
photonics
hv

Article

Fundamentals of Lossless, Reciprocal Bianisotropic
Metasurface Design

Luke Szymanski , Brian O. Raeker , Chun-Wen Lin and Anthony Grbic *,†

����������
�������

Citation: Szymanski, L.; Raeker, B.O.;

Lin, C.-W.; Grbic, A. Fundamentals of

Lossless, Reciprocal Bianisotropic

Metasurface Design. Photonics 2021, 8,

197. https://doi.org/10.3390/

photonics8060197

Received: 30 April 2021

Accepted: 29 May 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA;
ljszym@umich.edu (L.S.); braeker@umich.edu (B.O.R.); chunwen@umich.edu (C.-W.L.)
* Correspondence: agrbic@umich.edu
† Current address: 1301 Beal Avenue, EECS Building, Room 3238, Ann Arbor, MI 48109, USA.

Abstract: Lossless, reciprocal bianisotropic metasurfaces have the ability to control the amplitude,
phase, and polarization of electromagnetic wavefronts. However, producing the responses that
are necessary for achieving this control with physically realizable surfaces is a challenging task.
Here, several design approaches for bianisotropic metasurfaces are reviewed that produce physically
realizable metasurfaces using cascaded impedance sheets. In practice, three or four impedance sheets
are often used to realize bianisotropic responses, which can result in narrowband designs that require
the unit cells to be optimized in order to improve the performance of the metasurface. The notion
of a metasurface quality factor is introduced for three-sheet metasurfaces to address these issues in
a systematic manner. It is shown that the quality factor can be used to predict the bandwidth of a
homogeneous metasurface, and it can also be used to locate problematic unit cells when designing
inhomogeneous metasurfaces. Several design examples are provided to demonstrate the utility of
the quality factor, including an impedance matching layer with maximal bandwidth and a gradient
metasurface for plane wave refraction. In addition to these examples, several metasurfaces for
polarization control are also reported, including an isotropic polarization rotator and an asymmetric
circular polarizer.

Keywords: metasurfaces; bianisotropy; metasurface bandwidth

1. Introduction

Metasurfaces are the two-dimensional analogue of metamaterials, which interact with
electromagnetic fields at a surface rather than throughout a volume [1]. They are often
realized using electrically thin layers that consist of 2D arrays of subwavelength-spaced
meta-atoms that can be homogenized. This allows for metasurfaces to be modeled using
surface boundary conditions, called the generalized sheet transition conditions (GSTCs),
which determine the interaction with an incident field through quasi-static surface polar-
izabilities [2–4]. If the incident fields are time-varying, then the surface polarizabilities
produce equivalent electric and magnetic polarization currents. These equivalent cur-
rents can be related to surface admittances and impedances [5–11]. The mechanisms by
which electric and magnetic surface currents are induced on a metasurface determine its
classification as an electric, magnetic, electric and magnetic, or bianisotropic metasurface.
Purely electric metasurfaces only contain electric polarizabilites, which interact with only
the electric field to produce electric currents. Purely magnetic metasurfaces only contain
magnetic polarizabilities, which only interact with the magnetic field to produce magnetic
currents. Electric and magnetic surfaces contain both electric and magnetic polarizabilities
in a single sheet. Finally, a metasurface that is bianisotropic can also contain electric and
magnetic polarizabilities, as well as electro-magnetic and magneto-electric polarizabili-
ties, i.e., magnetic polarization due to an electric field and electric polarization due to an
magnetic field.
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Bianisotropic metasurfaces provide the metasurface designer with the most degrees of
freedom, which makes them useful for the extreme manipulation of electromagnetic fields.
Bianisotropic metasurfaces include a wide range of both reciprocal and non-reciprocal
responses. However, the focus here will be on design methods for reciprocal bianisotropic
metasurfaces. Reciprocal bianisotropic metasurfaces can be split into two main classes: chi-
ral and omega. Chiral metasurfaces contain meta-atoms that have broken mirror symmetry.
This results in electric fields inducing magnetic currents along the impinging electric field
and magnetic fields inducing electric currents along the impinging magnetic field. These
chiral responses alter the polarization state of the incident wave. On the other hand, omega
metasurfaces contain meta-atoms with broken directional symmetry. This results in electric
fields inducing magnetic currents that are orthogonal to the impinging electric field, and
magnetic fields inducing electric currents orthogonal to the impinging magnetic field. This
leads to an asymmetric scattering response from omega metasurfaces, which maintains the
polarization state.

The applications for chiral and omega bianisotropic metasurfaces fall into two main
categories: those that guide and radiate electromagnetic waves and those that control
reflection and transmission from a surface. Guided-wave bianisotropic metasurfaces
shape fields along the surface through guided or leaky waves, and they can be used to
produce desired radiation patterns [12,13]. Whereas, metasurfaces that control reflection
and transmission interact with incident wavefronts to manipulate the amplitude, phase,
and polarization of the scattered fields. There are many design synthesis methods and
realizations of planar and cylindrical bianisotropic metasurfaces that control reflection and
transmission at frequencies that range from microwave to optical using both composite
(metal/dielectric) and all-dielectric metasurfaces [5–7,11,14–30]. This is by no means a
complete representation of all the work in bianisotropic metasurfaces. For a more complete
review of the literature, see [31].

In this paper, the design and synthesis methods that are presented in [5,23] are re-
viewed, and several design examples are provided. Additionally, a definition for the
quality factor of a three-sheet metasurface is provided, which can be used to estimate the
bandwidth of a homogeneous metasurface. This is demonstrated through the design of
an impedance matching metasurface with maximal bandwidth. In addition to improving
bandwidth, the quality factor can also aid designers in improving the performance of
inhomogeneous metasurfaces. This is demonstrated by using the quality factor to guide
the selection of appropriate unit cells in the design of a gradient metasurface for plane
wave refraction.

2. Scattering from Bi-Isotropic Metasurfaces

In this section, we describe the scattering performance of an omega-type bi-isotropic
metasurface that is illuminated by a normally incident plane wave. The scattering analysis
of bi-isotropic metasurfaces provided in this section follows that introduced in [5]. We
consider a metasurface at a planar boundary between two regions of space, as shown in
Figure 1, where the intrinsic wave impedance of region 1 is η1 =

√
µ1/ε1 and of region 2

is η2 =
√

µ2/ε2. The metasurface is at the z = 0 plane separating the two regions, and it is
illuminated by normally incident plane waves.

