Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = cartridge recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 866 KiB  
Article
Reuse of Activated Carbon Filter Waste as Filler in Vulcanized Rubber Composites
by Viviane Chaves de Souza, Henrique Pina Cardim, Carlos Toshiyuki Hiranobe, Guilherme Pina Cardim, Iago William Zapelini, Leonardo Lataro Paim, Gleyson Tadeu Almeida Santos, Silvio Rainho Teixeira, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Flávio Camargo Cabrera
J. Compos. Sci. 2025, 9(8), 406; https://doi.org/10.3390/jcs9080406 - 1 Aug 2025
Viewed by 364
Abstract
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as [...] Read more.
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as a reinforcing filler in vulcanized natural rubber composites. Samples were prepared with 5, 10, 15, and 20 phr (per hundred rubber) of residue and compared to unfilled natural rubber. Stress vs. strain tests reached 13.9 MPa of tension at rupture for composites containing 10 phr of carbon-activated residues, representing a 21.9% increase compared to natural rubber. Interestingly, the tension at rupture for NR/AC10phr reached values close to those of NR/CB5phr (with carbon black N330) attaining 14.4 MPa. These results indicate that, even at relatively low concentrations, the carbon filter can offer partial substitution for commercial fillers. Moreover, the use of activated carbon from filter cartridges as filler in rubber composites provides an environmentally favorable alternative to energy-intensive regeneration processes for activated carbon. Full article
Show Figures

Graphical abstract

17 pages, 3831 KiB  
Article
The Utilization of an Aloe Vera Rind By-Product: Deep Eutectic Solvents as Eco-Friendly and Recyclable Extraction Media of Polyphenolic Compounds
by Georgia D. Ioannou, Katerina A. Ioannou, Atalanti Christou, Ioannis J. Stavrou and Constantina P. Kapnissi-Christodoulou
Antioxidants 2024, 13(2), 162; https://doi.org/10.3390/antiox13020162 - 26 Jan 2024
Cited by 14 | Viewed by 3891
Abstract
In this study, an optimized environmentally friendly procedure was employed to enhance the sustainable utilization of phenolic antioxidants derived from aloe vera rind by-products. The procedure involved the application of ultrasound-assisted extraction (UAE) in combination with deep eutectic solvents (DESs). Eleven different DESs [...] Read more.
In this study, an optimized environmentally friendly procedure was employed to enhance the sustainable utilization of phenolic antioxidants derived from aloe vera rind by-products. The procedure involved the application of ultrasound-assisted extraction (UAE) in combination with deep eutectic solvents (DESs). Eleven different DESs and three conventional solvents were employed as extraction media for polyphenolic compounds. Choline chloride–citric acid (ChCl-CA) was selected as the most suitable extractant, considering its extraction efficiency in relation to the total phenolic content. The operating conditions of UAE were optimized and modeled by the use of response surface methodology in order to maximize the yield of total phenolics and antioxidant capacity. The optimal operational parameters for the UAE procedure were determined to be 16.5 min, 74% (v/v) DES in water, and a solvent-to-solid ratio equal to 192. HPLC analysis, which was performed on the optimum extract, revealed significant levels of phenolics present in the aloe rind. Efficient recovery of the extracted antioxidants was obtained by the use of solid-phase extraction (SPE) and polyamide cartridges. The ChCl-CA DES exhibited excellent recycling capability with a yield of over 90% through SPE. Finally, the greenness of the method was evaluated using the green AGREE and AGREEprep metrics. The results highlighted the sustainability and the greenness of the proposed extraction procedure for the aloe by-product. Full article
Show Figures

