Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = cascaded metasurfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 127269 KiB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 668
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

25 pages, 5863 KiB  
Article
A Reconfigurable 1x2 Photonic Digital Switch Controlled by an Externally Induced Metasurface
by Alessandro Fantoni and Paolo Di Giamberardino
Photonics 2025, 12(3), 263; https://doi.org/10.3390/photonics12030263 - 13 Mar 2025
Viewed by 723
Abstract
This work reports the design of a 1x2 photonic digital switch controlled by an electrically induced metasurface, configurated by a rectangular array of points where the refractive index is locally changed through the application of an external bias. The device is simulated using [...] Read more.
This work reports the design of a 1x2 photonic digital switch controlled by an electrically induced metasurface, configurated by a rectangular array of points where the refractive index is locally changed through the application of an external bias. The device is simulated using the Beam Propagation Method (BPM) and Finite Difference Time Domain (FDTD) algorithms and the structure under evaluation is an amorphous silicon 1x2 multimode interference (MMI), joined to an arrayed Metal Oxide Semiconductor (MOS) structure Al/SiNx/a-Si:H/ITO to be used in active-matrix pixel fashion to control the output of the switch. MMI couplers, based on self-imaging multimode waveguides, are very compact integrated optical components that can perform many different splitting and recombining functions. The input–output model has been defined using a machine learning approach; a high number of images have been generated through simulations, based on the beam propagation algorithm, obtaining a large dataset for an MMI structure under different activation maps of the MOS pixels. This dataset has been used for training and testing of a machine learning algorithm for the classification of the MMI configuration in terms of binary digital output for a 1x2 switch. Also, a statistical analysis has been produced, targeting the definition of the most incident-activated pixel for each switch operation. An optimal configuration is proposed and applied to demonstrate the operation of a digital cascaded switch. This proof of concept paves the way to a more complex device class, supporting the recent advances in programmable photonic integrated circuits. Full article
(This article belongs to the Special Issue New Perspectives in Semiconductor Optics)
Show Figures

Figure 1

12 pages, 6992 KiB  
Article
High-Efficiency Long-Wave Infrared Quantum Well Photodetector Based on Cascaded Dielectric Metasurfaces with Almost 100% Absorption
by Zihui Ge, Bo Cheng, Kunpeng Zhai and Guofeng Song
Crystals 2024, 14(12), 1088; https://doi.org/10.3390/cryst14121088 - 18 Dec 2024
Viewed by 1265
Abstract
Quantum well infrared photodetectors (QWIPs) are popular due to their following advantages: low cost, maturity of manufacturing, high uniformity, ease of wavelength adjustment, resistance to heat, and resistance to ionizing radiation. However, their low absorption efficiency due to their unique anisotropic absorption properties [...] Read more.
Quantum well infrared photodetectors (QWIPs) are popular due to their following advantages: low cost, maturity of manufacturing, high uniformity, ease of wavelength adjustment, resistance to heat, and resistance to ionizing radiation. However, their low absorption efficiency due to their unique anisotropic absorption properties and ohmic loss of the metal grating severely limit their further adoption. We cleverly used cascaded dielectric metasurfaces to replace the traditional single-layer metal grating, which increased the absorption efficiency to near the upper limit of 100%. By analyzing the near-field profile of the electric field of the miniaturized device, we found that the upper grating, QWIP, and lower grating formed a high-efficiency FP cavity with a strong photon localization capability, allowing the microdevice to effectively achieve 99.3% absorption. In addition, QWIPs with cascade gratings can be incorporated into a polarimeter, allowing for the comprehensive detection of linear polarization information at a wavelength of 14 μm through rational rotations. Our proposed double-layer grating coupling method can be considered a technology that can effectively address the low-absorption problem associated with QWIPs. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

