Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,293)

Search Parameters:
Keywords = carrier test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2616 KB  
Article
Improving the Ecological Status of Surface Waters Through Filtration on Hemp (Cannabis sativa L.) Waste as an Option for Sustainable Surface Water Management
by Barbara Wojtasik
Sustainability 2026, 18(3), 1203; https://doi.org/10.3390/su18031203 (registering DOI) - 24 Jan 2026
Abstract
The progressive degradation of surface waters should become one of the most important problems requiring an urgent solution. One of the methods developed is filtering water through loose, degraded sediments, blooms of cyanobacteria or algae, or a bed of hemp (Cannabis sativa [...] Read more.
The progressive degradation of surface waters should become one of the most important problems requiring an urgent solution. One of the methods developed is filtering water through loose, degraded sediments, blooms of cyanobacteria or algae, or a bed of hemp (Cannabis sativa L.) waste or hemp fibers. The conducted tests on the percolation of water samples and/or water with sediment from surface waters at sites with different ecological statuses indicate the possibility of using hemp waste for the reclamation of water reservoirs and rivers. The effect of filtration is a rapid improvement in water quality and, consequently, an improvement in the ecological status. The best result was achieved for a small freshwater reservoir with a large number of algae and loose degraded sediment. The initial turbidity value was at the limit of the device’s measurement capability, reaching 9991 NTU. After filtration through the hemp waste bed, the turbidity dropped to 42.52 NTU, a 99.57% decrease. The remaining parameters, C, TDS, and pH, were not subject to significant variability as a result of filtering. Excessive amounts of organic matter, which create a problem for surface waters, are removed. Due to the carrier (hemp waste), which is organic waste, any possible release of small amounts into the aquatic environment will not pose a threat. After applying filtration, a decision can be made on further actions regarding the water reservoir or river: Self-renewal of the reservoir or further percolation using, for example, mill gauze or cleaning the reservoir with other, non-invasive methods. After the filtering procedure, the hemp waste, enriched with organic matter and water remaining in the waste, can be used for composting or directly for soil mulching (preliminary tests have yielded positive results). A hemp waste filter effectively removes Chronomus aprilinus larvae (Chrinomidae) from water. This result indicates the possibility of removing mosquito larvae in malaria-affected areas. The use of hemp filters would reduce the amount of toxic chemicals used to reduce mosquito larvae. Improving the ecological status of surface waters by filtering contaminants with hemp waste filters can reduce the need for chemical treatment. The use of natural, biological filters enables sustainable surface water management. This is crucial in today’s rapidly increasing chemical pollution of surface waters. Full article
Show Figures

