Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH
Abstract
:1. Introduction
- Synthesize the NiCo2O4@NiFelt hybrid electrode using a sono-hydrothermal method followed by annealing, ensuring a binder-free configuration.
- Evaluate the electrochemical performance of the NiCo2O4@NiFelt hybrid electrode in terms of overpotential, current density, and stability during the OER process in alkaline media.
- Examine the influence of operational conditions, including temperature and pH, as well as the choice of reference electrode on the OER performance of the produced electrode.
- Study the effect of different reference electrodes (Ag/AgCl and Hg/HgO) on electrochemical measurements and provide insights on their suitability for capacitance measurements and/or EIS in alkaline solutions.
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Hybrid NiCo2O4@NiFelt Electrode
2.3. Physicochemical Characterizations
2.4. Electrochemical Characterization Method
2.5. Electrochemical Performance of Hybrid NiCo2O4@NiFelt Electrode
3. Results and Discussion
3.1. Physicochemical Characterizations of NiCo2O4 Catalyst Powder
3.2. Electrochemical Characterization
3.2.1. Changing the Reference Electrode
3.2.2. Changing Electrolyte pH and Operating Temperature
3.3. Stability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zong, N.; Wang, J.; Liu, Z.; Wu, S.; Tong, X.; Kong, Q.; Xu, R.; Yang, L. Electrode Materials with High Performance of Nickel Sulfide/Titanium Nitride@Co-Based Metal–Organic Frameworks/Nickel Foam for Supercapacitors. Energies 2024, 17, 2788. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Lee, J.M.; Park, Y.S.; Jin, S.; Myeong, S.-W.; Heo, S.; Lee, H.; Albers, J.G.; Choi, Y.-W.; Seo, M.H.; et al. High-Performance RuO2/CNT Paper Electrode as Cathode for Anion Exchange Membrane Water Electrolysis. Appl. Catal. B Environ. Energy 2024, 356, 124220. [Google Scholar] [CrossRef]
- Sun, P.; Young, B.; Elgowainy, A.; Lu, Z.; Wang, M.; Morelli, B.; Hawkins, T. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities. Environ. Sci. Technol. 2019, 53, 7103–7113. Available online: https://pubs.acs.org/doi/10.1021/acs.est.8b06197 (accessed on 10 June 2024). [CrossRef] [PubMed]
- Xu, Q.; Zhang, L.; Zhang, J.; Wang, J.; Hu, Y.; Jiang, H.; Li, C. Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-Scaled Testing System and Performance Evaluation. EnergyChem 2022, 4, 100087. [Google Scholar] [CrossRef]
- Linden, F.V.D.; Pahon, E.; Morando, S.; Bouquain, D. A Review on the Proton-Exchange Membrane Fuel Cell Break-in Physical Principles, Activation Procedures, and Characterization Methods. J. Power Sources 2023, 575, 233168. [Google Scholar] [CrossRef]
- Huang, S.; Yuan, Z.; Salla, M.; Wang, X.; Zhang, H.; Huang, S.; Lek, D.G.; Li, X.; Wang, Q. A Redox-Mediated Zinc Electrode for Ultra-Robust Deep-Cycle Redox Flow Batteries. Energy Environ. Sci. 2023, 16, 438–445. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, Y.; Hao, Z.; Lu, Y.; Zhao, Q.; Zhang, K.; Chen, J. Organic Electroactive Materials for Aqueous Redox Flow Batteries. Adv. Mater. 2023, 35, 230189. [Google Scholar] [CrossRef] [PubMed]
- Bonizzoni, S.; Stucchi, D.; Caielli, T.; Sediva, E.; Mauri, M.; Mustarelli, P. Morpholinium-Modified, Polyketone-Based Anion Exchange Membranes for Water Electrolysis. ChemElectroChem 2023, 10, e202201077. [Google Scholar] [CrossRef]
- Chand, K.; Paladino, O. Recent Developments of Membranes and Electrocatalysts for the Hydrogen Production by Anion Exchange Membrane Water Electrolysers: A Review. Arab. J. Chem. 2023, 16, 104451. [Google Scholar] [CrossRef]
- Niyati, A.; Moranda, A.; Basbus, J.F.; Paladino, O. Unlocking the Potential of NiCo2O4 Nanocomposites: Morphology Modification Based on Urea Concentration and Hydrothermal and Calcination Temperature. New J. Chem. 2024, 48, 11035–11043. [Google Scholar] [CrossRef]