21 pages, 4915 KiB  
Review
A Review of Cascaded Metasurfaces for Advanced Integrated Devices
by Lingyun Zhang, Zeyu Zhao, Leying Tao, Yixiao Wang, Chi Zhang, Jianing Yang, Yongqiang Jiang, Huiqi Duan, Xiaoguang Zhao, Shaolong Chen and Zilun Wang
Micromachines 2024, 15(12), 1482; https://doi.org/10.3390/mi15121482 - 10 Dec 2024
Cited by 2 | Viewed by 2488
Abstract
This paper reviews the field of cascaded metasurfaces, which are advanced optical devices formed by stacking or serially arranging multiple metasurface layers. These structures leverage near-field and far-field electromagnetic (EM) coupling mechanisms to enhance functionalities beyond single-layer metasurfaces. This review comprehensively discusses the [...] Read more.
This paper reviews the field of cascaded metasurfaces, which are advanced optical devices formed by stacking or serially arranging multiple metasurface layers. These structures leverage near-field and far-field electromagnetic (EM) coupling mechanisms to enhance functionalities beyond single-layer metasurfaces. This review comprehensively discusses the physical principles, design methodologies, and applications of cascaded metasurfaces, focusing on both static and dynamic configurations. Near-field-coupled structures create new resonant modes through strong EM interactions, allowing for efficient control of light properties like phase, polarization, and wave propagation. Far-field coupling, achieved through greater interlayer spacing, enables traditional optical methods for design, expanding applications to aberration correction, spectrometers, and retroreflectors. Dynamic configurations include tunable devices that adjust their optical characteristics through mechanical motion, making them valuable for applications in beam steering, varifocal lenses, and holography. This paper concludes with insights into the potential of cascaded metasurfaces to create multifunctional, compact optical systems, setting the stage for future innovations in miniaturized and integrated optical devices. Full article
(This article belongs to the Special Issue Terahertz and Infrared Metamaterial Devices, 3nd Edition)
Show Figures

Figure 1

13 pages, 7666 KiB  
Article
Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection
by Huanran Qiu, Liang Fang, Rui Xi, Yajie Mu, Jiaqi Han, Qiang Feng, Ying Li, Long Li and Bin Zheng
Materials 2024, 17(23), 5688; https://doi.org/10.3390/ma17235688 - 21 Nov 2024
Viewed by 1224
Abstract
Metasurfaces have shown great potential in achieving low-cost and low-complexity signal enhancement and redirection. Due to the low transmission power and high attenuation issues of current high-frequency communication technology, it is necessary to explore signal redirection technology based on metasurfaces. This paper presents [...] Read more.
Metasurfaces have shown great potential in achieving low-cost and low-complexity signal enhancement and redirection. Due to the low transmission power and high attenuation issues of current high-frequency communication technology, it is necessary to explore signal redirection technology based on metasurfaces. This paper presents an innovative metasurface for indoor signal enhancement and redirection, featuring thin thickness, high gain, and wide-angle deflection. The metasurface integrates the design principles of a Fabry–Perot cavity (FPC) theory with a Phase Gradient Partially Reflective Metasurface (PGPRM). Its unit is a fishnet structure with a substrate only 1/33 λ thin. Based on the precise phase control of the dual-layer PGPRM (with an inter-layer distance of 8 mm), the proposed metasurface can obtain phase coverage as small as 78° while achieving high-gain beam deflection as large as 47°. Simulation results show that within the band 8.6–9.2 GHz (6.7%), a single-layer metasurface can deflect the beam to 29° with a maximum gain of 16.9 dBi. In addition, it is also 360° polarization-insensitive in the xoy plane at 9 GHz with large-angle deflection characteristic retained. Moreover, cascading PGPRM can effectively improve the beam deflection angle. After analysis, the scheme with a double-layer spacing of 8 mm was ultimately selected. Simulation results show a double-layer metasurface can deflect the beam to 47° with a maximum gain of 16.4 dBi. This design provides an efficient and cost-effective solution for large-angle beam deflection with gain enhancement for indoor wireless communication. Full article
(This article belongs to the Special Issue Advances in Metamaterials: Structure, Properties and Applications)
Show Figures

