Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Solvents
2.2. HSPiP Software Method
2.2.1. Experimental Principle of the HSPiP Method
2.2.2. HSPiP Experiment
2.3. Inverse Gas Chromatography (IGC) Method
2.3.1. Experimental Principle of the IGC Method
2.3.2. IGC Experiment
2.4. Group Contribution (GC) Method
3. Results and Discussion
3.1. HSPiP Method
3.2. IGC Method
3.3. GC Method
3.3.1. Hoftyzer–Van Krevelen Group Contribution Method
3.3.2. Stefanis–Panayiotou Group Contribution Method
3.4. Comparison and Discussion of the HSPs of Nafion Obtained by Different Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mancino, A.N.; Menale, C.; Vellucci, F.; Pasquali, M.; Bubbico, R. PEM Fuel Cell Applications in Road Transport. Energies 2023, 16, 6129. [Google Scholar] [CrossRef]
- Gupta, P.; Toksha, B.; Rahaman, M. A Critical Review on Hydrogen-Based Fuel Cell Technology and Applications. Chem. Rec. 2024, 24, e202300295. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yang, M.; Ke, C.; Wei, G.; Priest, C.; Qiao, Z.; Wu, G.; Zhang, J. Platinum-Group-Metal Catalysts for Proton Exchange Membrane Fuel Cells: From Catalyst Design to Electrode Structure Optimization. EnergyChem 2020, 2, 100023. [Google Scholar] [CrossRef]
- Takahashi, S.; Shimanuki, J.; Mashio, T.; Ohma, A.; Tohma, H.; Ishihara, A.; Ito, Y.; Nishino, Y.; Miyazawa, A. Observation of Ionomer in Catalyst Ink of Polymer Electrolyte Fuel Cell Using Cryogenic Transmission Electron Microscopy. J. Electrochem. Soc. 2017, 224, 178–185. [Google Scholar] [CrossRef]
- Iida, K.; Sasabe, T.; Sakai, K.; Uemura, S.; Shinohara, K.; Hirai, S. Effects of Solvent Composition on Viscosity and Dispersion Structure of PEFC Catalyst Ink. J. Appl. Polym. Sci. 2020, 98, 497. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, D.; Tang, H.; Li, B.; Yang, D.; Ming, P.; Zhang, C. Solvent Effects on the Rheology of Fuel Cell Catalyst Ink and the Adsorption of Ionomers on the Particles. Langmuir 2022, 34, 1234–1245. [Google Scholar] [CrossRef]
- So, S.; Oh, K.-H. Effect of Dispersant on Catalyst Ink Properties and Catalyst Layer Structure for High-Performance Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2023, 561, 232664. [Google Scholar] [CrossRef]
- Lin, R.; Lu, J.; Liu, S.; Hua, S.; Cai, X.; Friedrich, A. Revelation of Ink Solvents Influence Mechanism in Catalyst Layer of Proton Exchange Membrane Fuel Cells. Appl. Energy 2024, 655, 159608. [Google Scholar] [CrossRef]
- James, C.D.; Franklin, G.W. Fluorocarbon Vinyl Ether Polymers. U.S. Patent 3,282,875, 1 November 1966. [Google Scholar]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- Hildebrand, J.H. A Critique of the Theory of Solubility of Non-Electrolytes. Chem. Rev. 1949, 44, 37–45. [Google Scholar] [CrossRef]
