Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection
Abstract
:1. Introduction
2. Design of PGPRM
3. Gain and Beam Deflection Analysis
3.1. PGPRM Antenna Design
3.2. PGPRM Antenna Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- Ghosh, A.; Thomas, T.A.; Cudak, M.C.; Ratasuk, R.; Moorut, P.; Vook, F.W.; Rappaport, T.S.; MacCartney, G.R.; Sun, S.; Nie, S. Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 2014, 32, 1152–1163. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five Disruptive Technology Directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef]
- Bai, T.; Alkhateeb, A.; Heath, R.W. Coverage and capacity of millimeter-wave cellular networks. IEEE Commun. Mag. 2015, 52, 70–77. [Google Scholar] [CrossRef]
- Bai, T.; Heath, R.W. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 2015, 14, 1100–1114. [Google Scholar] [CrossRef]
- Alotaibi, A.A. Enhancing Indoor Wireless Coverage Through Providing a New Deployment Plan for Picocell Devices. In Proceedings of the 2021 National Computing Colleges Conference (NCCC), Taif, Saudi Arabia, 27–28 March 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Li, Z.; Hu, H.; Zhang, J.; Zhang, J. Enhancing Indoor mmWave Wireless Coverage: Small-Cell Densification or Reconfigurable Intelligent Surfaces Deployment? IEEE Wirel. Commun. Lett. 2021, 10, 2547–2551. [Google Scholar] [CrossRef]
- Esmail, B.A.F.; Koziel, S.; Golunski, L.; Majid, H.B.A.; Barik, R.K. Overview of Metamaterials-Integrated Antennas for Beam Manipulation Applications: The Two Decades of Progress. IEEE Access 2022, 10, 67096–67116. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Zarghooni, B.; Virdee, B.S.; Denidni, T.A. Beam-Deflection Using Gradient Refractive-Index Media for 60-GHz End-Fire Antenna. IEEE Trans. Antennas Propag. 2015, 63, 3768–3774. [Google Scholar] [CrossRef]
- Dadgarpour, A.; Kishk, A.A.; Denidni, T.A. Dual Band High-Gain Antenna with Beam Switching Capability. IET Microw. Antennas Propag. 2017, 11, 2155–2161. [Google Scholar] [CrossRef]
- Li, J.; Zeng, Q.; Liu, R.; Denidni, T.A. Beam-Tilting Antenna with Negative Refractive Index Metamaterial Loading. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2030–2033. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, D.; Pan, J.; Chen, Y.; Liu, S. A Low-Profile Metasurface-Inspired Antenna with Tilted Beam Radiation. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1803–1807. [Google Scholar] [CrossRef]
- Tian, S.; Han, M.; Xu, J.; Liu, H. Multifunctional coding metasurface for focusing and beam deflection based on polarization selection. Electromagnetics 2024, 44, 57–71. [Google Scholar] [CrossRef]
- Naqvi, A.H.; Lim, S. Low-Profile Electronic Beam-Scanning Metasurface Antenna for Ka-Band Applications. Waves Random Complex Media 2023, 1–16. [Google Scholar] [CrossRef]
- Ji, L.-Y.; Zhang, Z.-Y.; Liu, N.-W. A Two-Dimensional Beam-Steering Partially Reflective Surface (PRS) Antenna Using a Reconfigurable FSS Structure. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1076–1080. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, W.; Gong, S. Low-RCS Beam-Steering Antenna Based on Reconfigurable Phase Gradient Metasurface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2016–2020. [Google Scholar] [CrossRef]
- Ni, C.; Yu, Z.; Zhang, L.; Zhang, Z. A Wideband Circularly Polarized and Beam Deflection Antenna Based on Two Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2861–2865. [Google Scholar] [CrossRef]
- Zhang, J.; Han, L.; Chen, X.; Yang, R.; Zhang, W. Multi-Beam Patch Antenna Based on Metasurface. IEEE Access 2020, 8, 37281–37286. [Google Scholar] [CrossRef]
- Yue, H.; Chen, L.; Yang, Y.; He, L.; Shi, X. Design and Implementation of a Dual Frequency and Bidirectional Phase Gradient Metasurface for Beam Convergence. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 54–58. [Google Scholar] [CrossRef]
- Liang, J.-J.; Huang, G.-L.; Zhao, J.-N.; Gao, Z.-J.; Yuan, T. Wideband Phase-Gradient Metasurface Antenna with Focused Beams. IEEE Access 2019, 7, 20767–20772. [Google Scholar] [CrossRef]
- Shen, Z.; Du, M. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings. Opt. Express 2021, 29, 28287–28296. [Google Scholar] [CrossRef] [PubMed]
- Badri, S.H.; Gilarlue, M.M.; SaeidNahaei, S.; Kim, J.S. Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. J. Opt. 2022, 24, 025101. [Google Scholar] [CrossRef]
