power Sources 2004, 131, 41–48. [Google Scholar] [CrossRef]
- Ridaoui, H.; Jada, A.; Vidal, L.; Donnet, J.-B. Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 149–159. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, J.; He, X.; Pan, M. Zeta potential of Nafion molecules in isopropanol-water mixture solvent. J. Appl. Polym. Sci. 2008, 107, 3306–3309. [Google Scholar] [CrossRef]
- Haba, Y.; Segal, E.; Narkis, M.; Titelman, G.I.; Siegmann, A. Polyaniline–DBSA/polymer blends prepared via aqueous dispersions. Synth. Met. 2000, 110, 189–193. [Google Scholar] [CrossRef]
- Yu, H.M.; Ziegler, C.; Hebling, C. Hydrophilicity and hydrophobicity study of CLs in PEMFCs. Electrochim. Acta 2006, 51, 1199–1207. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef]
- Jung, H.-S.; Kim, D.-H.; Park, C. Characterization of PTFE Electrode Made by Bar-Coating Method Using Alcohol-Based Catalyst Slurry. KHNES 2020, 31, 276–283. [Google Scholar] [CrossRef]
- Lim, C.; Wang, C.-Y. Effects of hydrophobic polymer content in GDL on power performance of a PEMFC. Electrochim. Acta 2004, 49, 4149–4156. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection. Adv. Colloid Interface Sci. 2022, 306, 102723. [Google Scholar] [CrossRef]
- Siegel, N.P.; Ellis, M.W.; Nelson, D.J.; von Spakovsky, M.R. Single domain PEMFC model based on agglomerate catalyst geometry. J. Power Sources 2003, 115, 81–89. [Google Scholar] [CrossRef]
- So, S.-Y.; Oh, K.-H. Effect of dispersant on catalyst ink properties and catalyst layer structure for high performance PEMFCs. J. Power Source 2023, 561, 232664. [Google Scholar] [CrossRef]
- Avcioglu, G.S.; Ficicilar, B.; Eroglu, I. Improved PEM fuel cell performance with hydrophobic catalyst layers. Int. J. Hydrogen Energy 2018, 43, 18632–18641. [Google Scholar] [CrossRef]
- Yu, Z.; Carter, R.N.; Zhang, J. Measurements of Pore Size Distribution, Porosity, Effective Oxygen Diffusivity, and Tortuosity of PEM Fuel Cell Electrodes. Fuel Cells 2012, 12, 557–565. [Google Scholar] [CrossRef]
- Das, P.-K.; Li, X.; Liu, Z.-S. Effects of catalyst layer structure and wettability on liquid water transport in PEMFC. Int. J. Energy Res. 2011, 35, 1325–1339. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Jan, H.V. The impacts of the gas diffusion layer contact angle on the water management of the proton exchange membrane fuel cells: Three-dimensional simulation and optimization. Int. J. Energy Res. 2022, 46, 16027–16040. [Google Scholar] [CrossRef]
- Lim, B.-H.; Majlan, E.H.; Haque, M.A. Comparison of CCMs and CCS for PEMFC MEA: A review. Chin. J. Chem. Eng. 2021, 33, 1–16. [Google Scholar] [CrossRef]
Sample | Zeta Potential (mV) | Particle Size (µm) | Change (%) | ||
---|---|---|---|---|---|
Without Ionomer | With Ionomer | Without Ionomer | With Ionomer | ||
SD | −25.61 | −20.12 | 0.712 | 0.359 | 49.58 |
DA | −21.65 | −25.45 | 0.605 | 0.267 | 59.00 |
TX | −25.43 | −21.69 | 0.555 | 0.248 | 55.31 |
BB | −24.51 | −16.98 | 0.668 | 0.327 | 51.04 |
CC | −27.04 | −30.52 | 0.672 | 0.558 | 16.96 |
Molecular Name | Molecular Formula | Types | Molecular Structure | Abbrev. |
---|---|---|---|---|
4-Dodecylbenzene sulfonic acid | C18H30O3S | Anionic HLB11.7 | DA | |
Triton X-100 | C14H22O(C2H4O)n (n = 9–10) | Nonionic HLB13.4 | TX | |
EMPIGEN® BB detergent | C16H33NO2 | Zwitterionic HLB11.4 | BB | |
Cetyltrimethyl ammonium chloride | C19H42NCl | Cationic HLB15.8 | CC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, D.-H.; Kim, H.-S.; Park, G.; Kim, I.-T.; Rana, M.M.; Kim, H.-J.; Sun, H.-J.; Shim, J. Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells. Catalysts 2025, 15, 790. https://doi.org/10.3390/catal15080790
Kim J, Lee D-H, Kim H-S, Park G, Kim I-T, Rana MM, Kim H-J, Sun H-J, Shim J. Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells. Catalysts. 2025; 15(8):790. https://doi.org/10.3390/catal15080790
Chicago/Turabian StyleKim, Jaeyoung, Dong-Hyun Lee, Hyun-Soo Kim, Gyungse Park, In-Tae Kim, Md. Masud Rana, Hyoung-Juhn Kim, Ho-Jung Sun, and Joongpyo Shim. 2025. "Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells" Catalysts 15, no. 8: 790. https://doi.org/10.3390/catal15080790
APA StyleKim, J., Lee, D.-H., Kim, H.-S., Park, G., Kim, I.-T., Rana, M. M., Kim, H.-J., Sun, H.-J., & Shim, J. (2025). Surfactant-Assisted Catalyst Ink Dispersion for Enhanced Cell Performance of Proton Exchange Membrane Fuel Cells. Catalysts, 15(8), 790. https://doi.org/10.3390/catal15080790