- Hildebrand, J.H. Order from Chaos: The Theory of Regular Solutions. Science 1965, 150, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Yeo, R.S. Dual Cohesive Energy Densities of Perfluorosulphonic Acid (Nafion) Membrane. Polymer 1980, 21, 432–435. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, H.; Li, J.; Zeng, Y.; Chen, L.; Pan, M. Insight into the Structural Construction of a Perfluorosulfonic Acid Membrane Derived from a Polymeric Dispersion. J. Membr. Sci. 2014, 256, 383–393. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yu, T.L.; Lin, H.-L. Influence of the Composition of Isopropyl Alcohol/Water Mixture Solvents in Catalyst Ink Solutions on Proton Exchange Membrane Fuel Cell Performance. J. Power Sources 2013, 225, 293–303. [Google Scholar] [CrossRef]
- Idros, M.N.; Wu, Y.; Duignan, T.; Li, M.; Cartmill, H.; Maglaya, I.; Burdyny, T.; Wang, G.; Rufford, T.E. Effect of Dispersing Solvents for an Ionomer on the Performance of Copper Catalyst Layers for CO2 Electrolysis to Multicarbon Products. ACS Appl. Mater. Interfaces 2023, 15, 52461–52472. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 4–9. [Google Scholar]
- Enekvist, M.; Liang, X.; Zhang, X.; Dam-Johansen, K.; Kontogeorgis, G.M. Estimating Hansen Solubility Parameters of Organic Pigments by Group Contribution Methods. Dyes Pigm. 2021, 31, 186–197. [Google Scholar] [CrossRef]
- Nakano, H.; Nakamura, D. Synthesis of Si–Ge Nanosheets and Their Dispersion of Organic Solvents with Focus on the Hansen Solubility Parameters. ACS Omega 2022, 7, 18834–18839. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Yalikun, N.; Liu, S.; Li, J.; Liu, B. Solubility Parameters Measurements of 1-Propyl-3-Methyl-Imidazolium-Based Ionic Liquids via Inverse Gas Chromatography and Hansen Solubility Parameter in Practice. J. Chem. Eng. Data 2021, 50, 1285–1299. [Google Scholar] [CrossRef]
- Fardi, T.; Stefanis, E.; Panayiotou, C.; Abbott, S.; van Loon, S. Artwork Conservation Materials and Hansen Solubility Parameters: A Novel Methodology Towards Critical Solvent Selection. Int. J. Conserv. Sci. 2014, 15, 583–594. [Google Scholar] [CrossRef]
- Novaes, F.J.M.; De Faria, D.C.; Ferraz, F.Z.; Neto, F.R.d.A. Hansen Solubility Parameters Applied to the Extraction of Phytochemicals. Plants 2023, 12, 3008. [Google Scholar] [CrossRef]
- Agata, Y.; Yamamoto, H. Determination of Hansen Solubility Parameters of Ionic Liquids Using Double-Sphere Type of Hansen Solubility Sphere Method. Chem. Phys. 2018, 513, 165–173. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Q.; Ma, K. Solubility Parameter of Ionic Liquids: A Comparative Study of Inverse Gas Chromatography and Hansen Solubility Sphere. ACS Sustain. Chem. Eng. 2019, 7, 10544–10551. [Google Scholar] [CrossRef]
- Ramanaiah, S.; Reddy, A.S.; Reddy, K. Hansen Solubility Parameters of Cellulose Acetate Butyrate-Poly(Caprolactone) Diol Blend by Inverse Gas Chromatography. Polym. Bull. 2013, 70, 1303–1312. [Google Scholar] [CrossRef]