Figure 1

12 pages, 2674 KiB  
Article
Sustainable Filtering Systems to Reduce Microfiber Emissions from Textiles during Household Laundering
by Francisco Belzagui, Carmen Gutiérrez-Bouzán, Fernando Carrillo-Navarrete and Víctor López-Grimau
Polymers 2023, 15(14), 3023; https://doi.org/10.3390/polym15143023 - 12 Jul 2023
Cited by 8 | Viewed by 4723
Abstract
During laundering, synthetic textiles (polyester, polyamide, etc.) can release small fiber debris with a length of <5 mm. These are a type of microplastics (MPs), usually referred to as microfibers (MFs), which are considered high-concern pollutants due to their continuous and cumulative entrance [...] Read more.
During laundering, synthetic textiles (polyester, polyamide, etc.) can release small fiber debris with a length of <5 mm. These are a type of microplastics (MPs), usually referred to as microfibers (MFs), which are considered high-concern pollutants due to their continuous and cumulative entrance into the environment. Currently, as far as we know, there are no feasible alternatives to remove them. In this work, four new and sustainable filtering systems are proposed to retain the MFs emitted from domestic washing machines. The filters contain a replaceable cartridge partially filled with recycled low-density polyethylene pellets. The four designed filtering systems of different sizes were tested in a household washing machine determining the retention efficiency of the MFs after several washing cycles. It was found that all four assessed filter arrangements have a good performance for retaining MFs from the washers’ effluents. Filter F1 (diameter of 4 cm and a height of 30 cm) started retaining more than 50% of the MFs, at the 10th washing cycle, the retention climbed to 66%, while in the 20th washing cycle, its retention was greater than 80%. MFs retention was higher for filter F2 (diameter of 6.3 cm and a height of 41 cm), achieving a performance greater than 90% in the 20th washing cycle. Filter F3 was arranged by turning the F1 model flow upside down and the retention efficiency is higher compared with filter F1 values, reaching a retention efficiency of almost 100% in the 15th washing cycle. Finally, filter F4 arrangement was developed using the existing washing machine filter, obtaining better performance than the F1 and F2 filters, reaching efficiencies higher than 90% at the 20th washing cycle. In summary, depending on the arrangement, the microfiber retention efficiency was estimated between 52% and 86% in the 1st washing cycle and up to 83% to 99% in the 20th. Additionally, all arrangements demonstrated that the cartridges may last for more than 30 washing cycles before needing to be replaced. Full article
(This article belongs to the Special Issue Advances in Polymeric Textiles)
Show Figures

Graphical abstract

25 pages, 7087 KiB  
Article
Highly Efficient Cationic/Anionic Cellulose Membranes for Removal of Cr(VI) and Pb(II) Ions
by Lu Liu, Hongyang Ma, Madani Khan and Benjamin S. Hsiao
Membranes 2023, 13(7), 651; https://doi.org/10.3390/membranes13070651 - 6 Jul 2023
Cited by 4 | Viewed by 2365
Abstract
To achieve high throughput, low-pressure drops, and high adsorption capacity of Cr(VI) and Pb(II) in industrial wastewater treatment, cellulose membranes containing cationic and anionic groups were fabricated, respectively. In this process, cost-effective cotton fabrics were oxidized using sodium periodate, followed by quaternary ammonium [...] Read more.
To achieve high throughput, low-pressure drops, and high adsorption capacity of Cr(VI) and Pb(II) in industrial wastewater treatment, cellulose membranes containing cationic and anionic groups were fabricated, respectively. In this process, cost-effective cotton fabrics were oxidized using sodium periodate, followed by quaternary ammonium or sulfonation modifications. The chemical composition, surface morphology, and thermal and mechanical properties of the cellulose membranes were investigated by ATR-FTIR, solid-state NMR, SEM, TGA, and tensile experiments. Quaternary ammonium, aldehyde, and sulfonate groups were distributed on the cationic/anionic cellulose fibers as adsorption sites, which issue remarkable adsorption capability to the cellulose membranes. The highly toxic Cr(VI) and Pb(II) ions were used to challenge the adsorption capacity of the cationic and anionic cellulose membranes, respectively. The maximum adsorption capacities of Cr(VI) and Pb(II) ions were 61.7 and 63.7 mg/g, respectively, suggested by Langmuir isotherms, kinetics, and thermodynamics in the static experiments. The dynamic adsorption capability of cationic cellulose membranes against Cr(VI) ions was determined and compared with that of commercially available anionic-exchange membranes. Spiral wound filtration cartridges were fabricated by cationic and anionic cellulose membranes, respectively, and were used to adsorb Cr(VI) and Pb(II) from lab-made wastewater, respectively. The cationic cellulose cartridge can purify 4.4 L of wastewater containing 1.0 mg/L of Cr(VI) ions with a 100% removal ratio, while the pressure drop was retained at 246 Pa. Similarly, the anionic cellulose cartridge exhibited even more impressive adsorption capability; the removal ratio against Pb(II) was 99% when 8.6 L of 1.0 mg/L of Pb(II) ions containing wastewater was treated, and the pressure drop was retained at 234 Pa. A composite cartridge fabricated by the integration of cationic and anionic cellulose membranes was successfully employed to purify the wastewater containing Cr(VI) and Pb(II) simultaneously. The possible adsorption mechanism was proposed, and the recycling ability of the cellulose membranes was also discussed. Full article
(This article belongs to the Collection Feature Papers in Membrane Engineering and Applications)
Show Figures