Figure 1

12 pages, 3720 KiB  
Article
Terahertz Meta-Mirror with Scalable Reflective Passband by Decoupling of Cascaded Metasurfaces
by Zhihua Fan, Boyu Li, Shaolin Zhou and Gang Huang
Photonics 2024, 11(9), 796; https://doi.org/10.3390/photonics11090796 - 27 Aug 2024
Cited by 1 | Viewed by 1058
Abstract
Electromagnetic metasurfaces have been playing exotic roles in the construction of ultracompact and versatile metadevices for wave–matter interactions. So far, multiple metasurfaces cascaded with intercouplings have been intensively investigated for extraordinary wavefront control and broadband spectral regulations. However, most cases face high structural [...] Read more.
Electromagnetic metasurfaces have been playing exotic roles in the construction of ultracompact and versatile metadevices for wave–matter interactions. So far, multiple metasurfaces cascaded with intercouplings have been intensively investigated for extraordinary wavefront control and broadband spectral regulations. However, most cases face high structural complexity and little attention is paid to cascaded metasurfaces without interlayer couplings. In this paper, we demonstrate one type of terahertz Bragg mirror with ideally high reflectivity and ultra-broad bandwidth by simply resorting to decoupled metasurfaces. Cascaded metasurfaces with decoupled mode control prove practically straightforward for analytical design and easy to fabricate for engineering purpose in our scheme. Essentially, by flexibly tuning the decoupled metasurface mode, the middle Fabry–Perot mode that behaves like a defect mode inside the reflective passband can be eliminated for substantial band expanding. Fundamental analyses and rigorous calculations are performed to confirm the feasibility of our metasurface-based THz Bragg mirror with scalable bandgap. In comparison, our meta-mirror provides superior spectral performance of a larger bandgap and higher in-band reflectivity over that composed by ten layers of alternate dielectrics (Rogers 3003 and 3005). Finally, our analytical methodology and numerical results provide a promising way for the rapid design and fabrication of a Bragg mirror in the optical regime. Full article
Show Figures

Figure 1

19 pages, 2438 KiB  
Article
Prediction Enhancement of Metasurface Absorber Design Using Adaptive Cascaded Deep Learning (ACDL) Model
by Haitham Al Ajmi, Mohammed M. Bait-Suwailam, Lazhar Khriji and Hassan Al-Lawati
Electronics 2024, 13(5), 822; https://doi.org/10.3390/electronics13050822 - 20 Feb 2024
Cited by 4 | Viewed by 1915
Abstract
This paper presents a customized adaptive cascaded deep learning (ACDL) model for the design and performance prediction of metasurface absorbers. A multi-resonant metasurface absorber structure is introduced, with 10 target-driven design parameters. The proposed deep learning model takes advantage of cascading several sub-deep [...] Read more.
This paper presents a customized adaptive cascaded deep learning (ACDL) model for the design and performance prediction of metasurface absorbers. A multi-resonant metasurface absorber structure is introduced, with 10 target-driven design parameters. The proposed deep learning model takes advantage of cascading several sub-deep neural network (DNN) layers with forward noise mitigation capabilities. The inherent appearance of sparse data is dealt with in this work by proposing a trained data-adaptive selection technique. On the basis of the findings, the prediction response is quite fast and accurate enough to retrieve the design parameters of the studied metasurface absorber with two patches of 4000- and 7000-sample datasets. The training loss taken from the second DNN of our proposed model showed logarithmic mean squared errors of 0.039 and 0.033 when using Keras and the adaptive method, respectively, with a dataset split of 4000. On the contrary, for a dataset split of 7000, the errors were 0.049 with Keras and 0.045 with the adaptive method. On the other hand, the validation loss was evaluated using the mean square error method, which resulted in a loss of 0.044 with the 4000-sample datasets split with the Keras method, while this was 0.020 with the adaptive method. When extending the dataset to 7000 samples, the validation loss with the Keras splitting method was 0.0073, while it was improved, reaching 0.006, with the proposed adaptive method, and achieved a prediction accuracy of 94%. This proposed deep learning model can be deployed in the design process and synthesis of multi-resonant metasurface absorber structures. The proposed model shows the advantages of making the design process more efficient in sparse dataset handling, being an efficient approach in multi-resonance metasurface data pre-processing, being less time consuming, and being computationally valuable. Full article
(This article belongs to the Section Artificial Intelligence Circuits and Systems (AICAS))
Show Figures