- Ni, H.; Ren, S.; Fang, G.; Ma, Y. Determination of Alkali Lignin Solubility Parameters by Inverse Gas Chromatography and Hansen Solubility Parameters. BioResources 2016, 11, 4353–4368. [Google Scholar] [CrossRef]
- Arnett, N.Y.; Singh, S.K.D.; Moxey, D.A.; Mason, S.K.; Sweat, R.; Plunket, E.; Moore, R. Solvent Induced Effect on Morphology and Properties of Disulfonated Polyarylene Ether Sulfone Block Copolymer Membranes for PEMFC Applications. Polymer 2023, 267, 125626. [Google Scholar] [CrossRef]
- Zhou, Z.; Fang, L.; Cao, Y.; Wang, W.; Wang, J.; Yang, Y.; Liu, Y. Determination of Hansen Solubility Parameters of Halloysite Nanotubes and Prediction of Its Compatibility with Polyethylene Oxide. Appl. Clay Sci. 2020, 601, 125031. [Google Scholar] [CrossRef]
- Kato, Y.; Osawa, T.; Yoshihara, M.; Fujii, H.; Tsutsumi, S.; Yamamoto, H. Evaluation of the Antifoaming Effect Using Hansen Solubility Parameters. ACS Omega 2020, 5, 5684–5690. [Google Scholar] [CrossRef]
- Abbott, S.; Hansen, C.M. Hansen Solubility Parameters in Practice; Hansen-Solubility: London, UK, 2008; pp. 20–28. [Google Scholar]
- Duaij, O.K.; Alghamdi, A.; Al-Saigh, Z.Y. Solubility and Surface Thermodynamics of Conducting Polymers by Inverse Gas Chromatography. III: Polypyrrole Chloride. J. Chromatogr. A 2013, 1291, 137–145. [Google Scholar] [CrossRef]
- Barton, A.F. Solubility Parameters. Chem. Rev. 1975, 75, 731–753. [Google Scholar] [CrossRef]
- Abbott, S. IGC Science: Principles and Practice; Adscientis: Paris, France, 2018; pp. 44–49. [Google Scholar]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 2009; pp. 213–216. [Google Scholar]
- Hoy, K.L. The Hoy Tables of Solubility Parameters; Union Carbide Corporation: New York, NY, USA, 1985. [Google Scholar]
- Stefanis, E.; Panayiotou, C. Prediction of Hansen Solubility Parameters with a New Group-Contribution Method. Int. J. Thermophys. 2008, 29, 568–585. [Google Scholar] [CrossRef]
- Stefanis, E.; Panayiotou, C. A New Expanded Solubility Parameter Approach. Int. J. Pharm. 2012, 426, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.G.; Wang, J.; Zhang, S.H.; Yang, D.L. Solubility parameters of heterocyclic poly(aryl ether sulfone) and its sulfonated derivatives. J. Dalian Univ. Technol. 2009, 3, 322–326. (In Chinese) [Google Scholar]
- Hiroyuki, S. Method for Selecting Solvent for Use in Catalyst Ink for Fuel Cell Electrode. JP Patent 2017033952A, 6 September 2018. [Google Scholar]
- Welch, C.; Labouriau, A.; Hjelm, R.; Mack, N.; Kim, Y.S. Solvation and Gelation Process of Nafion. In Proceedings of the 224th Electrochemical Society Meeting, San Francisco, CA, USA, 27 October–1 November 2013; p. 1023. [Google Scholar]