Figure 1

14 pages, 12345 KB  
Article
Reversed Fabrication Approach for Exfoliated Hybrid Systems EnablingMagnetoresistance and Current-Voltage Characterisation
by Piotr Kałuziak, Jan Raczyński, Semir El-Ahmar, Katarzyna Kwiecień, Marta Przychodnia, Wiktoria Reddig, Agnieszka Żebrowska and Wojciech Koczorowski
Physchem 2026, 6(1), 7; https://doi.org/10.3390/physchem6010007 (registering DOI) - 24 Jan 2026
Abstract
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer [...] Read more.
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer thickness-dependent bandgap engineering. However, the standard device fabrication techniques often introduce processing contamination, which reduces device efficiency. In this paper, we present a modified mechanical exfoliation technique, the Reversed Structuring Procedure, which enables the fabrication of hybrid systems based on 2D microflakes with improved interface cleanness and contact quality. Hall effect measurements on Bi2Se3 and HfSe2 devices confirm enhanced electrical performance, including the decrease in the measured total resistance. We also introduce a novel Star-Shaped Electrode Structure, which allows for accurate Hall measurements and the exploration of geometric magnetoresistance effects within the same device. This dual-purpose geometry enhances the flexibility and demonstrates broader functionality of the proposed fabrication method. The presented results validate the Reversed Structuring Procedure method as a robust and versatile approach for laboratory test-platforms for electronic applications of new types of layered materials whose fabrication technology is not yet compatible with CMOS. Full article
(This article belongs to the Section Surface Science)
11 pages, 322 KB  
Article
Gothelf’s Haplotype of COMT in Parkinson’s Disease: A Case–Control Study
by Zdenko Červenák, Ján Somorčík, Žaneta Zajacová, Andrea Gažová, Igor Straka, Zuzana André, Michal Minár and Ján Kyselovič
Biomedicines 2026, 14(2), 262; https://doi.org/10.3390/biomedicines14020262 - 23 Jan 2026
Abstract
Background: Catechol-O-methyltransferase (COMT) catalyzes catecholamine O-methylation and contributes to dopamine turnover, potentially influencing levodopa requirements in Parkinson’s disease (PD). We evaluated whether the Gothelf COMT haplotype—and its constituent variants rs2075507, rs4680 (Val158Met), and rs165599—differ in frequency between PD cases and controls. We then [...] Read more.
Background: Catechol-O-methyltransferase (COMT) catalyzes catecholamine O-methylation and contributes to dopamine turnover, potentially influencing levodopa requirements in Parkinson’s disease (PD). We evaluated whether the Gothelf COMT haplotype—and its constituent variants rs2075507, rs4680 (Val158Met), and rs165599—differ in frequency between PD cases and controls. We then tested associations between these variants and clinical phenotypes, with a prespecified focus on levodopa equivalent daily dose (LEDD). Finally, we examined whether haplotype structure and allele-specific context (e.g., background-dependent effects) help explain observed genotype–phenotype relationships in the PD cohort. Aim: Analysis of the rs2075507, rs4680 and rs165599 at individual and haplotype level between control and diseased groups. Furthermore, analysis of association of individual SNPs or haplotype level with clinical outcomes. Subjects and methods: Fifty-five individuals with Parkinson’s disease (PD) and fifty-three neurologically healthy controls were enrolled at a single center. Genomic DNA was isolated from peripheral blood, and three COMT variants—rs2075507 (promoter), rs4680/Val158Met (coding), and rs165599 (3′UTR)—were genotyped by Sanger sequencing. Allele, genotype, and tri-marker haplotype frequencies were estimated, and case–control differences were evaluated. Within the PD cohort, associations with clinical outcomes—primarily levodopa equivalent daily dose (LEDD)—were analyzed using multivariable linear models. Statistical tests were two-sided, with multiplicity control as specified in the corresponding tables. Results: The rs2075507 polymorphism showed a robust additive association with LEDD; each A allele predicted higher dose (LEDD ≈ +1331 mg/day, p = 0.001) after adjusting for age and sex. The tri-haplotype test did not show significant association with LEDD. Nevertheless, rs2075507 SNP strongly marked downstream backgrounds: in AA carriers, rs4680–rs165599 haplotypes were enriched for Val (G) and rs165599-G; in GG carriers, for rs165599-A with mixed Val/Met; and GA was A-loaded at both loci. Exact tests confirmed that AA and GG differed in rs4680–rs165599 composition, whereas GA vs. GG was not significant. Conclusions: The promoter variation at rs2075507 may represent the genetic contributor to levodopa dose requirements when modeled with SNP–SNP interactions, with its effect is modified mostly by rs165599 polymorphism. Tri-haplotypes do not independently predict LEDD. The rs4680 (coding) and rs165599 (3′UTR) context appears to fine-tune rather than determine dosing needs, mainly via interaction with rs2075507 SNP. Full article
(This article belongs to the Special Issue Advances in Parkinson’s Disease Research)
13 pages, 2630 KB  
Article
Rectal Colonization by Carbapenemase-Producing Enterobacterales in a Tertiary Care Hospital in Havana, Cuba
by Haiyang Yu, Yenisel Carmona, Vismayda Bouza, María Karla González, Gonzalo Estevez Torres, Valia Ramos Rodríguez, Alberto Hernández González, Nobumichi Kobayashi, Meiji Soe Aung, Patricia Ruiz-Garbajosa, Rafael Cantón and Dianelys Quiñones Pérez
Antibiotics 2026, 15(1), 109; https://doi.org/10.3390/antibiotics15010109 - 22 Jan 2026
Abstract
Introduction: Rectal colonization by carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) is a risk factor for subsequent infections, which are associated with high mortality rates. Methods: A cross-sectional study was conducted. Rectal swabs were collected from 297 patients within 48 h of admission to eight high-prevalence [...] Read more.
Introduction: Rectal colonization by carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) is a risk factor for subsequent infections, which are associated with high mortality rates. Methods: A cross-sectional study was conducted. Rectal swabs were collected from 297 patients within 48 h of admission to eight high-prevalence CP-CRE hospital departments, with follow-up swabs taken weekly for up to 4 weeks. Species identification, antimicrobial susceptibility testing, and genetic detection of carbapenemases were performed. The genetic relationship among isolates was assessed using ERIC-PCR, combined with epidemiological data, to investigate subsequent infections. Results: Fecal carriage of CP-CRE was detected in 15.5% (46/297) of patients- All carbapenemases were metallo-betalactamases, with dominance of NDM-producing Klebsiella pneumoniae. NDM + VIM-producing Escherichia coli were also detected. Among carriers, 26.1% were colonized by two different CRE species, and 86.9% had a history of prior hospitalization. Molecular analysis revealed clonal expansion, suggesting outbreaks among colonized patients. Additionally, 17.4% (8/46) of colonized patients developed an infection, which was significantly associated with urinary catheter use (p = 0.040), mechanical ventilation (p = 0.044), and surgical procedures (p = 0.040). Conclusions: rectal colonization by CP-CRE in hospitalized patients is a serious epidemiological concern, with evidence of clonal spread and subsequent infection in colonized patients. NDM-producing K. pneumoniae was also predominant, detecting co-production of NDM + VIM in E. coli. These findings underscore the urgent need to implement epidemiological surveillance cultures to improve the prevention and control of CP-CRE infections in Cuban hospitals. Full article
Show Figures