Figure 1

13 pages, 3457 KiB  
Article
The Ultra-Large-Bandwidth Cascade Full-Stokes-Imaging Metasurface Based on the Dual-Major-Axis Circular Dichroism Grating
by Bo Cheng and Guofeng Song
Nanomaterials 2023, 13(15), 2211; https://doi.org/10.3390/nano13152211 - 30 Jul 2023
Cited by 1 | Viewed by 1690
Abstract
A dual-major-axis grating composed of two metal–insulator–metal (MIM) waveguides with different dielectric layer thicknesses is numerically proposed to achieve the function of the quarter-wave plate with an extremely large bandwidth (1.0–2.2 μm), whose optical properties can be controlled by the Fabry–Pérot (FP) resonance. [...] Read more.
A dual-major-axis grating composed of two metal–insulator–metal (MIM) waveguides with different dielectric layer thicknesses is numerically proposed to achieve the function of the quarter-wave plate with an extremely large bandwidth (1.0–2.2 μm), whose optical properties can be controlled by the Fabry–Pérot (FP) resonance. For the TE incident mode wave, MIM waveguides with large (small) dielectric layer thicknesses control the guided-mode resonant channels of long (short) waves, respectively, in this miniaturized optical element. Meanwhile, for the TM incident mode wave, the propagation wave vector of this structure is controlled by the hybrid mode of two gap-SPPs (gap-surface plasmon polaritons) with different gap thicknesses. We combine this structure with a thick silver grating to propose a circularly polarizing dichroism device, whose effective bandwidth can reach an astonishing 1.65 μm with a circular polarization extinction ratio greater than 10 dB. The full Stokes pixel based on the six-image element technique can almost accurately measure arbitrary polarization states at 1.2–2.8 μm (including elliptically polarized light), which is the largest bandwidth (1600 nm) of the full Stokes large-image element to date in the near-infrared band. In addition, the average errors of the degree of linear polarizations (Dolp) and degree of circular polarizations (Docp) are less than −25 dB and −10 dB, respectively. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Metamaterials)
Show Figures

Figure 1

18 pages, 7017 KiB  
Article
Intercoupling of Cascaded Metasurfaces for Broadband Spectral Scalability
by Shaolin Zhou, Liang Liu, Qinling Deng, Shaowei Liao, Quan Xue and Mansun Chan
Materials 2023, 16(5), 2013; https://doi.org/10.3390/ma16052013 - 28 Feb 2023
Cited by 4 | Viewed by 2617
Abstract
Electromagnetic metasurfaces have been intensively used as ultra-compact and easy-to-integrate platforms for versatile wave manipulations from optical to terahertz (THz) and millimeter wave (MMW) ranges. In this paper, the less investigated effects of the interlayer coupling of multiple metasurfaces cascaded in parallel are [...] Read more.
Electromagnetic metasurfaces have been intensively used as ultra-compact and easy-to-integrate platforms for versatile wave manipulations from optical to terahertz (THz) and millimeter wave (MMW) ranges. In this paper, the less investigated effects of the interlayer coupling of multiple metasurfaces cascaded in parallel are intensively exploited and leveraged for scalable broadband spectral regulations. The hybridized resonant modes of cascaded metasurfaces with interlayer couplings are well interpreted and simply modeled by the transmission line lumped equivalent circuits, which are used in return to guide the design of the tunable spectral response. In particular, the interlayer gaps and other parameters of double or triple metasurfaces are deliberately leveraged to tune the inter-couplings for as-required spectral properties, i.e., the bandwidth scaling and central frequency shift. As a proof of concept, the scalable broadband transmissive spectra are demonstrated in the millimeter wave (MMW) range by cascading multilayers of metasurfaces sandwiched together in parallel with low-loss dielectrics (Rogers 3003). Finally, both the numerical and experimental results confirm the effectiveness of our cascaded model of multiple metasurfaces for broadband spectral tuning from a narrow band centered at 50 GHz to a broadened range of 40~55 GHz with ideal side steepness, respectively. Full article
Show Figures