The interaction between the metasurface and an illuminating plane wave can be
described via scattering parameters (S-parameters), which comprise the ratio between the
scattered plane wave electric field and the incident plane wave electric field. The ratio
of scattered electric field in region n to the incident electric field in region m for different
polarizations is given as a 2× 2 matrix.

Snm =

(
Sxx

nm Sxy
nm

Syx
nm Syy

nm

)
(1)
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When viewed from region 1, S11 is the reflection coefficient and S21 is the transmission
coefficient. Similarly, when viewed from region 2, the reflection coefficient is S22 and the
transmission coefficient is S12.

x

y z

E1+

H1+

k1

E2-

H2-

k2

E2+

H2+
k2

M

J

E1-

H1-
k1

Region 1, η1 = √μ1/ε1

Metasurface at z = 0

Region 2, η2 = √μ2/ε2

Figure 1. The geometry of a metasurface between two regions with different material properties.
The equivalent surface current densities J (electric) and M (magnetic) describe the interaction of the
metasurface with the tangential fields. Under illumination by a normally incident plane wave, each
region can contain two plane waves that are denoted by + for a wave propagating toward the surface
or − for a wave propagating away from the surface.

In general, a bianisotropic metasurface can be modeled as a two-dimensional array
of polarizable particles [4]. For time-varying illuminating fields, the polarizabilities can
be effectively characterized using equivalent surface impedances [5–11]. The equivalent
surface currents can then be related to the averaged, tangential electric, and magnetic
fields using surface parameters that are represented as 2× 2 tensors: the electric sheet
admittance tensor Y , the magnetic sheet impedance tensor Z, and the magneto-electric
coupling tensors χ and γ. With these parameters, the electric and magnetic surface currents
that are induced on the metasurface can be related to the average tangential fields and
compared to the boundary conditions across the metasurface.(

J
M

)
=

(
Y χ
γ Z

)(
Eavg
Havg

)
=

(
ẑ× (H̄2 − H̄1)
−ẑ× (Ē2 − Ē1)

)
(2)

The variables Y , χ, γ, and Z relate the x- and y-polarized averaged field components
to the x- and y-polarized current density components that are induced on the metasurface.
The various electric field vectors are E = [Ex Ey]T and the magnetic field vector is
H = [Hx Hy]T (the surface current quantities J and M are similarly defined), where
the averaged fields are Eavg = (E1 + E2)/2 and Havg = (H1 + H2)/2. The electric
admittance tensor is defined as

Y =

(
Yxx Yxy
Yyx Yyy

)
(3)

with the other parameters being similarly defined.
For a reciprocal metasurface, Y = YT , γ = −χT , and Z = ZT [32]. Imposing isotropy

on the surface parameters results in

Y = YI, χ = −χn, γ = −γn, Z = ZI (4)

where I is the 2× 2 identity matrix and n =

(
0 −1
1 0

)
.

Restricting the metasurface to omega-type bi-isotropy precludes polarization conver-
sion by the metasurface. Therefore, the response for each polarization is identical. This
allows us to analyze the metasurface as a two-port network for a single polarization, rather
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than as a four-port network when all of the polarizations were considered. The two-port
S-parameters relate the electric field of the incident and reflected plane waves as

E− =

(
E1−
E2−

)
=

(
S11 S12
S21 S22

)(
E1+
E2+

)
= SE+ (5)

In order to calculate the S-parameters of the metasurface, consider an x-polarized
plane wave, as shown in Figure 1. Assuming that the surface is isotropic, the boundary
conditions of Equation (2) simplify to

Jx =
Y
2
(E1x + E2x) +

χ

2
(H1y + H2y) = −H2y + H1y (6)

My = −γ

2
(E1x + E2x) +

Z
2
(H1y + H2y) = −E2x + E1x (7)

From Equations (6) and (7), we obtain four equations by considering the illumination
from region 1 (E2+ = 0) and region 2 (E1+ = 0) separately. These four equations relate the
S-parameters to the surface parameters of the metasurface. In each case, E1− and E2− are
expressed in terms of the S-parameters and the illuminating electric field. Additionally, the
assumption of plane wave illumination allows us to express the magnetic field quantities
in terms of the electric field and wave impedance of each region. These four equations are
simplified and assembled into a matrix equation to express the surface parameters in terms
of S-parameters.

1
2

(
Y χ
−γ Z

)
=

(
1
η1
− S11

η1
− S21

η2
1
η2
− S22

η2
− S12

η1

1 + S11 − S21 −1− S22 + S12

)(
1 + S11 + S21 1 + S22 + S12
1
η1
− S11

η1
+ S21

η2
− 1

η2
+ S22

η2
− S12

η1

)−1

(8)

The form of Equation (8) is convenient for calculating the surface parameters that will
implement the desired S-parameters. However, re-arranging Equation (8) and simplifying
to solve the S-parameter quantities provides

S11 =
1
σ

(
−Y + Z

1
η1η2

+

[
1

4η1
[(2− γ)(2− χ) + YZ]− 1

4η2
[(2 + γ)(2 + χ) + YZ]

])
(9)

S12 =
1
σ

(
1

2η2
[(2− γ)(2 + χ)−YZ]

)
(10)

S21 =
1
σ

(
1

2η1
[(2 + γ)(2− χ)−YZ]

)
(11)

S22 =
1
σ

(
−Y + Z

1
η1η2

−
[

1
4η1

[(2− γ)(2− χ) + YZ]− 1
4η2

[(2 + γ)(2 + χ) + YZ]
])

(12)

σ = Y + Z
1

η1η2
+

[
1

4η1
[(2− γ)(2− χ) + YZ] +

1
4η2

[(2 + γ)(2 + χ) + YZ]
]

(13)

In the case of a lossless metasurface, the surface parameters Y = jB and Z = jX are
purely imaginary, while γ = χ = R are real quantities [32]. In this case, Equations (9)–(12)
can be further simplified, as shown in Equations (14)–(17). Note that S21 = S12 only when
η1 = η2, and S11 = S22 only when R = 0 and η1 = η2.
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S11 =
1
σ

(
j
[

X
η1η2

− B
]
+

[
1

4η1

[
(2− R)2 − BX

]
− 1

4η2

[
(2 + R)2 − BX

]])
(14)

S12 =
1
σ

(
1

2η2

[
4− R2 + BX

])
(15)

S21 =
1
σ

(
1

2η1

[
4− R2 + BX

])
(16)

S22 =
1
σ

(
j
[

X
η1η2

− B
]
−
[

1
4η1

[
(2− R)2 − BX

]
− 1

4η2

[
(2 + R)2 − BX

]])
(17)