Figure 1

23 pages, 17202 KiB  
Article
A Continuous Production Apparatus for a Frame-Type Melt-Blown Filter Cartridge with Various Properties and Geometry
by Ching-Hao Chen, Ci-Fan Lee and Chun-Ching Hsiao
Machines 2023, 11(4), 476; https://doi.org/10.3390/machines11040476 - 13 Apr 2023
Viewed by 3073
Abstract
Polypropylene (PP) melt-blown (MB) filter cartridges are widely used in many fields requiring water purification, such as households, the food industry, industrial processes, and recycled water filtration. While the demand for filters has gradually increased, the environmental requirements and conditions have become severe. [...] Read more.
Polypropylene (PP) melt-blown (MB) filter cartridges are widely used in many fields requiring water purification, such as households, the food industry, industrial processes, and recycled water filtration. While the demand for filters has gradually increased, the environmental requirements and conditions have become severe. The filters are easily deformed from higher liquid pressure during operation and setup and need to be replaced frequently. With the lifetime of filters shortened, manpower increases to replace filters. Hence, the inner structure of a PP melt-blown filter cartridge is supported by a frame structure to resist higher liquid pressure for enhancing filtration efficiency and lifetime. The filter, known as a “frame-type melt-blown filter cartridge”, does not affect the user’s application environment and equipment. This article focuses on developing continuous production equipment for frame-type melt-blown filter cartridges. The core technology of the equipment is the mechanism design for conveying frame tubes integrated with the MB process. The PP fiber is simultaneously melted and blown on the frame tube, and the frame tube needs to be pushed forward while rotating. This mechanism can independently control the fiber’s rotational speed and push speed. The rotational speed affects the surface density, fiber diameter, and porosity of the melt-blown filter cartridge, and the push speed affects the core diameter and weight of the melt-blown filter cartridge. In addition, there is a frame tube feeding device at the input end of the conveying equipment for continuously carrying the frame tube. Then, the finally formed melt-blown filter cartridges enter the cutting machine to trim a certain length to complete a frame-type melt-blown filter cartridge. The complexity of the operation is simplified by a human–machine interactive interface. A programmable logic controller (PLC) and a LabVIEW human–machine interactive interface are used to dominate the equipment. The Modbus communication protocol is adopted for connecting and communicating between PLC and LabVIEW. The interface can integrate and analyze the process data, including overall equipment effectiveness (OEE), total effective equipment performance (TEEP), loading time, utilization, performance, and yield. The entire production process of the frame-type melt-blown filter cartridge is optimized, and the traditional output of 1000 per day is upgraded to 1300. Overall, the processing speed is increased by up to 30%. Full article
(This article belongs to the Section Industrial Systems)
Show Figures

Figure 1

17 pages, 3539 KiB  
Article
Analysis and Research on the Use of Bulk Recycled Materials for Sound Insulation Applications
by Miroslav Badida, Marek Moravec, Miriama Pinosova, Miriam Andrejiova, Kristián Pástor, Alžbeta Nováková and Tibor Dzuro
Sustainability 2022, 14(18), 11539; https://doi.org/10.3390/su141811539 - 14 Sep 2022
Cited by 5 | Viewed by 3656
Abstract
The application of recycled materials from the automotive industry in the field of the construction industry is a suitable alternative application for these materials and the use of their acoustic and thermal insulation properties. The output of recycling is granular, or chopped materials [...] Read more.
The application of recycled materials from the automotive industry in the field of the construction industry is a suitable alternative application for these materials and the use of their acoustic and thermal insulation properties. The output of recycling is granular, or chopped materials that can be used as a substitute for conventional materials. One of the important features of building materials is their acoustic properties. The measurement and evaluation of acoustic properties is carried out using an impedance tube as equipment. Measuring compact materials is quite simple and requires the preparation of a sample. Measuring the acoustic properties of granular bulk materials is more complicated and requires the development and production of a special test cartridge. Recycled bulk materials from the automotive industry such as rubber granules and chopped textiles can be applied as fillings for dividing structures. The aim of this paper was to assess the acoustic properties of different fractions of recycled rubber granules and textile chopped material and to compare acoustic properties with compact rubber and textile panels. To evaluate and compare sound absorption coefficient (α) and sound transmission loss (R) parameters, we used basic statistical methods and hypothesis testing methods. The production of compact panels is quite expensive since it is necessary to use special synthetic binders in production, and the content of these substances can also have negative effects on the environment. Based on the results of measuring the acoustic properties of bulk recycled materials and comparing them with compact materials, we can conclude that bulk recycled rubber and textile materials have very good values for their acoustic properties, which enables them to be used in several areas of industry. Full article
Show Figures