Figure 1

26 pages, 10368 KiB  
Review
Recent Advancement in Optical Metasurface: Fundament to Application
by Naqeeb Ullah, Ruizhe Zhao and Lingling Huang
Micromachines 2022, 13(7), 1025; https://doi.org/10.3390/mi13071025 - 28 Jun 2022
Cited by 23 | Viewed by 9332
Abstract
Metasurfaces have gained growing interest in recent years due to their simplicity in manufacturing and lower insertion losses. Meanwhile, they can provide unprecedented control over the spatial distribution of transmitted and reflected optical fields in a compact form. The metasurfaces are a kind [...] Read more.
Metasurfaces have gained growing interest in recent years due to their simplicity in manufacturing and lower insertion losses. Meanwhile, they can provide unprecedented control over the spatial distribution of transmitted and reflected optical fields in a compact form. The metasurfaces are a kind of planar array of resonant subwavelength components that, depending on the intended optical wavefronts to be sculpted, can be strictly periodic or quasi-periodic, or even aperiodic. For instance, gradient metasurfaces, a subtype of metasurfaces, are designed to exhibit spatially changing optical responses, which result in spatially varying amplitudes of scattered fields and the associated polarization of these fields. This paper starts off by presenting concepts of anomalous reflection and refraction, followed by a brief discussion on the Pancharatanm–Berry Phase (PB) and Huygens’ metasurfaces. As an introduction to wavefront manipulation, we next present their key applications. These include planar metalens, cascaded meta-systems, tunable metasurfaces, spectrometer retroreflectors, vortex beams, and holography. The review concludes with a summary, preceded by a perspective outlining our expectations for potential future research work and applications. Full article
(This article belongs to the Special Issue Tunable Nanophotonics and Reconfigurable Metadevices)
Show Figures

Figure 1

21 pages, 2018 KiB  
Article
Fundamentals of Lossless, Reciprocal Bianisotropic Metasurface Design
by Luke Szymanski, Brian O. Raeker, Chun-Wen Lin and Anthony Grbic
Photonics 2021, 8(6), 197; https://doi.org/10.3390/photonics8060197 - 4 Jun 2021
Cited by 10 | Viewed by 4388
Abstract
Lossless, reciprocal bianisotropic metasurfaces have the ability to control the amplitude, phase, and polarization of electromagnetic wavefronts. However, producing the responses that are necessary for achieving this control with physically realizable surfaces is a challenging task. Here, several design approaches for bianisotropic metasurfaces [...] Read more.
Lossless, reciprocal bianisotropic metasurfaces have the ability to control the amplitude, phase, and polarization of electromagnetic wavefronts. However, producing the responses that are necessary for achieving this control with physically realizable surfaces is a challenging task. Here, several design approaches for bianisotropic metasurfaces are reviewed that produce physically realizable metasurfaces using cascaded impedance sheets. In practice, three or four impedance sheets are often used to realize bianisotropic responses, which can result in narrowband designs that require the unit cells to be optimized in order to improve the performance of the metasurface. The notion of a metasurface quality factor is introduced for three-sheet metasurfaces to address these issues in a systematic manner. It is shown that the quality factor can be used to predict the bandwidth of a homogeneous metasurface, and it can also be used to locate problematic unit cells when designing inhomogeneous metasurfaces. Several design examples are provided to demonstrate the utility of the quality factor, including an impedance matching layer with maximal bandwidth and a gradient metasurface for plane wave refraction. In addition to these examples, several metasurfaces for polarization control are also reported, including an isotropic polarization rotator and an asymmetric circular polarizer. Full article
(This article belongs to the Special Issue Advances in Complex Media Electromagnetics)
Show Figures

Figure 1

8 pages, 1699 KiB  
Article
Design of Multifunctional Janus Metasurface Based on Subwavelength Grating
by Ruonan Ji, Chuan Jin, Kun Song, Shao-Wei Wang and Xiaopeng Zhao
Nanomaterials 2021, 11(4), 1034; https://doi.org/10.3390/nano11041034 - 19 Apr 2021
Cited by 19 | Viewed by 3820
Abstract
In this paper, a Janus metasurface is designed by breaking the structural symmetry based on the polarization selection property of subwavelength grating. The structure comprises three layers: a top layer having a metallic nanostructure, a dielectric spacer, and a bottom layer having subwavelength [...] Read more.
In this paper, a Janus metasurface is designed by breaking the structural symmetry based on the polarization selection property of subwavelength grating. The structure comprises three layers: a top layer having a metallic nanostructure, a dielectric spacer, and a bottom layer having subwavelength grating. For a forward incidence, the metal-insulator-metal (MIM) structure operates as a gap plasmonic cavity if the linearly polarized (LP) component is parallel to the grating wires. It also acts as a high-efficiency dual-layer grating polarizer for the orthogonal LP component. For the backward incidence, the high reflectance of the grating blocks the function of the gap plasmonic cavity, leading to its pure functioning as a polarizer. A bifunctional Janus metasurface for 45 degrees beam deflector and polarizer, with a transmission of 0.87 and extinction ratio of 3840, is designed at 1.55 μm and is investigated to prove the validity of the proposed strategy. Moreover, the proposed metasurface can be cascaded to achieve more flexible functions since these functions are independent in terms of operational mechanism and structural parameters. A trifunctional Janus metasurface that acts as a focusing lens, as a reflector, and as a polarizer is designed based on this strategy. The proposed metasurface and the design strategy provide convenience and flexibility in the design of multifunctional, miniaturized, and integrated optical components for polarization-related analysis and for detection systems. Full article
(This article belongs to the Special Issue State-of-the-Art Nanophotonics Materials and Devices in China)
Show Figures

