Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = cascaded H-Bridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3016 KiB  
Article
Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy Transition
by Marta Pacheco, Adrien Brac de la Perrière, Patrícia Moura and Carla Silva
C 2025, 11(3), 54; https://doi.org/10.3390/c11030054 - 23 Jul 2025
Viewed by 469
Abstract
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and [...] Read more.
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

24 pages, 9734 KiB  
Article
Investigating the Influence of PWM-Driven Cascaded H-Bridges Multilevel Inverter on Interior Permanent Magnet Synchronous Motor Power Losses
by Claudio Nevoloso, Gioacchino Scaglione, Giuseppe Schettino, Antonino Oscar Di Tommaso, Fabio Viola, Ciro Spataro and Rosario Miceli
Energies 2025, 18(15), 3911; https://doi.org/10.3390/en18153911 - 22 Jul 2025
Viewed by 253
Abstract
This paper presents an accurate analysis of the power losses of an interior permanent magnet synchronous motor fed by a cascaded H-bridge multilevel inverter. The main goal of this study is to investigate the impact of the cascaded h-bridge inverter, multicarrier PWM strategies, [...] Read more.
This paper presents an accurate analysis of the power losses of an interior permanent magnet synchronous motor fed by a cascaded H-bridge multilevel inverter. The main goal of this study is to investigate the impact of the cascaded h-bridge inverter, multicarrier PWM strategies, and inverter switching frequency on the synchronous motor power losses. With this aim in mind, a detailed frequency domain power analysis was carried out on motor power losses at different operating points in the frequency–torque plane. Motor power losses were further categorized into fundamental and harmonic power losses. This evaluation involved driving the power converter using six distinct multicarrier PWM strategies at four different switching frequencies. Additionally, a comparison was conducted with a conventional two-level PWM inverter to quantify the reduction in motor power losses. The experimental results show that the cascaded h-bridge inverter guarantees a notable increase in the motor efficiency, up to 7%, and losses in segregation at the fundamental frequency, if compared to the standard two-level PWM inverter, especially at low speed and with partial-load conditions. Such results mark out the cascaded H-bridge inverter as a valuable choice, also with regard to low-voltage drive applications. Full article
Show Figures

Figure 1

18 pages, 8267 KiB  
Article
Discontinuous Multilevel Pulse Width Modulation Technique for Grid Voltage Quality Improvement and Inverter Loss Reduction in Photovoltaic Systems
by Juan-Ramon Heredia-Larrubia, Francisco M. Perez-Hidalgo, Antonio Ruiz-Gonzalez and Mario Jesus Meco-Gutierrez
Electronics 2025, 14(13), 2695; https://doi.org/10.3390/electronics14132695 - 3 Jul 2025
Viewed by 240
Abstract
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution [...] Read more.
In the last decade, countries have experienced increased solar radiation, leading to an increase in the use of solar photovoltaic (PV) systems to boost renewable energy generation. However, the high solar penetration into these systems can disrupt the normal operation of the distribution grid. Thus, a major concern is the impact of these units on power quality indices. To improve these units, one approach is to design more efficient power inverters. This study introduces a pulse width modulation (PWM) technique for multilevel power inverters, employing a sine wave as the carrier wave and an amplitude over-modulated triangular wave as the modulator (PSTM-PWM). The proposed technique improves the waveform quality and increases the AC voltage output of the multilevel inverter compared with that from conventional PWM techniques. In addition, it ensures compliance with the EN50160 standard. These improvements are achieved with a lower modulation order than that used in traditional techniques, resulting in reduced losses in multilevel power inverters. The proposed approach is then implemented using a five-level cascaded H-bridge inverter. In addition, a comparative analysis of the efficiency of multilevel power inverters was performed, contrasting classical modulation techniques with the proposed approach for various modulation orders. The results demonstrate a significant improvement in both total harmonic distortion (THD) and power inverter efficiency. Full article
(This article belongs to the Special Issue Advances in Pulsed-Power and High-Power Electronics)
Show Figures