σ = j
[

X
η1η2

+ B
]
+

[
1

4η1

[
(2− R)2 − BX

]
+

1
4η2

[
(2 + R)2 − BX

]]
(18)

We can also determine the limitations that are placed on the S-parameters when pas-
sive, lossless, and reciprocal restrictions are enforced. For a bi-isotropic metasurface, the
S-parameters represent a two-port network, as described in Equation (5). Each element is a
complex number, so there are eight total variables (four real and four imaginary quantities).
For a reciprocal network, S21 = S12 when the port impedances are the same. This relation-
ship shows that both of the transmission coefficients are the same in amplitude and phase.
However, a different relationship is needed for the case of the bi-isotropic metasurface,
since the port impedances are different. Reciprocity is satisfied when the transmission
phase shift and transmitted power are the same for each direction of illumination. When
the port impedances are not equal, the electric field amplitude will change, depending
on the wave impedance of the medium in order to satisfy the reciprocity conditions, so
|S21| 6= |S12|.

In order to determine the reciprocity relationship for a bi-isotropic metasurface, con-
sider two cases: (i) where the metasurface is only illuminated from region 1 and transmitted
power is determined in region 2, and (ii) the metasurface is only illuminated from region 2
and transmission measured in region 1. By equating the transmitted power in both cases,
we arrive at

η1

η2
|S21|2 =

η2

η1
|S12|2 (19)

While Equation (19) provides a relationship between the transmission coefficient
magnitudes, reciprocity also requires that the transmission phase be the same. Applying
this and assuming the wave impedance of each region is real, we arrive at√

η1

η2
S21 =

√
η2

η1
S12. (20)

Note that Equations (15) and (16) satisfy this relationship, since the metasurface parameters
were restricted to be reciprocal.

In order to enforce the lossless condition, the time-average power that is absorbed by
the metasurface must be zero. This is calculated as

Pavg =
1
2

{([
E1+
E2+

]
+

[
E1−
E2−

])T([H1+
H2+

]
−
[

H1−
H2−

])∗}
= 0 (21)

By applying the plane wave relation between the electric and magnetic fields, and
expressing E1− and E2− in terms of the S-parameters from Equation (5), Equation (21)
becomes

Pavg =
1
2

Re
{([

E+
]
+
[
S
][

E+
])T([1/η

][
E+
]
−
[
1/η

][
S
][

E+
])∗}

= 0 (22)
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where [
1/η

]
=

[
1/η1 0

0 1/η2

]
, [E+] =

[
E1+
E2+

]
. (23)

Simplifying Equation (22) and utilizing the reciprocity relationship in (20) results
in three equations that must be satisfied in order to implement a lossless and reciprocal
metasurface.

1 = |S11|2 +
η1

η2
|S21|2 (24)

1 = |S22|2 +
η1

η2
|S21|2 (25)

0 = |S11| cos(φS11 − φS21 + φE1+ − φE2+) + |S22| cos(φS21 − φS22 + φE1+ − φE2+) (26)

These three equations under-define the six independent scattering matrix variables.
Consequently, three variables can be chosen freely without violating the lossless and
reciprocal conditions. Specifically, Equations (24) and (25) provide the ability to choose
one amplitude of the scattering matrix. If |S21| is chosen, as is commonly the case, then
|S11| = |S22|, and a phase constraint is obtained from Equation (26)

φS11 − φS21 = φS21 − φS22 + π (27)

where two phase shifts of the S-parameters can be freely chosen.
Therefore, for a bi-isotropic metasurface to be both lossless and reciprocal, three

degrees of freedom exist in its S-parameters: one S-parameter amplitude and two S-
parameter phases. These three degrees of freedom are set through the design choices of
the metasurface. It is worth recalling that enforcing lossless and reciprocal behavior in
the surface parameters for the bi-isotropic metasurface results in Y = jB, Z = jX, and
γ = χ = R. Thus, three distinct surface parameters can be chosen to achieve three desired
scattering properties.

3. Bi-Isotropic Metasurfaces: Bandwidth and Quality Factor

In practice, bi-isotropic metasurfaces typically rely on resonant structures to produce
the strong field interactions that are required to perform the desired field transformations.
However, the use of resonances places inherent limitations on the bandwidth. In this
section, the relationship between matching networks and bi-isotropic metasurfaces is
considered, and the quality factor of a metasurface realized using three impedance sheets
is defined. We demonstrate that the quality factor can be used as a metric to predict
the metasurface’s bandwidth and identify unit cells that degrade the performance of
inhomogeneous metasurfaces.

We consider the following example to understand the relationship between impedance
matching networks and bi-isotropic metasurfaces. Suppose that there is a planar interface
between air and alumina (εr = 9.4), as in Figure 2, and the goal is to maximize the power
that is transferred across the interface. Because the intrinsic wave impedances of the media
are real, this amounts to minimizing the amplitude of the reflected wave. To do this, the
input impedance of the metasurface must be equal to the wave impedance of the incident
wave, Zin. Because the two media have different wave impedances the metasurface must
transform the wave impedance of the transmitted wave, ZL, to that of the incident wave,
Zin. In this scenario, the metasurface acts as an impedance matching layer. Here, the
impedance matching layer is analogous to an impedance matching network from circuit
theory, like an L or T-network, as shown in Figure 3. From circuit theory, it is known that a
complex load impedance can be matched to a complex source impedance using either an
L-, T-, or π-network [33]. The L-network contains two degrees of freedom allowing for the
real and imaginary components of the input impedance to be matched. For an L-network,
the solution is unique (all the degrees of freedom are used) and no other characteristics of
the impedance match, such as its bandwidth or the transmission phase, can be controlled.
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Adding a third degree of freedom to the L-network produces a T- or π-network. This
additional degree of freedom can be used to control the bandwidth or the transmission
phase. Bi-isotropic metasurfaces are like T-matching networks for fields [34]. They have
three degrees of freedom that allow for impedance matching with phase or bandwidth
control [35]. To illustrate this idea, we consider a metasurface that impedance matches
a normally incident plane wave on an air-alumina (εr = 9.4) interface over a maximum
bandwidth, as shown in Figure 2.

Figure 2. A metasurface at the interface between air and alumina half-spaces. The metasurface
is used to impedance match a normally incident plane wave traveling from the region of air into
the alumina.

Figure 3. L and T circuit network topologies used for impedance matching in circuit theory.