Graphical abstract

16 pages, 1277 KiB  
Article
Designing Metasurfaces with Canonical Unit Cells
by Dominik Barbarić and Zvonimir Šipuš
Crystals 2020, 10(10), 938; https://doi.org/10.3390/cryst10100938 - 15 Oct 2020
Cited by 7 | Viewed by 4564
Abstract
Among different approaches to designing metasurfaces, surface sheet impedance is proving to be a straightforward path for many applications. Recent publications have proposed several methods for optimizing this design approach, enabling rapid metasurface development. Upon finding the requirements using the sheet impedance approach, [...] Read more.
Among different approaches to designing metasurfaces, surface sheet impedance is proving to be a straightforward path for many applications. Recent publications have proposed several methods for optimizing this design approach, enabling rapid metasurface development. Upon finding the requirements using the sheet impedance approach, design continues with the selection of unit cell geometry. This choice is usually based on approximate expressions that have been published throughout the years. We review the approximate expressions for metasurface unit cell design, with consideration of their applicability to certain applications, namely polarization-dependent beam-shaping metasurfaces. We evaluate the accuracy of the approximate expressions against simulation results from a full-wave electromagnetic solver, and propose an optimization approach to correct the proposed design for the observed error. The applicability of different unit cell types is discussed, especially considering the limitations of technological processes typically used in metasurface production. A prototype was developed to verify the validity of this design approach. Full article
(This article belongs to the Special Issue Polarization-Handling Metasurfaces)
Show Figures

Figure 1

12 pages, 3919 KiB  
Article
Cascaded Nanorod Arrays for Ultrabroadband, Omnidirectional and Polarization-Insensitive Absorption
by Xun Wang, Tian Sang, Honglong Qi, Guoqing Li, Xin Yin and Yueke Wang
Appl. Sci. 2020, 10(11), 3878; https://doi.org/10.3390/app10113878 - 3 Jun 2020
Cited by 7 | Viewed by 2437
Abstract
An ultrabroadband, omnidirectional, and polarization-insensitive absorber based on cascaded nanorod arrays (CNAs) is numerically demonstrated, and an average absorptivity of 98.2% with a relative absorption bandwidth (RAB) of 149.8% can be achieved in the 0.38–2.65 μm wavelength range. The proposed CNA-based absorber requires [...] Read more.
An ultrabroadband, omnidirectional, and polarization-insensitive absorber based on cascaded nanorod arrays (CNAs) is numerically demonstrated, and an average absorptivity of 98.2% with a relative absorption bandwidth (RAB) of 149.8% can be achieved in the 0.38–2.65 μm wavelength range. The proposed CNA-based absorber requires only several pairs of multilayers to achieve excellent absorption performance. More significantly, the physical mechanism for this intriguing ultrabroadband absorption results from the synergistic effect of localized surface plasmon (LSP) and plasmonic resonant cavity (PRC) modes, which is fundamentally different from the tapered metal/dielectric multilayer-based absorbers associated with the slow-light mode. We investigated the absorption properties of the CNA-based metasurface by using the impedance theory, which indicates that the impedance of the structure matches well with the impedance of the free space from the visible to near-infrared wavelength range. In addition, the absorption properties of the CNA-based metasurface are robust to the variation of the structural parameters and the metal/dielectric materials, and ultrabroadband absorption performance can be maintained within 0–60° for both TM and TE modes. Full article
(This article belongs to the Special Issue Active Nano Optics)
Show Figures

Graphical abstract

Back to TopTop