Figure 1

52 pages, 6455 KiB  
Review
Recent Advancements in Multilevel Inverters: Topologies, Modulation Techniques, and Emerging Applications
by Taha Abdulsalam Taha, Mohamed Shalaby, Noor Izzri Abdul Wahab, Hussein Ibzir Zaynal, Mohd Khair Hassan, Sulaiman Al-Sowayan and Mohamad A. Alawad
Symmetry 2025, 17(7), 1010; https://doi.org/10.3390/sym17071010 - 26 Jun 2025
Viewed by 665
Abstract
Multilevel inverters (MLIs) have become fundamental in contemporary power electronics, providing enhanced performance compared to conventional two-level inverters regarding their output voltage quality, efficiency, and scalability. This study comprehensively assesses multilevel inverter technologies, including their topologies, control systems, and various applications. The study [...] Read more.
Multilevel inverters (MLIs) have become fundamental in contemporary power electronics, providing enhanced performance compared to conventional two-level inverters regarding their output voltage quality, efficiency, and scalability. This study comprehensively assesses multilevel inverter technologies, including their topologies, control systems, and various applications. The study starts with a comprehensive examination of the core concepts of MLIs, subsequently embarking on a detailed evaluation of both conventional and innovative topologies, such as diode-clamped, flying capacitor, cascaded H-bridge, and modular multilevel converters. The study further examines the control systems used in MLIs, including Pulse Width Modulation (PWM), space vector modulation (SVM), and Model Predictive Control (MPC), emphasizing their benefits and drawbacks. The applications of MLIs in renewable energy systems, electric cars, industrial drives, and grid integration are comprehensively examined. The study closes by examining growing trends, difficulties, and future research paths, emphasizing the ability of MLIs to transform power conversion systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

25 pages, 6702 KiB  
Article
Bridge Deformation Monitoring Combining 3D Laser Scanning with Multi-Scale Algorithms
by Dongmei Tan, Wenjie Li, Yu Tao and Baifeng Ji
Sensors 2025, 25(13), 3869; https://doi.org/10.3390/s25133869 - 21 Jun 2025
Viewed by 929
Abstract
To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation [...] Read more.
To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation detection and utilizes least-squares plane fitting for quantitative feature extraction. When applied to the approach span of a cross-river bridge in Hubei Province, China, this method leverages dense point clouds (greater than 500 points per square meter) acquired using a Leica RTC360 scanner. Data preprocessing incorporates curvature-adaptive cascade denoising, achieving over 98% noise removal while retaining more than 95% of structural features, along with octree-based simplification. By extracting multi-level slice features from bridge decks and piers, this method enables the simultaneous analysis of global trends and local deformations. The results revealed significant deformation, with an average settlement of 8.2 mm in the left deck area. The bridge deck exhibited a deformation trend characterized by left and higher right in the vertical direction, while the bridge piers displayed noticeable tilting, particularly with the maximum offset of the rear pier columns reaching 182.2 mm, which exceeded the deformation of the front pier. The bridge deck’s micro-settlement error was ±1.2 mm, and the pier inclination error was ±2.8 mm, meeting the Chinese Highway Bridge Maintenance Code (JTG H11-2004) and the American Association of State Highway and Transportation Officials (AASHTO) standards, and the multi-scale algorithm achieved engineering-level accuracy. Utilizing point cloud densities >500 pt/m2, the M3C2 algorithm achieved a spatial resolution of 0.5 mm, enabling sub-millimeter full-field analysis for complex scenarios. This method significantly enhances bridge safety monitoring precision, enhances the precision of intelligent systems monitoring, and supports the development of targeted systems as pile foundation reinforcement efforts and as improvements to foundations. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 9836 KiB  
Article
Cascaded H-Bridge Multilevel Converter Topology for a PV Connected to a Medium-Voltage Grid
by Hammad Alnuman, Essam Hussain, Mokhtar Aly, Emad M. Ahmed and Ahmed Alshahir
Machines 2025, 13(7), 540; https://doi.org/10.3390/machines13070540 - 21 Jun 2025
Viewed by 405
Abstract
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work [...] Read more.
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work at high voltage compared to other converter types, making them ideal for applications connected to medium-voltage grids whilst being compliant with grid codes and voltage ratings. Cascaded H-bridge multilevel converters (CHBs-MLC) are a type of MLC topology, and they does not need any capacitors or diodes for clamping like other MLC topologies. One of the problems in these types of converters involves the double-frequency harmonics in the DC linking voltage and power, which can increase the size of the capacitors and converters. The use of line frequency transformers for isolation is another factor that increases the system’s size. This paper proposes an isolated CHBs-MLC topology that effectively overcomes double-line frequency harmonics and offers isolation. In the proposed topology, each DC source (renewable energy source) supplies a three-phase load rather than a single-phase load that is seen in conventional MLCs. This is achieved by employing a multi-winding high-frequency transformer (HFT). The primary winding consists of a winding connected to the DC sources. The secondary windings consist of three windings, each supplying one phase of the load. This configuration reduces the DC voltage link ripples, thus improving the power quality. Photovoltaic (PV) renewable energy sources are considered as the DC sources. A case study of a 1.0 MW and 13.8 kV photovoltaic (PV) system is presented, considering two scenarios: variations in solar irradiation and 25% partial panel shedding. The simulations and design results show the benefits of the proposed topology, including a seven-fold reduction in capacitor volume, a 2.7-fold reduction in transformer core volume, a 50% decrease in the current THD, and a 30% reduction in the voltage THD compared to conventional MLCs. The main challenge of the proposed topology is the use of more switches compared to conventional MLCs. However, with advancing technology, the cost is expected to decrease over time. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