In order to design the impedance matching metasurface, recall that a bi-isotropic
metasurface can be viewed as a two-port network that controls one scattering amplitude
and two scattering phases. Therefore, designing a lossless, reflectionless, and bi-isotropic
metasurface is equivalent to designing a lossless two-port impedance matrix (Z-matrix) that
impedance matches a load impedance ZL = |ZL|ejφL to a source impedance Zi = |Zin|ejφin

with an arbitrary transmission phase φ21 [36]. Consider a general lossless two-port Z-matrix
in order to determine the Z-matrix that provides the desired functionality,(

V1
V2

)
= j
(

X11 X12
X21 X22

)(
I1
I2

)
(28)

Imposing the impedance boundary conditions and enforcing power conservation on (28)
produces the following system of equations,(

1
rvejφ21

)
= j
(

X11 X12
X21 X22

)(
1

−rvejφ21

)
(29)

where r2
v = ZL

Zin

∣∣∣ cos φin
cos φL

∣∣∣ and φ21 = ∠V2 − ∠V1. Splitting (29) into its real and imaginary
components allows for the elements of the Z-matrix to be solved in terms of ZL, Zin and φ21,(

X11 X12
X21 X22

)
=

(
|Zin| cos(φ21 − φL) |Zin|rv cos(φL)
|Zin|rv cos(φL) |ZL| cos(φ21 + φin)

)
csc(φ21 + φin − φL) (30)
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From (30), it is clear that the required two-port network is reciprocal, since X12 = X21, and
it has three degrees of freedom.

Three cascaded sheet impedances, as shown in Figure 4, can be used to realize a
metasurface with a Z-matrix given by (30), as in [5]. Expressing Figure 4 in terms of its Z-
matrix, and solving for the necessary impedance sheets, results in the following expressions
for the sheets in terms of the elements of (30),

Zs1 = −j
Z0 sin(βd)

cos(βd) + (X12+X22
det Z )Z0 sin(βd)

(31)

Zs2 = −j
Z2

0 sin2(βd)X12

det Z + X12Z0 sin(2βd)
(32)

Zs3 = −j
Z0 sin(βd)

cos(βd) + (X12+X11
det Z )Z0 sin(βd)

, (33)

where det Z is the determinant of the Z-matrix and β and Z0 are the wavenumber and wave
impedance of the dielectric spacers, respectively. Once the input and load impedances,
spacer thickness, and the transmission phase are specified, (30)–(33) can be used to deter-
mine the necessary impedance sheets to implement the metasurface.

βd

Zin ZL

βd

ZS2ZS1 ZS3

Figure 4. Bi-isotropic metasurface realized using three impedance sheets that are separated by
dielectric spacers with thickness d.

In order to maximize the bandwidth of the impedance match, a method is needed
for comparing the metasurface’s bandwidth for different transmission phases. Here, an
expression for the metasurface’s quality factor as a function of the transmission phase is
derived for this purpose. The quality factor of a three-sheet metasurface is defined as,

Q = ω0
2We

Pd
, (34)

where ω0 is the angular resonant frequency, We is the average electric energy stored in the
network at ω0, and Pd is the power dissipated in the network. In order to calculate the
quality factor using (34), the impedance sheets (31)–(33) are expressed in terms of lumped
capacitances and inductances. The dielectric spacers in the metasurface are assumed to be
electrically thin, so they can be modeled as lumped π-networks. Therefore, if the dielectric
spacers are electrically thin and the source and load impedances are purely real, then the
quality factor of the metasurface can be expressed as

Q =
ω0

2

(
Zin(Cs1 +

βd
2ω0Z0

) + Rint(Cs2 +
βd

ω0Z0
) + ZL(Cs3 +

βd
2ω0Z0

)

)
, (35)

where, Rint =
Zin+ZL+

√
ZinZL cos φ21

sin2 φ21

(Z0 sin βd)2

ZinZL
, and Csi is the capacitance of the ith impedance

sheet (if the sheet is inductive, then Csi = 0). If the load impedances are not purely real,
then the imaginary part of the load can be absorbed into either Zs1 or Zs3, and (35) can
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still be used. The quality factor, Q, of the metasurface will be used to approximate the
fractional bandwidth, FBW = BW/ f0, where BW is the 3 dB bandwidth of each unit cell.
However, due to the presence of multiple resonances this approximation is only valid when
the resonances are well separated in frequency.

The quality factor expression (35) can be used to maximize the bandwidth of an
impedance matching bi-isotropic metasurface. For a normally incident plane wave, the
relevant impedance is Zin = 377 Ω. Let us assume that ZL = 123 Ω, and the spacers are
free-space with a thickness d = λ0/20. Using (35) to calculate the quality factor and the
fractional bandwidth versus transmission phase produces Figure 5. Figure 5a plots the
quality factor which is minimized at a transmission phase of φ21 = −68.5◦. Figure 5b shows
that this transmission phase is predicted to maximize the bandwidth, and Figure 5c shows
that it produces the maximum 3dB bandwidth. The metasurface with this transmission
phase is composed of the following impedance sheets: Zs1 = 1/(jωCs1) = −j468.9 Ω, Zs2
= 1/(jωCs2) = −j641.9 Ω, and Zs3 = jωLs3 = j38.5 kΩ. The metasurface performance is
simulated in Ansys HFSS while using dispersive impedance sheets that correspond to
the following lumped elements: Cs1 = 33.9 f F, Cs2 = 24.8 f F, and Ls3 = 612.7 nH. Figure 6
shows the transmission magnitudes from this simulation, where they are compared to a
quarter-wave transformer and the bare interface without any impedance matching. The
metasurface has a size and bandwidth comparable to a quarter-wave transformer. However,
it does not require the realization of a medium with the dielectric constant εr =

√
9.4, which

can be heavy and challenging to manufacture.

Figure 5. The quality factor, fractional bandwidth, and the magnitude of the frequency response
for metasurfaces that provide impedance matching with six different transmission phases. (a) The
quality factor is minimized when the transmission phase is −68.5◦ (red circle). (b) The fractional
bandwidth is maximized at−68.5◦ (red circle). (c) Plots of the transmission amplitude over frequency
for several transmission phases and the maximum bandwidth is observed when the transmission
phase is −68.5◦, as predicted by the quality factor.