- Niyati, A.; Moranda, A.; Navarra, F.; Riva, A.; Campione, M.; Schiappelli, G.; Paladino, O. Design of the Experiments for the Selection of Potential Electrocatalysts for Both AEM Electrolyzers and Redox Flow Batteries. E3S Web Conf. 2023, 414, 01002. [Google Scholar] [CrossRef]
- Wan, L.; Liu, J.; Lin, D.; Xu, Z.; Zhen, Y.; Pang, M.; Xu, Q.; Wang, B. 3D-Ordered Catalytic Nanoarrays Interlocked on Anion Exchange Membranes for Water Electrolysis. Energy Environ. Sci. 2024, 17, 3396–3408. [Google Scholar] [CrossRef]
- Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Adv. Mater. 2019, 31, 1804799. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, B.; Zhang, H.; Wang, Y.; Wang, H.; Tang, J.; Zou, C. Influence of Power Fluctuation on Ni-Based Electrode Degradation and Hydrogen Evolution Reaction Performance in Alkaline Water Splitting: Probing the Effect of Renewable Energy on Water Electrolysis. Catalysts 2024, 14, 307. [Google Scholar] [CrossRef]
- Guo, B.; Ding, Y.; Huo, H.; Wen, X.; Ren, X.; Xu, P.; Li, S. Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis. Nano-Micro Lett. 2023, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Moysiadou, A.; Hu, X. Stability Profiles of Transition Metal Oxides in the Oxygen Evolution Reaction in Alkaline Medium. J. Mater. Chem. A 2019, 7, 25865–25877. [Google Scholar] [CrossRef]
- Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759. [Google Scholar] [CrossRef] [PubMed]
- Osgood, H.; Devaguptapu, S.V.; Xu, H.; Cho, J.; Wu, G. Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media. Nano Today 2016, 11, 601–625. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Transition Metal Oxides with Perovskite and Spinel Structures for Electrochemical Energy Production Applications. Environ. Res. 2022, 214, 113731. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-M.; Cui, X.; Dastafkan, K.; Wang, H.-F.; Tang, C.; Zhao, C.; Chen, A.; He, C.; Han, M.; Zhang, Q. Recent Advances in Spinel-Type Electrocatalysts for Bifunctional Oxygen Reduction and Oxygen Evolution Reactions. J. Energy Chem. 2021, 53, 290–302. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, L.; Xu, X.; Al-Ghamdi, A.A.; Fang, X. Nickel Cobaltite Nanostructures for Photoelectric and Catalytic Applications. Small 2015, 11, 4267–4283. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Electrical Transport Properties of Large, Individual NiCo2O4 Nanoplates. Adv. Funct. Mater. 2012, 22, 998–1004. [Google Scholar] [CrossRef]
- Sudarsono, W.; Tan, S.Y.; Wong, W.Y.; Omar, F.S.; Ramya, K.; Mehmood, S.; Numan, A.; Walvekar, R.; Khalid, M. From Catalyst Structure Design to Electrode Fabrication of Platinum-Free Electrocatalysts in Proton Exchange Membrane Fuel Cells: A Review. J. Ind. Eng. Chem. 2023, 122, 1–26. [Google Scholar] [CrossRef]
- Chatterjee, M.; Saha, S.; Das, S.; Pradhan, S.K. Advanced Asymmetric Supercapacitor with NiCo2O4 Nanoparticles and Nanowires Electrodes: A Comparative Morphological Hierarchy. J. Alloys Compd. 2020, 821, 153503. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma Ghrera, A.; Devi, A. Hierarchical Grass-like NiCo2O4 Nanowires Grown on Nickel Foam as a Binder-Free Supercapacitor Electrode. Mater. Today Proc. 2023, 74, 281–288. [Google Scholar] [CrossRef]
- Packiaraj, R.; Devendran, P.; Venkatesh, K.S.; Mahendraprabhu, K.; Nallamuthu, N. Unveiling the Structural, Charge Density Distribution and Supercapacitor Performance of NiCo2O4 Nano Flowers for Asymmetric Device Fabrication. J. Energy Storage 2021, 34, 102029. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Chen, H.; Wang, K.; Chen, J.; Wang, Y.; Song, S. In Situ Growth of 2D Ultrathin NiCo2O4 Nanosheet Arrays on Ni Foam for High Performance and Flexible Solid-State Supercapacitors. Small 2020, 16, e2004188. [Google Scholar] [CrossRef]