24 pages, 7962 KiB  
Article
A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method
by Sofia Lemssaddak, Abdelhafid Ait Elmahjoub, Mohamed Tabaa, Adnane El-Alami and Mourad Zegrari
Energies 2025, 18(13), 3227; https://doi.org/10.3390/en18133227 - 20 Jun 2025
Cited by 1 | Viewed by 502
Abstract
Traditional multilevel inverter topologies, such FC, NPC, and CHB, have a few significant disadvantages. They need a great number of parts, which raises the complexity, expense, and switching losses. Furthermore, their intricate control schemes make voltage balancing and synchronization challenging. Lastly, under some [...] Read more.
Traditional multilevel inverter topologies, such FC, NPC, and CHB, have a few significant disadvantages. They need a great number of parts, which raises the complexity, expense, and switching losses. Furthermore, their intricate control schemes make voltage balancing and synchronization challenging. Lastly, under some circumstances, they experience severe harmonic distortion, necessitating the inclusion of expensive filters to enhance signal quality. This paper proposes a novel multilevel converter topology that uses the phase-disposition PWM (PD-PWM) technique to control a 19-level output. This new configuration maintains performance comparable to the CHB-MLI reference while using fewer switches, simplifying control, and reducing costs. Our approach is based on extensive simulations conducted in the MATLAB Simulink environment, with results compared to the CHB-MLI. A low-pass filter is added to improve the output voltage quality, reducing the THD% to 1.33%. This strategy offers several advantages, including simpler control, lower costs, increased reliability, and higher-quality output. The system was replicated using MATLAB Simulink and validated through hardware-in-the-loop (HIL) testing. The HIL method ensures real-world testing without causing damage to the hardware. The integrated system includes sensors and necessary hardware for a comprehensive energy management solution. Full article
Show Figures

Figure 1

18 pages, 3674 KiB  
Article
Global Optimal Solving Algorithm for Power Distribution Based on Selective Harmonic Elimination in Cascaded H-Bridge Multilevel Inverters
by Xingyue Qian, Jun Hao, Jiajia Xiao, Hanzhi Yang, Qi Zhang and Zhibao Yuan
Sensors 2025, 25(11), 3524; https://doi.org/10.3390/s25113524 - 3 Jun 2025
Viewed by 490
Abstract
The conventional power distributions methods face many challenges, such as high switching frequency, multiple carrier cycles, and single power distribution. To address the above issues, a novel power distribution based on the selective harmonic elimination (PD–SHE) strategy is proposed to achieve arbitrary power [...] Read more.
The conventional power distributions methods face many challenges, such as high switching frequency, multiple carrier cycles, and single power distribution. To address the above issues, a novel power distribution based on the selective harmonic elimination (PD–SHE) strategy is proposed to achieve arbitrary power distribution and selective harmonic elimination but with low switching frequency and single carrier cycle. Firstly, the novel PD–SHE model is established based on the principles of SHE and power calculation theory, where distribution ratio is introduced to adjust power distribution arbitrarily and its constraints have been deduced. In addition, the issue of redundancy of solution is also analyzed and solved by adding valid constraints. Finally, polynomial homotopy continuation (PHC) algorithm is applied to solve the novel PD–SHE model. Then, all the physically realizable solutions can be found without choosing the initial value in the full range of modulation index. The results of simulation analysis show the effectiveness of PD–SHE strategy and the superiority of PHC algorithm in solving the global optimal solution. Moreover, the reliability of the global optimal solution for PD–SHE strategy is verified via physical experiments in terms of harmonic elimination and active power distribution. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 12348 KiB  
Article
A Novel Modified Delta-Connected CHB Multilevel Inverter with Improved Line–Line Voltage Levels
by Abdullah M. Noman
Electronics 2025, 14(9), 1711; https://doi.org/10.3390/electronics14091711 - 23 Apr 2025
Viewed by 518
Abstract
Numerous cascaded inverter configurations have been developed to generate higher voltage levels, thereby improving performance and lowering costs. Comparing conventional delta-connected cascaded H-bridge (CHB) multilevel inverters to star-connected CHB multilevel inverters reveals a disadvantage. In conventional delta-connected CHB multilevel inverters, more switches are [...] Read more.
Numerous cascaded inverter configurations have been developed to generate higher voltage levels, thereby improving performance and lowering costs. Comparing conventional delta-connected cascaded H-bridge (CHB) multilevel inverters to star-connected CHB multilevel inverters reveals a disadvantage. In conventional delta-connected CHB multilevel inverters, more switches are unavoidably needed to achieve the same line-to-line grid voltage, since more H-bridges cascaded in series are required than in a star-connected CHB. This paper presents a modified topology based on the delta-connected CHB multilevel configuration to provide the same number of line-to-line voltage levels as a star-connected CHB, using an equivalent number of switches. The number of switches in the proposed multilevel inverter is decreased compared to conventional delta-connected CHB MLIs at the same voltage levels. The mathematical modeling of the proposed topology and the simulation results using a fixed load and a PV-grid connection are provided to validate the efficacy and dependability of the proposed topology. To validate the usefulness of the proposed configuration, it was practically implemented in the laboratory. Data acquisition and generation of gating signals to fire the switches were implemented using a MicroLabBox real-time controller. The prototype was examined under a resistive–inductive load and tested under different modulation indices. To demonstrate the effectiveness and the functionality of the topology, the experimental results are also provided. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