In practice, a metasurface’s impedance sheets are typically realized using subwave-
length metal or dielectric patterning on support structures. Here, we will consider the
impact this has on the bandwidth of the metasurface. First, we will consider the effect of
using subwavelength patterned sheets. Subwavelength unit cells that are non-resonant
exhibit a response of either a capacitive or inductive sheet impedance [37,38]. This indicates
that modeling the patterned sheets as impedance sheets should not result in a significant
bandwidth reduction when the metasurface is realized in practice. However, it may be
necessary to modify the design to include additional impedance sheets to avoid extreme
impedance values that are difficult to realize in practice. If impedance sheets cannot be
realized at the design frequency due to manufacturing difficulties, an alternative design
approach may be required, such as using detuned resonant elements. Their responses will
be more narrowband.
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We will also consider the effect of using a dielectric spacer as the support structure.
For a metasurface that is designed using a non-magnetic dielectric spacer with a relative
permittivity εr, its quality factor is given by,

Q =
ω0

2

(
Zin(Cs1 +

εrε0d
2

) + Rint(Cs2 + εrε0d) + ZL(Cs3 +
εrε0d

2
)

)
. (36)

If the dielectric spacer is electrically thin, then the sheet capacitances can be approximated as,

Cs1 =
1
ω

( 1
ωµ0d

+
X22 + X12

det(Z)
)
− εrε0d

2
(37)

Cs2 =
1
ω

( 2
ωµ0d

+
det(Z)

X12

1
(ωµ0d)2

)
− εrε0d (38)

Cs3 =
1
ω

( 1
ωµ0d

+
X11 + X12

det(Z)
)
− εrε0d

2
, (39)

when the sheet impedance Zsi is capacitive (see Appendix A). Otherwise, the impedance
sheet is inductive and it can be ignored in the calculation of the quality factor. Additionally,
when the spacer is electrically thin, Rint does not depend on the dielectric constant (see
Appendix A). Accordingly, the only terms in (36) that depend on the permittivity are the
capacitance terms Csi,

εrε0d
2 , and εrε0d. When considering the terms Cs1 +

εrε0d
2 , Cs2 + εrε0d,

and Cs3 +
εrε0d

2 individually with (37)–(39) in them, it becomes apparent that the quality
factor is unaffected by the dielectric spacer for capacitive impedance sheets. However,
if any of the impedance sheets are inductive, then the dielectric spacer will increase the
quality factor, thereby reducing the metasurface’s bandwidth.

Figure 6. Plots of the (a) transmission and (b) reflection magnitudes for the interface with the
metasurface (φ21 = −68.5◦), a quarter-wave transformer, and with no impedance matching (bare
interface). The simulations of the metasurface were performed in Ansys HFSS. The metasurface has
a bandwidth that is comparable to a quarter-wave transformer.

In addition to bandwidth information, the quality factor also provides information that
can guide the design of inhomogeneous metasurfaces where local periodicity is assumed.
Obtaining good performance from a metasurface that is designed assuming local periodicity
requires that neighboring unit cells produce fields that are approximately the same, i.e.,
the fields vary smoothly along the surface without large discontinuities in the amplitude
or phase. In this work, it has been found that the quality factor and its first derivative
with respect to transmission phase can help the designer to select unit cells that satisfy the
assumption of local periodicity.
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The quality factor, as given by (35), is divergent at transmission phases near φ21 =
0◦,−180◦, and −360◦, indicating that the unit cells that are required to achieve these
transmission phases possess large quality factors. Large quality factors are associated
with strong resonances that are sensitive to perturbations in the surrounding environment
and are lossy when realized in practice. Therefore, these unit cells should be avoided.
Additionally, areas where (35) is not smooth (i.e., points where the first derivative is
discontinuous or undefined) indicate transmission phases where the reactance of at least
one of the impedance sheets changes sign. These points should also be avoided because
they identify transmission phases where the required reactance values display asymptotic
behavior. This introduces rapid variations in the values of the impedance sheets and fields
in the metasurface that invalidate the assumption of local periodicity.

In order to see how this information can be used, consider a metasurface embedded in
free-space that refracts a normally incident plane wave to 70◦ at a frequency of f0 = 10 GHz.
This requires a gradient metasurface: an inhomogeneous metasurface that imposes a
linear phase gradient on an impinging wave-front to produce reflection or refraction
in a desired direction [39]. Refraction requires the metasurface to alter the transverse
wavenumber of an incident plane wave (ki = k sin(θi)) to produce the desired refracted
wavenumber (kt = k sin(θt)), where k is the wavenumber in the surrounding medium.
Therefore, the metasurface must impart transverse momentum that is equal to ∆k = kt − ki.
Practically, this is realized by discretizing the metasurface into N sub-wavelength unit
cells that are of size D = 2π

N max(ki ,kt)
, each possessing a transmission phase φj, such that

∆φ = φj+1 − φj = −∆kD. Each unit cell must be reflectionless in order to maximize the
transmitted power into the refracted wave. This means that impedance matching and phase
control are required, so (31)–(33) can be used to design the unit cells of the metasurface.

For this example, the metasurface will have 10 unit cells per transverse wavelength (in
free-space) and the spacers will be assumed to be free-space with a thickness d = λ0/25. As
a first pass at the design, the metasurface is designed to impose a linear phase gradient with
the unit cell transmission phases that are shown in Table 1. The required sheet impedances,
as shown in Figure 7b, are solved using (31)–(33) and one period (10 unit cells) of the
metasurface is simulated in COMSOL using periodic boundary conditions. Figure 7c
shows the results.

Table 1. The unit cell transmission phases (φ21) used in the design of the gradient metasurface for
plane wave refraction. The original phase gradient corresponds to the linear phase gradient. The
perturbed phase gradient corresponds to the adjusted phases used to improve the performance of
the metasurface.

Unit Cell φ21 (Original) φ21 (Perturbed)

1 −18◦ −31◦

2 −54◦ −54◦

3 −90◦ −90◦

4 −126◦ −126◦

5 −162◦ −147◦

6 −198◦ −216◦

7 −234◦ −234◦

8 −270◦ −270◦

9 −306◦ −306◦

10 −342◦ −330◦

The metasurface that is designed using this phase gradient exhibits significant re-
flections and the transmitted wave is not purely refracted. A slight perturbation of the
linear phase gradient can be used to improve the performance. The appropriate perturbed
phase gradient is found using the quality factor and its first derivative with respect to
transmission phase. To find the problematic transmission phases in the original design,
plots of the quality factor and its first derivative are shown in Figure 8. By inspecting
the plots, four unit cells with problematic transmission phases are identified: 1, 5, 6, and
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10. Unit cells 1, 5, and 6 are problematic, because they are near points where (35) is not
smooth, and unit cell 10 is problematic due to its large quality factor. The problematic
transmission phases are adjusted to improve the performance of the metasurface, as shown
in Table 1 and Figure 9. These phase shifts reduce the maximum unit cell quality factor
by approximately 10 and force the reactance of each impedance sheet to change sign only
once at φ21 = −180◦.