- Wang, D.; Cornelius, C.J. Modeling Ionomer Swelling Dynamics of a Sulfonated Polyphenylene, Pentablock Copolymers, and Nafion. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 435–443. [Google Scholar] [CrossRef]
- Ma, C.-H.; Yu, T.L.; Lin, H.-L.; Huang, Y.-T.; Chen, Y.-L.; Jeng, U.-S.; Lai, Y.-H.; Sun, Y.-S. Morphology and Properties of Nafion Membranes Prepared by Solution Casting. Polymer 2009, 50, 1764–1777. [Google Scholar] [CrossRef]
Solvent | δd (MPa1/2) | δp (MPa1/2) | δh (MPa1/2) | Solubility Test | RED | V |
---|---|---|---|---|---|---|
Formic Acid | 14.6 | 11.9 | 16.6 | 1 | 0.176 | 37.9 |
Diacetone Alcohol | 15.8 | 8.2 | 10.8 | 1 | 0.365 | 124.3 |
Propylene Glycol Monomethyl Ether | 15.6 | 6.3 | 11.6 | 1 | 0.595 | 98.2 |
Ethanol | 15.8 | 8.8 | 19.4 | 1 | 0.603 | 58.6 |
Ethylene Glycol Monoethyl Ether | 15.9 | 7.2 | 14 | 1 | 0.661 | 97.5 |
1-Hexanol | 15.9 | 5.8 | 12.5 | 1 | 0.683 | 124.9 |
1-Propanol | 16 | 6.8 | 17.4 | 1 | 0.693 | 75.1 |
Cyclohexanone | 17.8 | 6.3 | 5.1 | 1 | 0.718 | 104.2 |
2-Propanol | 15.8 | 6.1 | 16.4 | 1 | 0.744 | 76.9 |
Methanol | 15.1 | 12.3 | 22.3 | 1 | 0.824 | 40.6 |
Dimethyl Sulfoxide | 18.4 | 16.4 | 10.2 | 1 | 0.828 | 71.3 |
1-Pentanol | 15.9 | 4.5 | 13.9 | 1 | 0.896 | 108.6 |
Cyclohexanol | 17.4 | 4.1 | 13.5 | 1 | 0.927 | 106 |
n-Methyl-2-Pyrrolidone | 18 | 12.3 | 7.2 | 2 | 0.464 | 96.6 |
Dimethyl Formamide | 17.4 | 13.7 | 11.3 | 2 | 0.513 | 77.4 |
Tetrahydrofuran | 16.8 | 5.7 | 8 | 2 | 0.562 | 81.7 |
Propylene Glycol Monomethyl Ether Acetate | 15.6 | 5.6 | 9.8 | 2 | 0.593 | 137.1 |
Acetic Acid | 14.5 | 8 | 13.5 | 2 | 0.602 | 57.1 |
Ethyl Acetate | 15.8 | 5.3 | 7.2 | 2 | 0.634 | 98.5 |
Dibasic Esters | 16.2 | 4.7 | 8.4 | 2 | 0.662 | 159 |
Methylene Dichloride | 18.2 | 6.3 | 6.1 | 2 | 0.706 | 63.9 |
Pyridine | 19 | 8.8 | 5.9 | 2 | 0.712 | 80.9 |
Diethylene Glycol | 16.6 | 12 | 20.7 | 2 | 0.714 | 95.3 |
Ethylene Glycol Monobutyl Ether | 16 | 5.1 | 12.3 | 2 | 0.731 | 131.6 |
Methyl Isobutyl Ketone | 15.3 | 6.1 | 4.1 | 2 | 0.777 | 125.8 |
1,3-Butanediol | 16.6 | 10 | 21.5 | 2 | 0.834 | 90 |
m-Cresol | 18 | 5.1 | 12.9 | 2 | 0.85 | 104.7 |
Benzyl Alcohol | 18.4 | 6.3 | 13.7 | 2 | 0.86 | 103.8 |
t-Butyl Alcohol | 15.2 | 5.1 | 14.7 | 2 | 0.869 | 95.8 |
2-Phenoxy Ethanol | 17.8 | 5.7 | 14.3 | 2 | 0.885 | 124.7 |
2-Ethyl-Hexanol | 15.9 | 3.3 | 11.8 | 2 | 0.889 | 156.6 |
1-Phenyl-1-Butanone | 18 | 5.6 | 3.6 | 2 | 0.897 | 152.2 |
Acetonitrile | 15.3 | 18 | 6.1 | 2 | 0.943 | 52.6 |
Ethanolamine | 17 | 15.5 | 21.2 | 2 | 0.959 | 59.8 |
Acetophenone | 19.6 | 8.6 | 3.7 | 2 | 0.964 | 117.4 |
Phenetole | 18.4 | 4.5 | 4 | 2 | 0.992 | 127.2 |
Propylene Glycol | 16.8 | 9.4 | 23.3 | 3 | 1.079 | 73.7 |
1,4-Dioxane | 19 | 1.8 | 7.4 | 3 | 1.167 | 85.7 |
Ethylene Glycol | 17 | 11 | 26 | 3 | 1.383 | 55.9 |
Propylene Carbonate | 20 | 18 | 4.1 | 4 | 1.305 | 85 |
Trichloroethylene | 18 | 3.1 | 5.3 | 5 | 1.004 | 90.1 |
Chlorobenzene | 19 | 4.3 | 2 | 5 | 1.209 | 102.1 |