30 pages, 4138 KiB  
Article
TH-RotatE: A Hybrid Knowledge Graph Embedding Framework for Fault Diagnosis in Railway Operational Equipment
by Xiaorui Yang, Honghui Li, Jiahe Yan and Ruiyi He
Electronics 2025, 14(8), 1656; https://doi.org/10.3390/electronics14081656 - 19 Apr 2025
Viewed by 780
Abstract
Reliable fault diagnosis in railway operational equipment is critical to ensuring system safety, operational efficiency, and predictive maintenance. Existing methods struggle to capture the intricate interdependencies among fault causes, failure modes, and corrective actions, limiting their ability to model fault propagation effectively. To [...] Read more.
Reliable fault diagnosis in railway operational equipment is critical to ensuring system safety, operational efficiency, and predictive maintenance. Existing methods struggle to capture the intricate interdependencies among fault causes, failure modes, and corrective actions, limiting their ability to model fault propagation effectively. To address this, we propose TH-RotatE, a novel knowledge graph (KG) embedding framework that integrates TransH’s hierarchical modeling with RotatE’s complex space transformations, while incorporating a hybrid scoring function and self-adversarial negative sampling to enhance embedding quality and fault relationship differentiation. This approach effectively captures hierarchical dependencies, cyclic patterns, and asymmetric transitions inherent in railway faults, enabling a more expressive representation of fault propagation. Furthermore, we construct the Chinese railway operational equipment fault knowledge graph (CROEFKG), a structured multi-relational repository encoding fault descriptions, causal chains, and mitigation strategies. Extensive experiments on real-world railway fault data demonstrate that TH-RotatE outperforms both traditional and advanced KG embedding models, achieving superior fault diagnosis accuracy and link prediction effectiveness. In practical applications, TH-RotatE enables timely fault diagnosis and detection of cascading failures, providing interpretable fault propagation pathways through the CROEFKG’s structured representation. These capabilities offer a scalable, knowledge-driven solution for railway systems, improving diagnostic accuracy while reducing safety risks and unplanned downtime. This work advances domain-specific KG embeddings, bridging the gap between theoretical innovation and industrial reliability. Full article
Show Figures