Figure 1

11 pages, 2861 KB  
Communication
Enhanced Photocatalytic Degradation Efficiency Enabled by Flower-like BiVO4 Microspheres Constituted of Nanosheets
by Chenhui Song, Junmou Zhou, Zhuoheng Wu, Lehao Liu, Jinkui Zhang and Junfeng Ma
Colloids Interfaces 2026, 10(1), 11; https://doi.org/10.3390/colloids10010011 - 21 Jan 2026
Viewed by 47
Abstract
Bismuth vanadate (BiVO4) has been regarded as a valuable semiconductor material for photocatalytic decomposition of organic pollutants thanks to its narrow band gap and environmental friendliness. However, its practical application is restricted by its small specific surface area, severe photo-generated carrier [...] Read more.
Bismuth vanadate (BiVO4) has been regarded as a valuable semiconductor material for photocatalytic decomposition of organic pollutants thanks to its narrow band gap and environmental friendliness. However, its practical application is restricted by its small specific surface area, severe photo-generated carrier recombination, and low photocatalytic degradation efficiency. Herein, a microemulsion method followed by a hydrothermal process is developed to prepare a flower-like BiVO4 microsphere constituted of thin nanosheets. Because of increase in reactive sites, facilitation of photo-induced carrier transfer, and generation of high-activity superoxygen (•O2) and hydroxyl (•OH) radicals, the photocatalytic degradation efficiency of the flower-like BiVO4 microparticle (synthesized with a hydrothermal duration of 6 h) for Congo red reaches 86.2% with a high degradation rate constant of 0.0134 min−1. Moreover, the cyclic degradation test proves the reasonable photocatalytic stability of the flower-like BiVO4 microparticle, showing its great application potential for photocatalytic degradation of organic pollutants. Full article
Show Figures