Figure 1

14 pages, 2028 KiB  
Review
Challenges and Emerging Trends in Toner Waste Recycling: A Review
by Meera Parthasarathy
Recycling 2021, 6(3), 57; https://doi.org/10.3390/recycling6030057 - 29 Aug 2021
Cited by 36 | Viewed by 13915
Abstract
Toner waste is one of the major electronic waste materials posing serious environmental threat and health hazards. Globally, only about 20–30% of toner waste is recycled, while the remaining percentage is dumped in landfills. Recycling options are limited due to the desirably engineered [...] Read more.
Toner waste is one of the major electronic waste materials posing serious environmental threat and health hazards. Globally, only about 20–30% of toner waste is recycled, while the remaining percentage is dumped in landfills. Recycling options are limited due to the desirably engineered durability of toners, ascribed to a complicated composition of chemicals, carbon black, and plastic particles, which in turn creates critical challenges in recycling. The World Health Organization has classified toner waste as class 2B carcinogen due to its potential health hazard. In this review, the existing challenges in toner waste recycling are discussed from the perspective of environmental, health, and feasibility aspects. In parallel, the challenges have been opening up alternative strategies to recycle toner wastes. Emerging trends in toner waste recycling include transformation of toner waste into value-added products, utilization as raw material for nanomaterial synthesis, generation of composite electrodes for power generation/storage devices, integration into construction materials, and development of microwave absorbing composites. Considering the enormous volume of toner waste generated globally every year, better recycling and transformation strategies are needed immediately. A circular economy could be established in the future by transforming the enormous toner waste into a resource for other applications. For an effective management of toner waste in the future, an integrated approach involving policies and legislations, infrastructure for collection and treatment, and financial planning among the stakeholders is needed in addition to technological innovations. Full article
(This article belongs to the Special Issue Feature Papers in Recycling 2021)
Show Figures

Graphical abstract

16 pages, 1242 KiB  
Article
Evaluating Treatment Requirements for Recycled Water to Manage Well Clogging during Aquifer Storage and Recovery: A Case Study in the Werribee Formation, Australia
by Joanne L. Vanderzalm, Declan W. Page, Karen E. Barry and Dennis Gonzalez
Water 2020, 12(9), 2575; https://doi.org/10.3390/w12092575 - 15 Sep 2020
Cited by 5 | Viewed by 3033
Abstract
Managed aquifer recharge (MAR) is the intentional recharge of water to suitable aquifers for subsequent beneficial use or to achieve environmental benefits. Well injection techniques for MAR, such as Aquifer Storage and Recovery (ASR), rely on implementing appropriate design and defining the operational [...] Read more.
Managed aquifer recharge (MAR) is the intentional recharge of water to suitable aquifers for subsequent beneficial use or to achieve environmental benefits. Well injection techniques for MAR, such as Aquifer Storage and Recovery (ASR), rely on implementing appropriate design and defining the operational parameters to minimise well clogging and maintain sustainable rates of recharge over the long term. The purpose of this study was to develop water quality targets and pre-treatment requirements for recycled water to allow sustained recharge and recovery in a medium-coarse siliceous aquifer. The recharge water is a blend of 40% Class A recycled water and 60% reverse osmosis (RO)-treated Class A recycled water. Four source waters for MAR were evaluated: (1) this blend with no further treatment, and this blend with additional treatment using: (2) a 20 µm sediment cartridge filter, (3) a 5 µm sediment cartridge filter, or (4) a 5 µm granular activated carbon (GAC) cartridge filter. All four treatment options were also further disinfected with chlorine. The four blended and treated recycled waters were used in laboratory columns packed with aquifer material under saturated conditions at constant temperature (20.7 °C) with light excluded for up to 42 days. Substantial differences in the changes in hydraulic conductivity of the columns were observed for the different treatments within 14 days of the experiment, despite low turbidity (<2 NTU) of the blend waters. After 14 days, the GAC-treated water had a 7% decline in hydraulic conductivity, which was very different from the other three blend waters, which had declines of 39–52%. Based on these results and consistent with previous studies, a target biodegradable dissolved organic carbon (BDOC) level of <0.2 mg/L was recommended to ensure a biologically stable source of water to reduce clogging during recharge. Full article
Show Figures