Figure 1

16 pages, 3818 KiB  
Article
Design and Control of an Enhanced Grid-Tied PV CHB Inverter
by Marino Coppola, Adolfo Dannier, Emanuele Fedele, Gerardo Saggese and Pierluigi Guerriero
Energies 2025, 18(8), 2056; https://doi.org/10.3390/en18082056 - 17 Apr 2025
Cited by 1 | Viewed by 403
Abstract
This paper deals with the design and control of an enhanced grid-tied photovoltaic (PV) cascaded H-Bridge (CHB) inverter, which suffers from issues related to operation in the overmodulation region in the case of a deep mismatch configuration of PV generators (PVGs). This can [...] Read more.
This paper deals with the design and control of an enhanced grid-tied photovoltaic (PV) cascaded H-Bridge (CHB) inverter, which suffers from issues related to operation in the overmodulation region in the case of a deep mismatch configuration of PV generators (PVGs). This can lead to reduced system performance in terms of maximum power point tracking (MPPT) efficiency, or even instability (i.e., a lack of control action). The proposed solution is to insert into the cascade a power cell fed by a battery energy storage system (BESS) with the aim of providing an additional power contribution. The latter is useful to reduce the modulation index of the cell, delivering more power than the others when a preset threshold is crossed. Moreover, a suitable hybrid modulation method is used to achieve the desired result. A simulated performance in a PLECS environment proves the viability of the proposed solution and the effectiveness of the adopted control strategy. Full article
Show Figures

Figure 1

22 pages, 10672 KiB  
Article
Comparison of Fixed Switching Frequency FCS-MPC Strategies Applied to a Multilevel Converter: A Case Study of a Hybrid Cascade Converter Based on 2L-VSI and H-Bridge Converters
by Mauricio E. Arévalo, Roberto O. Ramírez, Carlos R. Baier, Felipe A. Villarroel, José R. Espinoza and Fernando P. Urra-González
Processes 2025, 13(4), 1214; https://doi.org/10.3390/pr13041214 - 17 Apr 2025
Viewed by 509
Abstract
This paper evaluates the performance of strategies based on finite-control-set model predictive control (FCS-MPC) aimed at reducing or fixing the converter switching frequency or decreasing the spread of the harmonic spectrum in multilevel hybrid cascade converters (HCCs). These properties are desirable for medium- [...] Read more.
This paper evaluates the performance of strategies based on finite-control-set model predictive control (FCS-MPC) aimed at reducing or fixing the converter switching frequency or decreasing the spread of the harmonic spectrum in multilevel hybrid cascade converters (HCCs). These properties are desirable for medium- to high-voltage applications, where minimizing switching losses is crucial, as well as for applications employing passive filters, where resonance modes can be excited. The strategies evaluated are input restriction, notch filtering, period control, and PWM restriction. Key aspects considered in this work are (i) the evaluation of the steady-state and transient performance of FCS-MPC strategies proposed for two-level converters in a multilevel topology, and (ii) the evaluation of the computational cost associated with the implementation of these strategies on a multilevel converter with a high number of available inputs. As a typical application, the study is carried out employing a five-level HCC experimental prototype driving an induction motor through indirect vector control. To perform a fair comparison between the strategies, a control platform based on a cost-effective Zynq system on chip is proposed, which allows for achieving the hard timing constraints imposed by FCS-MPC strategies. The results show that the PWM restriction strategy achieves the best steady-state performance among the evaluated strategies, with an error 400 times smaller than that of the second-best strategy (input restriction), with an average switching frequency of 962.5 Hz, which differs from the desired average frequency by 3%, and a maximum difference in power distribution between modules of 0.8%. In addition, the system-on-chip hardware achieves a competitive execution time of 46 μs when the ARM Cortex solution is implemented and 20 μs when the ARM Cortex–FPGA solution is used instead, employing the 512 inputs available in the FCS-MPC algorithm. The studies, performed in steady-state and transient regimes, confirm (i) the feasibility of the evaluated algorithms in an HCC topology and (ii) the feasibility of the control platform for implementing high-computational-burden algorithms with a low sampling time. Full article
Show Figures

Figure 1

14 pages, 7854 KiB  
Article
Adaptive DC-Link Voltage Control for 22 kW, 40 kHz LLC Resonant Converter Considering Low-Frequency Voltage Ripple
by Roland Unruh, Joachim Böcker and Frank Schafmeister
Electronics 2025, 14(8), 1517; https://doi.org/10.3390/electronics14081517 - 9 Apr 2025
Viewed by 718
Abstract
The LLC converter achieves the highest efficiency in resonant operation. Conventionally, the input DC-link voltage is controlled to operate the LLC converter at resonance for the given operating point. However, the DC-link capacitor voltage shows a low-frequency voltage ripple (typically the second harmonic [...] Read more.
The LLC converter achieves the highest efficiency in resonant operation. Conventionally, the input DC-link voltage is controlled to operate the LLC converter at resonance for the given operating point. However, the DC-link capacitor voltage shows a low-frequency voltage ripple (typically the second harmonic of grid frequency) in cascaded converters so that the LLC has to adapt its switching frequency within the grid period. Conventionally, the LLC converter operates 50% of the time above the resonant frequency of 40 kHz and 50% below resonance. Both operating conditions cause additional losses. However, experimental measurements indicate that the below-resonance operation causes significantly higher losses than above-resonance operation due to much higher primary and secondary transformer currents. It is better to increase the DC-link voltage by 30% of the peak-to-peak low-frequency voltage ripple to mostly avoid below-resonance operation (i.e., from 650 V to 680 V in this case). With the proposed control, the LLC converter operates about 75% of time over resonance and only 25% of time below resonance. The overall efficiency increases from 97.66% to 97.7% for the average operating point with an 80% load current. This corresponds to a 2% total loss reduction. Finally, the peak resonance capacitor voltage decreases from 910 V to 790 V (−13%). Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters, 2nd Edition)
Show Figures