- Yang, G.; Park, S.J. Facile Hydrothermal Synthesis of NiCo2O4-Decorated Filter Carbon as Electrodes for High Performance Asymmetric Supercapacitors. Electrochimica Acta 2018, 285, 405–414. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Xu, Q.Z.; Wang, J.Y.; Li, N.; Guo, S.H.; Su, Y.Z.; Wang, H.J.; Zhang, J.H.; Chen, S. Facile Hydrothermal Synthesis of Urchin-like NiCo2O4 Spheres as Efficient Electrocatalysts for Oxygen Reduction Reaction. Int. J. Hydrog. Energy 2013, 38, 6657–6662. [Google Scholar] [CrossRef]
- Wu, Z.; Pu, X.; Zhu, Y.; Jing, M.; Chen, Q.; Jia, X.; Ji, X. Uniform Porous Spinel NiCo2O4 with Enhanced Electrochemical Performances. J. Alloys Compd. 2015, 632, 208–217. [Google Scholar] [CrossRef]
- Yadav, D.; Singh, P.; Prasad, R. Advanced Thermally Stable, Self-Sustaining NiCo2O4 Catalyst for CNG Emissions in Lean Burn Environment. Int. J. Hydrog. Energy 2019, 44, 29057–29065. [Google Scholar] [CrossRef]
- Kaur, M.; Chand, P.; Anand, H. Binder Free Electrodeposition Fabrication of NiCo2O4 Electrode with Improved Electrochemical Behavior for Supercapacitor Application. J. Energy Storage 2022, 52, 104941. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Lipkin, M.S.; Shchegolkov, A.V.; Korbova, E.V.; Lipkina, T.V.; Lipkin, V.M. On the Mechanism of Formation of Electrochromic WO3 Films on the Surface of Sn, Ti, ITO Electrodes in the Process of Cathodic Electrodeposition. Inorg. Mater. Appl. Res. 2022, 13, 1605–1614. [Google Scholar] [CrossRef]
- Kaur, M.; Chand, P.; Anand, H. Facile Synthesis of NiCo2O4 Nanostructure with Enhanced Electrochemical Performance for Supercapacitor Application. Chem. Phys. Lett. 2022, 786, 139181. [Google Scholar] [CrossRef]
- Yan, S.X.; Luo, S.H.; Sun, M.Z.; Wang, Q.; Zhang, Y.H.; Liu, X. Facile Hydrothermal Synthesis of Urchin-like NiCo2O4 as Advanced Electrochemical Pseudocapacitor Materials. Int. J. Energy Res. 2021, 45, 20186–20198. [Google Scholar] [CrossRef]
- Lei, Y.; Li, J.; Wang, Y.; Gu, L.; Chang, Y.; Yuan, H.; Xiao, D. Rapid Microwave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo2O4 Microsphere for High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Niyati, A.; Haghighi, M.; Shabani, M. Solar-Assisted Photocatalytic Elimination of Azo Dye Effluent Using Plasmonic AgCl Anchored Flower-like Bi4O5I2 as Staggered Nano-Sized Photocatalyst Designed via Sono-Precipitation Method. J. Taiwan Inst. Chem. Eng. 2020, 115, 144–159. [Google Scholar] [CrossRef]
- Anantharaj, S.; Sagayaraj, P.J.J.; Yesupatham, M.S.; Arulraj, R.; Eswaran, K.; Sekar, K.; Noda, S. The Reference Electrode Dilemma in Energy Conversion Electrocatalysis: “Right vs. Okay vs. Wrong”. J. Mater. Chem. A 2023, 11, 17699–17709. [Google Scholar] [CrossRef]
- Kawashima, K.; Márquez, R.A.; Son, Y.J.; Guo, C.; Vaidyula, R.R.; Smith, L.A.; Chukwuneke, C.E.; Mullins, C.B. Accurate Potentials of Hg/HgO Electrodes: Practical Parameters for Reporting Alkaline Water Electrolysis Overpotentials. ACS Catal. 2023, 13, 1893–1898. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Yang, J.; Zhao, Q.; Yang, L.; Tang, H.; Liu, C.; Chen, H.; Lin, Y.; Pan, F. Temperature Effect on Co-Based Catalysts in Oxygen Evolution Reaction. Inorg. Chem. 2018, 57, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niyati, A.; Moranda, A.; Beigzadeh Arough, P.; Navarra, F.M.; Paladino, O. Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH. Energies 2024, 17, 3703. https://doi.org/10.3390/en17153703
Niyati A, Moranda A, Beigzadeh Arough P, Navarra FM, Paladino O. Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH. Energies. 2024; 17(15):3703. https://doi.org/10.3390/en17153703
Chicago/Turabian StyleNiyati, Ataollah, Arianna Moranda, Pouya Beigzadeh Arough, Federico Maria Navarra, and Ombretta Paladino. 2024. "Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH" Energies 17, no. 15: 3703. https://doi.org/10.3390/en17153703
APA StyleNiyati, A., Moranda, A., Beigzadeh Arough, P., Navarra, F. M., & Paladino, O. (2024). Electrochemical Performance of a Hybrid NiCo2O4@NiFelt Electrode at Different Operating Temperatures and Electrolyte pH. Energies, 17(15), 3703. https://doi.org/10.3390/en17153703