Figure 7. (a) The depiction of an inhomogeneous, bi-isotropic metasurface implemented as a three-
sheet cascade in free-space. (b) Plots of the sheet reactances for different transmission phases. The
solid circles indicate the values used for the linear phase gradient and the empty squares indicate
the sheet values used for the perturbed phase gradient. (c) Full-wave simulation results for the real
part of the electric field using the metasurface with a linear phase gradient. (d) Full-wave simulation
results for the real part of the electric field using the metasurface with a perturbed phase gradient.

Figure 8. (a) The quality factor of the metasurface unit cells versus transmission phase. (b) The
first derivative of the quality factor with respect to the transmission phase. The solid black circles
indicate the values corresponding to the linear phase gradient and the hollow red squares indicate
the adjusted values used for the perturbed phase gradient.



Photonics 2021, 8, 197 13 of 21

Figure 9. A comparison of the transmission phases used for the original and perturbed phase gradi-
ents. The solid black circles indicate the transmission phases used for the linear phase gradient. The
empty red squares indicate the transmission phases that are used for the perturbed phase gradient.

The metasurface is redesigned with the modified transmission phases and Figure 7b
shows the required sheet impedances. Ten unit cells of the metasurface are again simulated
in COMSOL using periodic boundary conditions, and the results are shown in Figure 7d.
We see that the redesigned metasurface performs significantly better than the analytical
design. This indicates that avoiding transmission phases that require a large quality factor
or exist near non-smooth or asymptotic regions of Q(φ21) can improve the performance of
gradient metasurfaces that are designed using the local periodicity assumption.

Violations of local periodicity (like those discussed above) can present challenges
when realizing inhomogeneous metasurfaces where local periodicity has been assumed.
Issues that arise from these violations have been implicitly handled in the literature in
a variety of ways. In [7], the phase gradient was altered to improve the metasurface’s
performance by reducing the transmission losses. On the other hand [36,40,41], made the
spacers between the sheets extremely thin d < λ/40. This generally increases the quality
factor of the unit cells, but it has the benefit of shifting the transmission phases where all
three impedance sheets transition from capactive to inductive to occur at the same point.
This means that shrinking the spacings makes it easier to select transmission phases that
avoid regions where (35) is not smooth. Consequently, extremely thin spacings can im-
prove the design performance at the expense of increasing manufacturing difficulties and
producing higher quality factors: lower bandwidths. Alternatively, PEC [42] or PMC [29]
baffles have been used to eliminate inter-cell coupling to validate the assumption of local
periodicity. However, in practice, the use of PEC baffles presents a manufacturing challenge
and PMC baffles cannot be realized. These examples indicate a design trade-off between
manufacturability and performance when realizing inhomogeneous metasurfaces. Using
the quality factor, as shown in this section, provides an alternative way to improve design
performance. It can be used to systematically identify the problematic unit cells and adjust
them where possible to allow for the trade-off between performance and manufacturability
to be balanced. An alternative to this approach is to avoid the assumption of local periodic-
ity and model interactions between unique unit cells through homogenization and integral
equations, as reported in [43].

4. Scattering from Bianisotropic Metasurfaces

While the scattering of plane waves was analyzed for the simplified case of a bi-
isotropic metasurface shown in Section 2, it is worthwhile to consider the general case
where isotropy is not assumed. Following the general process of Section 2, the boundary
conditions of Equation (2) can be expressed in terms of the S-parameters (where each S-
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parameter term is the 2× 2 matrix of Equation (1)). Note that ẑ×
[
Ex Ey

]T
= n

[
Ex Ey

]T .
Expressing the surface parameters in terms of the S-parameters gives [5]

1
2

(
Y χ
γ Z

)
=

(
I

η1
− S11

η1
− S21

η2
I

η2
− S22

η2
− S12

η1

n(I + S11 − S21) −n(I + S22 − S12)

)(
I + S11 + S21 I + S22 + S12

n
(

I
η1
− S11

η1
+ S21

η2

)
−n
(

I
η2
− S22

η2
+ S12

η1

))−1

(40)

Equation (40) can also be re-arranged so that the S-parameters are expressed in terms
of surface parameters.

(
S11 S12
S21 S22

)
=

(
I

η1
+ Y

2 −
χn
2η1

I
η2

+ Y
2 + χn

2η2

−n + γ
2 −

Zn
2η1

n + γ
2 + Zn

2η2

)−1( I
η1
− Y

2 −
χn
2η1

I
η2
− Y

2 + χn
2η2

n− γ
2 −

Zn
2η1

−n− γ
2 + Zn

2η2

)
(41)

Analyzing the degrees of freedom helps to determine the number of surface parame-
ters required to realize a specificed S-matrix, as in the bi-isotropic case that is discussed in
Section 2. In the bianisotropic case, both of the polarizations are taken into account, which
leads to a 4× 4 scattering matrix and 16 complex numbers as its entries. In most cases,
reciprocity is desired for metasurfaces, which results in a symmetric S-matrix (assuming
the port impedances are identical)(

S11 S12
S21 S22

)
=

(
S11 S12
S21 S22

)T

(42)

which indicates that only 10 out of the 16 entries are actually independent. Because each
complex number contains its real part and imaginary part, there are 20 free variables in
total under the reciprocal condition. The S-matrix also has to be unitary if we further
require the metasurface to be lossless:

(
S11 S12
S21 S22

)T(S11 S12
S21 S22

)∗
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (43)

By incorporating the reciprocal condition (42) into the lossless condition (43), one can
expand (43) into 10 different equations, which impose 10 additional restrictions on the 20
free variables. Consequently, for a reciprocal and lossless bianisotropic metasurface, there
are 10 degrees of freedom in total.

A similar conclusion can be drawn by considering the surface parameters. Recall that
Y = YT , γ = −χT , and Z = ZT for a reciprocal metasurface [32]. There are three free
entries in both of the Y and Z matrices, and four free entries in the γ or χ matrix. Moreover,
for the metasurface to be lossless, Y and Z must have purely imaginary entries, while γ and
χ must have purely real ones [32]. Again, it can be seen that the total degrees of freedom of
the system is 10.