Figure 1

19 pages, 1163 KiB  
Article
A Modified Nearest Level Control Scheme for Improved Submodule Current Sharing in a CHB Converter with Integrated EDLCs
by Viktor Döhlen and Kent Bertilsson
Energies 2025, 18(7), 1697; https://doi.org/10.3390/en18071697 - 28 Mar 2025
Viewed by 345
Abstract
This study investigates a Cascaded H-Bridge converter with Electric Double-Layer Capacitors as integrated energy storage components. As the DC-link voltages are variable, the modulation index and number of submodules contributing to the active power delivery vary according to state of charge. The nearest [...] Read more.
This study investigates a Cascaded H-Bridge converter with Electric Double-Layer Capacitors as integrated energy storage components. As the DC-link voltages are variable, the modulation index and number of submodules contributing to the active power delivery vary according to state of charge. The nearest level control algorithm for this application is studied, and expressions for the duty cycle of conventional Nearest Level Modulation are derived. A modification of the sort and select algorithm to determine which submodule is to be inserted and bypassed when using the Nearest Level Control algorithm is proposed to distribute the activation time and the experienced RMS current of the submodules. Expressions for the duty cycle of each inserted submodule for the proposed algorithm is presented and compared to the conventional. Simulation experiments of current sharing between submodules under active power delivery for the conventional and proposed Nearest Level Control is conducted for an 11- level, 41-level and 61-level converter. Simulation experiments show a reduction in RMS current for the submodule experiencing the highest thermal stress. Over the course of power delivery and increasing modulation index, the peak RMS current increase for the conventional nearest level modulation while it is kept constant for the proposed modulation scheme. Full article
(This article belongs to the Special Issue Advances in Design and Control of Power Electronic Systems)
Show Figures

Figure 1

20 pages, 8152 KiB  
Article
A Real-Time Diagnosis Method of Open-Circuit Faults in Cascaded H-Bridge Rectifiers Based on Voltage Threshold and Current Coefficient of Variation
by Yong Liu, Zhe Guo, Fei Liu, Feiya Guo, Kang Wang, Yongsheng Zhu, Feng Hou and Xiaolei Wang
Electronics 2025, 14(5), 986; https://doi.org/10.3390/electronics14050986 - 28 Feb 2025
Viewed by 656
Abstract
To effectively diagnose open-circuit (OC) faults in the insulated gate bipolar transistor (IGBT) of a cascaded H-bridge rectifier (CHBR) in real-time, this paper uses a single-phase three-cell CHBR as an example. Through mechanism analysis, the variation patterns of the capacitor voltage and grid [...] Read more.
To effectively diagnose open-circuit (OC) faults in the insulated gate bipolar transistor (IGBT) of a cascaded H-bridge rectifier (CHBR) in real-time, this paper uses a single-phase three-cell CHBR as an example. Through mechanism analysis, the variation patterns of the capacitor voltage and grid current due to OC faults are defined. Based on this, the DC capacitor voltage threshold (VT) and the grid current coefficient of variation (CCV) are introduced as fault diagnosis indices, and a real-time OC fault diagnosis method for CHBR is established. The robustness, accuracy, timeliness, and universality of the proposed method are validated through simulations. The results show that the proposed method exhibits strong robustness when the grid voltage fluctuates, either dropping from 3 kV to 2.85 kV or rising from 3 kV to 3.15 kV. Compared to existing diagnostic methods, the proposed approach requires less diagnostic time, with the faulty IGBT being identified in as little as 3.09 ms under optimal conditions. Additionally, the diagnostic performance remains unaffected by changes in control strategies, making it universally applicable for OC fault diagnosis in CHBR under various control strategies (such as dq current decoupling control, PR current control, and transient current control), with comparable diagnosis results and speeds. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

Back to TopTop