- Lv, Y.-H.; Ding, X.; Wang, B.-Z. Dual-Wideband High-Gain Fabry-Perot Cavity Antenna. IEEE Access 2020, 8, 4754–4760. [Google Scholar] [CrossRef]
- Orr, R.; Goussetis, G.; Fusco, V. Design Method for Circularly Polarized Fabry–Perot Cavity Antennas. IEEE Trans. Antennas Propag. 2014, 62, 19–26. [Google Scholar] [CrossRef]
- Lee, J.-G. Compact and robust Fabry-Perot cavity antenna with PEC wall. J. Electromagn. Eng. Sci. 2021, 21, 184–188. [Google Scholar] [CrossRef]
- Trentini, G. Partially reflecting sheet arrays. IEEE Trans. Antennas Propag. 1956, 4, 666–671. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Akbari, M.; Farahani, M.; Ghayekhloo, A.; Zarbakhsh, S.; Sebak, A.-R.; Denidni, T.A. Beam tilting approaches based on phase gradient surface for mmWave antennas. IEEE Trans. Antennas Propag. 2020, 68, 4372–4385. [Google Scholar] [CrossRef]
- Yang, K.; Xu, J.; Pang, H. Modulation of Antenna Beam in Both Elevation and Azimuth Planes by Reflective Phase Gradient Metasurface. Electromagnetics 2023, 43, 429–440. [Google Scholar] [CrossRef]
- Zhou, G.-N.; Sun, B.-H.; Liang, Q.-Y.; Yang, Y.-H.; Lan, J.-H. Beam-Deflection Short Backfire Antenna Using Phase-Modulated Metasurface. IEEE Trans. Antennas Propag. 2020, 68, 546–551. [Google Scholar] [CrossRef]
- Amer, A.A.G.; Sapuan, S.Z.; Nasimuddin, N.; Alphones, A.; Zinal, N.B. A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting. IEEE Access 2020, 8, 76433–76452. [Google Scholar] [CrossRef]
- Bi, K.; Wang, Q.; Xu, J.; Chen, L.; Lan, C.; Lei, M. All-Dielectric Metamaterial Fabrication Techniques. Adv. Opt. Mater. 2021, 9, 2001474. [Google Scholar] [CrossRef]
- Ma, H.F.; Cui, T.J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 2010, 1, 21. [Google Scholar] [CrossRef] [PubMed]
- Numan, A.B.; Sharawi, M.S. Extraction of Material Parameters for Metamaterials Using a Full-Wave Simulator [Education Column]. IEEE Antennas Propag. Mag. 2013, 55, 202–211. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Ren, Y.; Cheng, J.; Liu, Q.H. A Broadband Proximity-Coupled Dual-Polarized Microstrip Antenna with L-Shape Backed Cavity for X-Band Applications. AEU-Int. J. Electron. Commun. 2015, 69, 1226–1232. [Google Scholar] [CrossRef]
- Sun, D.; You, L. A broadband impedance matching method for proximity-coupled microstrip antenna. IEEE Trans. Antennas Propag. 2010, 58, 1392–1397. [Google Scholar] [CrossRef]
- Sun, D.; Dou, W.; You, L. Application of novel cavity-backed proximity-coupled microstrip patch antenna to design broadband conformal phased array. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 1010–1013. [Google Scholar] [CrossRef]
Symbol | Value (mm) | Symbol | Value (mm) | Symbol | Value (mm) |
---|---|---|---|---|---|
s1 | 13 | h1 | 1 | lc | 12.5 |
s2 | 12 | h2 | 11.5 | wc | 4.3 |
s3 | 11 | h3 | 1.5 | lp | 6 |
s4 | 10 | h4 | 3 | wp | 6 |
s5 | 9 | h5 | 0.5 | dx1 | 68.5 |
s6 | 8 | h6 | 3 | dx2 | 63 |
s7 | 7 | h7 | 1 | dy1 | 65.3 |
s8 | 6 | h8 | 8 | dy2 | 63 |
s9 | 5 | wf | 1.5 | lf | 15.5 |
Ref. | Maximum Gain | Beam Deflection Bandwidth | Maximum Beam Deflection |
---|---|---|---|
[13] | 7.9 dBi | 5.1 GHz | 35° |
[14] | 7.5 dBi 22.5 dBi | 13.4 GHz 17.9 GHz | 34° 0° |
[15] | 10.7 dBi | 28 GHz | 10° |
[16] | 10.5 dBi | 5.44~5.66 GHz | 22° |
[17] | 4.5 dBi | 4.2~4.55 GHz | 23° |
[18] | 12.3 dBi | 9.7~10.7 GHz | 58° |
[19] | 9.1 dBi | 5.58~5.93 GHz | 32° |
This work | Single-layer 16.9 dBi Double-layer 16.4 dBi | 8.6~9.2 GHz 8.6~9.2 GHz | 29° 47° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, H.; Fang, L.; Xi, R.; Mu, Y.; Han, J.; Feng, Q.; Li, Y.; Li, L.; Zheng, B. Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection. Materials 2024, 17, 5688. https://doi.org/10.3390/ma17235688
Qiu H, Fang L, Xi R, Mu Y, Han J, Feng Q, Li Y, Li L, Zheng B. Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection. Materials. 2024; 17(23):5688. https://doi.org/10.3390/ma17235688
Chicago/Turabian StyleQiu, Huanran, Liang Fang, Rui Xi, Yajie Mu, Jiaqi Han, Qiang Feng, Ying Li, Long Li, and Bin Zheng. 2024. "Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection" Materials 17, no. 23: 5688. https://doi.org/10.3390/ma17235688
APA StyleQiu, H., Fang, L., Xi, R., Mu, Y., Han, J., Feng, Q., Li, Y., Li, L., & Zheng, B. (2024). Polarization-Insensitive Metasurface with High-Gain Large-Angle Beam Deflection. Materials, 17(23), 5688. https://doi.org/10.3390/ma17235688