o-Xylene | 17.8 | 1 | 3.1 | 5 | 1.304 | 121.1 |
Carbon Tetrachloride | 17.8 | 0 | 0.6 | 5 | 1.553 | 97.1 |
Heptane | 15.3 | 0 | 0 | 5 | 1.582 | 147 |
Water | 18.1 | 17.1 | 16.9 | 6 | 1.033 | 18 |
Cyclohexane | 16.8 | 0 | 0.2 | 6 | 1.551 | 108.7 |
Hexane | 14.9 | 0 | 0 | 6 | 1.598 | 131.4 |
Pentane | 14.5 | 0 | 0 | 6 | 1.62 | 116 |
Formamide | 17.2 | 26.2 | 19 | 6 | 1.984 | 39.9 |
Probe Solvent | V1/(cm3/mol) | δ1/(J/cm3)1/2 | ||
---|---|---|---|---|
Acetone | 73.8 | 19.7 | 15,059.04 | −5.75 |
Acetonitrile | 52.9 | 24.3 | 2782.91 | −2.98 |
Diethyl Ether | 104.7 | 15.1 | 17,398.04 | −6.80 |
Ethanol | 58.6 | 26.1 | 30,232.27 | −5.52 |
Methyl Acetate | 79.8 | 17.8 | 2491.31 | −4.00 |
2-Propanol | 76.9 | 23.5 | 2455.59 | −2.46 |
Pyridine | 80.9 | 21.9 | 58,667.74 | −5.27 |
Toluene | 106.6 | 18.2 | 2.98 | 4.19 |
o-Xylene | 121.1 | 18 | 6.71 | 4.43 |
Group | Number | Fdi (J/cm3)1/2mol−1 | Fpi (J/cm3)1/2mol−1 | Ehi J/mol | Vi cm3/mol |
---|---|---|---|---|---|
>C< | 9 | −70 | 0 | 0 | 3.56 |
-O- | 2 | 100 | 400 | 3000 | 10 |
-F- | 17 | 220 | 0 | 0 | 11.2 |
-SO2- | 1 | 590 | 1460 | 11,300 | 32.5 |
-OH | 1 | 210 | 500 | 20,000 | 9.7 |
Total | 30 | 4110 | 2,701,600 | 37,300 | 284.64 |
Group | Number | δd | δp | δh |
---|---|---|---|---|
>SO2 | 1 | 182.83 | 11.0254 | −0.3602 |
>O | 2 | 18.09 | 3.5248 | 0.0883 |
>CF- | 2 | 20.32 | - | - |
-CF2- | 6 | −103.83 | - | - |
-CF3 | 1 | −13.79 | −1.9735 | −1.2997 |
-OH | 1 | −29.97 | 1.0587 | 7.3609 |
Method | δd | δp | δh | Source | |
---|---|---|---|---|---|
HSPiP software | Hydrophilic side chains | 15.2 | 10.7 | 15.9 | This paper |
Hydrophobic backbone | 16.4 | 10.5 | 8.9 | ||
IGC | 14.2 | 8.7 | 9.3 | ||
Group contribution | Hoftyzer–Van Krevelen | 14.4 | 5.8 | 11.4 | |
Stefanis–Panayiotou | 13.5 | 24.6 | 13.6 | ||
Nafion Dispersion, Hiroyuki [39] | Hydrophilic side chains | 15.2 | 11.9 | 15.9 | Other studies |
Hydrophobic backbone | 17.7 | 11.4 | 8.5 | ||
Nafion N115, Welch [40] | 17.4 | 12.5 | 9.6 | ||
Nafion N117, Wang [41] | 15.1 | 8.9 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, C.; Li, S.; Wu, Q.; Li, M.; Tian, S.; Tang, H.; Pan, M. Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers. Polymers 2025, 17, 840. https://doi.org/10.3390/polym17070840
Meng C, Li S, Wu Q, Li M, Tian S, Tang H, Pan M. Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers. Polymers. 2025; 17(7):840. https://doi.org/10.3390/polym17070840
Chicago/Turabian StyleMeng, Chao, Shang Li, Qianyun Wu, Mengyu Li, Shenao Tian, Haolin Tang, and Mu Pan. 2025. "Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers" Polymers 17, no. 7: 840. https://doi.org/10.3390/polym17070840
APA StyleMeng, C., Li, S., Wu, Q., Li, M., Tian, S., Tang, H., & Pan, M. (2025). Study on the Calculation Method of Hansen Solubility Parameters of Fuel Cell Ionomers. Polymers, 17(7), 840. https://doi.org/10.3390/polym17070840