Figure 1

8 pages, 1552 KiB  
Article
Optimized Treatment and Recovery of Irradiated [18O]-Water in the Production of [18F]-Fluoride
by Antje Uhlending, Harald Henneken, Verena Hugenberg and Wolfgang Burchert
Instruments 2018, 2(3), 12; https://doi.org/10.3390/instruments2030012 - 4 Jul 2018
Cited by 3 | Viewed by 4145
Abstract
Enriched [18O]-water is the target material for [18F]-fluoride production. Due to its high price and scarce availability, an increased interest and necessity has arisen to recycle the used water, in order to use it multiple times as a target [...] Read more.
Enriched [18O]-water is the target material for [18F]-fluoride production. Due to its high price and scarce availability, an increased interest and necessity has arisen to recycle the used water, in order to use it multiple times as a target material for [18F]-fluoride production. This paper presents an efficient treatment and reprocessing procedure giving rise to high chemical quality [18O]-water, thereby maintaining its enrichment grade. The reprocessing is subdivided into two main steps. In the first step, the [18F]-FDG (fluorodeoxyglucose) synthesis preparation was modified to preserve the enrichment grade. Anhydrous acetonitrile is used to dry tubing systems and cartridges in the synthesis module. Applying this procedure, the loss in the enrichment throughout the reprocessing is <1%. The second step involves a fractional distillation in which the major part of the [18O]-water was recycled. Impurities such as solvents, ions, and radioactive nuclides were almost completely separated. Due to the modified synthesis preparation using acetonitrile, the first distillation fraction contains a larger amount of an azeotropic [18O]-water/acetonitrile mixture. This fraction is not further distillable. Contents of the remaining [18O]-water were separated from the azeotropic mixture by using a molecular sieve desiccant. This process represents a fast, easy, and inexpensive method for reprocessing used [18O]-water into new [18O]-water quality for further application. Full article
(This article belongs to the Special Issue Instruments and Methods for Cyclotron Produced Radioisotopes)
Show Figures

Figure 1

13 pages, 3134 KiB  
Article
The Testing of Standard and Recyclable Filter Media to Eliminate Hydrogen Sulphide from Sewerage Systems
by Petr Hluštík and Jiří Novotný
Water 2018, 10(6), 689; https://doi.org/10.3390/w10060689 - 25 May 2018
Cited by 7 | Viewed by 8079
Abstract
This article focuses on the subject of odours forming in sewage transfer chambers with displacement inlets, as well as the odours in their vicinity. It further covers the locations of odour formation, factors influencing the formation of hydrogen sulphide in wastewater, methods of [...] Read more.
This article focuses on the subject of odours forming in sewage transfer chambers with displacement inlets, as well as the odours in their vicinity. It further covers the locations of odour formation, factors influencing the formation of hydrogen sulphide in wastewater, methods of removing hydrogen sulphide from wastewater, and laboratory testing of filtration media efficacy at various concentration levels of H2S. The laboratory testing of filtration media efficacy is performed for products normally used by sewerage system operators guaranteeing the elimination of hydrogen sulphide (activated carbon, natural minerals and gels), recyclable materials (paper) and secondary raw materials in the field of waste management (biochar—the final product of microwave pyrolysis). Odour generated by sewerage systems is a secondary issue faced by all sewerage system operators, who sustain considerable expense in corrective measures to address this problem. The most economical and widespread measure used by those operators is hydrogen sulphide removal by filtration (filtration materials). Filtration media are installed in special cartridges under sewage covers in locations where the irritating odour is formed. These filtration cartridges, designed solely to eliminate odour from the surroundings, show various degrees of efficacy in removing H2S. Full article
(This article belongs to the Special Issue Design of Urban Water Drainage Systems)
Show Figures

Figure 1

Back to TopTop