In practice, several sheets are usually cascaded and separated by dielectric spacers to
form bianisotropic metasurfaces. Typically, these sheets only possess electric responses that
are characterized by admittance tensors Y , since they can be readily realized using metallic
patterns. For bi-isotropic metasurfaces, or in the case where only a single polarization is of
concern, we know that three sheets are enough to realize a specified response. However,
the situation becomes more complicated for bianisotropic metasurfaces. When both of
the polarizations are involved, a single lossless, reciprocal electric sheet provides three
degrees of freedom under lossless and reciprocal conditions, i.e., the imaginary numbers
Yxx, Yyy and Yxy = Yyx. Therefore, at most, four sheets are required to realize an arbitrary
reciprocal and lossless bianisotropic metasurface with 10 degrees of freedom. Although
many bianisotropic metasurfaces can be realized with only three electric sheets, there
are some cases in which introducing a fourth sheet is necessary. Examples include the
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polarization rotators in [5,23]. The fourth sheet not only provides the required degree of
freedom, but also enhances the operational bandwidth.

A network analysis technique, known as the wave matrix approach, was adopted
in [23] in order to synthesize a cascaded sheet design. Wave matrices relate the forward and
backward propagating electric fields on one side of the scatterer to those on the other side.
For an arbitrary scatterer that is shown in Figure 10a, the wave matrix M is defined as:

(a) (b) (c)

Figure 10. An illustration of the wave matrix and the constitutive blocks of the cascaded structure.
(a) The definition of a wave matrix. (b) A metasurface interface between two dielectric media. (c) A
dielectric spacer.

(
E+

L
E−

L

)
= M

(
E+

R
E−

R

)
. (44)

Similar to the S-matrices, wave matrices contain information regarding the incident
and reflected waves. The advantage of using wave matrices is that they significantly
simplify the analysis of cascaded structures, such as ABCD matrices. The wave matrix of a
cascaded structure can be obtained by simply multiplying the wave matrices of its consti-
tutive blocks. In our multi-layer metasurfaces, these blocks include metasurface interfaces
across two dielectric media and dielectric spacers, as illustrated in Figure 10b,c, respectively.
Their corresponding wave matrices can be derived from the boundary conditions, and they
are explicitly shown in [23].

The procedure for synthesizing a reciprocal and lossless S-matrix is briefly outlined
here. First, the desired S-matrix, Sspec, is stipulated based on the required application. It is
then converted to a wave matrix, as follows [23]:

Mspec =

(
I 0

S11,spec S12,spec

)(
S21,spec S22,spec

0 I

)−1

, (45)

where 0 represents a 2× 2 null matrix. This wave matrix Mspec is known and it is set as the
synthesis goal. It is worth noting that, if S21,spec has a zero determinant, taking the inverse
matrix in (45) becomes invalid. In this case, a perturbation can be introduced into S21,spec
to alleviate this problem. For simplicity, it is assumed that this S-matrix can be realized
by cascading three sheets. Accordingly, Figure 11 displays the targeted structure and the
cascaded wave matrix that relates E±1 to E±4 is

Mcasc = M(1)
sheetM

(2)
dielectricM(2)

sheetM
(3)
dielectricM(3)

sheet (46)

in which M(1)
sheet, M(2)

sheet and M(3)
sheet are the admittance tensors that need to be solved. By

setting Mspec = Mcasc, and with some algebraic manipulation, one can find the admittance
tensor of the second sheet Y2 [23]:

e⊗ Y2 =
1

A2
((e⊗ I)Mspec(e⊗ I)− (et1Φ2t2Φ3t3e)⊗ I). (47)

The symbol ⊗ in (47) represents the Kronecker product of matrices and A2 is some
constant scalar. The matrix t1 contains information regarding the dielectric interface where
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the first sheet is located, Φ2 carries the phase information of the second dielectric spacer (t2
, t3, and Φ3 are similarly defined), and e is a constant matrix [23]:

t1 =
1

2η2

(
η2 + η1 η2 − η1
η2 − η1 η2 + η1

)
, Φ2 =

(
ejϕ2 0

0 e−jϕ2

)
, e =

(
1 1
−1 −1

)
. (48)

Figure 11. A cascaded metasurface structure consists of three sheets with only electric responses
(γ = χ = Z = 0).

Similarly, the admittance tensors of the first and third sheets Y1 and Y3 can be expressed
in terms of Y2,

e⊗ Y1 =
1

A1

[
Mspec(e⊗ I)− (t1Φ2t2Φ3t3e)⊗ I − η2

2
(t1Φ2eΦ3t3e)⊗ Y2

]
·
(

I ⊗ (I +
B1

A1
Y2)
−1
)

e⊗ Y3 =
1

A3

(
I ⊗ (I +

B3

A3
Y2)
−1
)

·
[
(e⊗ I)Mspec − (et1Φ2t2Φ3t3)⊗ I − η2

2
(et1Φ2eΦ3t3)⊗ Y2

]
(49)

where A1, B1, A3, and B3 are the constants explicitly calculated in [23]. A more complicated
synthesis procedure involving four cascaded sheets is also discussed in [23], but the main
idea follows the three-sheet case shown here.

5. Design Examples

In this section, several polarization-converting design examples are shown and dis-
cussed in order to illustrate the broad applicability of bianisotropic metasurfaces. For the
details of the analysis and synthesis procedure, please refer to [23]. All of the devices
considered here are realized by cascading several electric sheets and, thus, can be realized
in practice using subwavelength patterned surfaces. The admittances of the electric sheets
can be characterized analytically [37,38,44], or through full-wave extraction methods. How-
ever, evanescent coupling resulting from the fine features of the patterning may shift the
unit cell’s response when the impedance sheets are cascaded to produce the bianisotropic
unit cells. In order to account for this, the impedance sheets will need to be designed,
such that the desired response of the unit cell is maintained. Several examples of metasur-
faces demonstrating the feasibility of this approach at microwave and millimeter wave
frequencies can be found in [5,7,18,45].

5.1. Asymmetric Circular Polarizer

An asymmetric circular polarizer is the first device presented here. The device con-
verts a right-hand circularly polarized incident wave to a left-hand circularly polarized
transmitted wave. On the contrary, when the incident wave is left-hand circularly polarized,
it is totally reflected. Figure 12a provides an illustration of the operation [23]. Accordingly,
the device has S-parameters:

S12,spec = ST
21,spec =

ejφ

2

(
1 j
j −1

)
, S11,spec = S22,spec =

ejφ

2

(
1 −j
−j −1

)
. (50)
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for normal incidence.

(a) (b) (c)

Figure 12. An asymmetric circular polarizer. (a) Polarization-converting operation of the metasurface [23].
(b) Unit cell of the asymmetric circular polarizer. (c) Simulated transmission coefficients.

Let us synthesize this asymmetric circular polarizer while using the wave matrix
approach [23]. This specified S-matrix leads to a S21,spec with a vanishing determinant.
Hence, a perturbation is required in this case, as noted in the previous section:

S12,spec = ST
21,spec =

ejφ

2

(
1 j
j −ej1◦

)
. (51)

This device can be realized by cascading three sheets. Figure 12b shows a unit cell of
the device. In this example, we stipulate both dielectric spacers to have a dielectric constant
ε2 = ε3 = 5. It is assumed that the phase delay φ = 0 and the electrical lengths of both
dielectric spacers are ϕ2 = ϕ3 = 2π/5. By substituting these parameters into the design
equations, (47) and (49), the following sheet admittance tensors are obtained,

Y1 =
j

η0

(
0.73 1.00
1.00 0.72

)
, Y2 =

j
η0

(
1268.31 5.52

5.52 1.43

)
, Y3 = Y1. (52)

Synthesized admittance values (52) are modeled in Ansys HFSS as anisotropic bound-
ary conditions for full-wave verification of the design. At frequencies other than the design
frequency, ω0, the sheet admittances are assumed to obey Foster’s reactance theorem. The
eigenvalues of each sheet are first found by diagonalizing the tensors (52). We assume a
capacitive frequency dependence if the resulting susceptances B0 are positive,

Bc(ω) =
ω

ω0
B0, if B0 > 0. (53)

On the other hand, negative susceptances are assumed to possess an inductive response

Bl(ω) =
ω0

ω
B0, if B0 < 0. (54)

The assumptions, (53) and (54), are, in fact, reasonable since the admittances are realized
by simple metallic patterns. Figure 12c displays the simulated frequency response of the
asymmetric circular polarizer, where the transmission characteristics match the specified
performance at the operating frequency (51).

5.2. Polarization Rotator

The second device considered in this section is a reflectionless polarization rotator
that rotates the polarization of any linearly polarized incident wave by 90◦, as shown in
Figure 13a.
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(a) (b) (c)

Figure 13. A linear polarization rotator. (a) Polarization-converting operation of the metasurface [23].
(b) Unit cell of the polarization rotator. (c) Simulated transmission coefficients.

The stipulated S-parameters for this example are,

S12,spec = ST
21,spec = ejφ

(
0 1
−1 0

)
, S11,spec = S22,spec = ejφ

(
0 0
0 0

)
. (55)

As discussed earlier, four sheets are required to reconstruct the stipulated S-matrix. With
the unit cell that is shown in Figure 13b, it is assumed that φ = π/4.5, ε2 = ε3 = ε4 = 3.5,
and ϕ2 = ϕ3 = ϕ4 = π/5. Following the synthesis procedure that is outlined in [23], the
admittance tensors of each sheet are calculated to be:

Y1 =
j

η0

(
5.01 0.77
0.77 0.13

)
, Y2 =

j
η0

(
9.30 0

0 1.00

)
Y3 =

j
η0

(
7.59 −7.77
−7.77 2.71

)
, Y4 =

j
η0

(
2.57 −1.30
−1.30 2.57

)
.

(56)

The metasurface unit cell was simulated in Ansys HFSS, and Figure 13c plots the re-
sulting frequency response. Again, the transmission characteristics match the specified
performance at the design frequency.

6. Conclusions

In this paper, two design procedures for realizing reciprocal bi-isotropic and bian-
isotropic metasurfaces using cascaded impedance sheets were reviewed. The design
procedures use generalized sheet transition conditions (GSTCs) to relate bianisotropic
surface parameters to the scattering parameters of the cascaded sheet impedances. Such
approaches allow for metasurfaces with arbitrary lossless, reciprocal, and bianisotropic
responses to be realized in practice. These design methods were then used to realize several
examples of practical devices with phase and polarization control. Specifically, they were
used to realize an asymmetric circular polarizer and a reflectionless, polarization rotator.

In addition to these design procedures, the quality factor for metasurfaces that are
composed of three impedance sheets was introduced. The quality factor was shown to
predict the bandwidth of a homogeneous metasurface. This was demonstrated through
the design of an impedance matching metasurface with maximal bandwidth. It was also
shown that the quality factor could be used to improve the performance of inhomoge-
neous metasurfaces. This was demonstrated through the design of a gradient metasurface
for plane wave refraction. The unit cell quality factor was used to identify cells that de-
graded the overall metasurface performance, and it was used to select alternative unit
cells that improved the overall performance. Such an approach can be used to balance
manufacturability and performance trade-offs for metasurface devices.
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Appendix A

Here, the approximations that are used to calculate the quality factor of a metasurface
with electrically thin spacers are derived. First, we will show that the internal matching
resistance, Rint, is independent of the spacer’s dielectric constant, εr. For an electrically
thin spacer βd << 1. Using second-order small angle approximations, sin βd ≈ βd and

cos βd ≈ 1− (βd)2

2 , in the expression for Rint yields,

Rint =
Zin + ZL +

√
ZinZL cos φ21

sin2 φ21

(ωµ0d)2

ZinZL
. (A1)

Which, does not depend on the dielectric constant of the spacer so Rint is independent of
the spacer’s dielectric constant.

Next, we will derive the approximate expressions for the impedance sheets (31)–(33).
Converting the sin(2βd) term in (32) to 2 sin(βd) cos(βd) and making the same small
argument approximations in (31)–(33),

Zs1 = −j
ωµ0d

1− ω2µ0εrε0d2

2 + (X12+X22
det Z )ωµ0d

(A2)

Zs2 = −j
(ωµ0d)2X12

det Z + 2X12ωµ0d(1− ω2µ0εrε0d2

2 )
(A3)

Zs3 = −j
ωµ0d

1− ω2µ0εrε0d2

2 + (X12+X11
det Z )ωµ0d

. (A4)

Because we only need to consider capactive sheets in the calculation for the quality
factor, we can set (A2)–(A4) equal to the impedance of a capacitive element Zsi = 1/jωCsi.
The following expressions are produced by setting (A2)–(A4) equal to 1/jωCsi and solving
for the sheet capacitances,

Cs1 =
1
ω

( 1
ωµ0d

+
X22 + X12

det(Z)
)
− εrε0d

2
(A5)

Cs2 =
1
ω

( 2
ωµ0d

+
det(Z)

X12

1
(ωµ0d)2

)
− εrε0d (A6)

Cs3 =
1
ω

( 1
ωµ0d

+
X11 + X12

det(Z)
)
− εrε0d

2
. (A7)
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