Graphical abstract

20 pages, 1521 KB  
Article
IFNAR2 p.F8S Variant Associates with Severe COVID-19 and Adaptive Immune Cell Activation Modulation
by Francesco Malvestiti, Angela Lombardi, Francesco Gentile, Veronica Torcianti, Elena Trombetta, Alessandro Cherubini, Giuseppe Lamorte, Sara Colonia Uceda Renteria, Daniele Marchelli, Lorenzo Rosso, Alessandra Bandera, Flora Peyvandi, Francesco Blasi, Giacomo Grasselli, Laura Porretti, Saleh Alqahtani, Daniele Prati, Roberta Gualtierotti, Blagoje Soskic, Valentina Vaira, Luisa Ronzoni and Luca Valentiadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 992; https://doi.org/10.3390/ijms27020992 - 19 Jan 2026
Viewed by 184
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a wide range of clinical manifestations modulated by genetic factors. The aim of this study was to identify genetic determinants of severe COVID-19 affecting protein sequence to gain insight into disease pathogenesis. Variants prioritized [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a wide range of clinical manifestations modulated by genetic factors. The aim of this study was to identify genetic determinants of severe COVID-19 affecting protein sequence to gain insight into disease pathogenesis. Variants prioritized in two patients requiring lung transplant were tested in the Milan FOGS cohort (487/869 cases/controls), highlighting an independent association between the p.F8S low-frequency variant of interferon alpha receptor 2 gene (IFNAR2) and severe disease (OR = 1.73 [1.24–2.42], p = 0.001), replicated in the COVID-19 Host Genetics Initiative cohort (26,167/2,061,934 cases/controls). In the FOGS cohort, the p.F8S variant was linked to higher circulating IL-6 levels. In keeping, bulk transcriptomic analysis in PBMCs at the peak of infection (n = 57) showed that carriers of the p.F8S variant had upregulation of immune signaling and pathogens response (p < 0.05). Functional flow cytometry experiments in healthy donors (n = 12) revealed that membrane IFNAR2 protein expression was reduced in B lymphocytes, but higher in dendritic cells (p < 0.05). Finally, by interrogating a public scRNAseq resource of PBMC of people with COVID-19, we showed that p.F8S carriers had upregulation of immune pathways specifically in dendritic cells (p < 0.05). These results suggest that the p.F8S variant may influence COVID-19 severity by enhancing adaptive immune response, thereby favoring inflammation. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Human Disease)
Show Figures

Figure 1

29 pages, 521 KB  
Review
Application of Electromagnetic Ultrasonic Testing Technology in Pipeline Defects
by Qingsheng Lan, Riteng Sun, Wenbin Tang, Chunyan Zhang, Yu Liu, Yu Wang, An Lei, Changhui Huang, Shanglong Li, Zhichao Cai and Bo Feng
Coatings 2026, 16(1), 133; https://doi.org/10.3390/coatings16010133 - 19 Jan 2026
Viewed by 173
Abstract
Pipelines, as critical carriers for energy transportation, are prone to defects such as cracks and corrosion during long-term operation. Traditional testing methods exhibit limitations in various aspects, while electromagnetic ultrasonic testing technology, leveraging its advantages of non-contact operation and couplant-free application, has emerged [...] Read more.
Pipelines, as critical carriers for energy transportation, are prone to defects such as cracks and corrosion during long-term operation. Traditional testing methods exhibit limitations in various aspects, while electromagnetic ultrasonic testing technology, leveraging its advantages of non-contact operation and couplant-free application, has emerged as a significant direction for pipeline integrity assessment. This paper analyzes the advantages of EMAT guided wave testing technology in achieving long-distance and rapid screening of pipelines, as well as the strengths of bulk wave testing technology in high-precision quantitative evaluation. It also examines the unique value of obliquely incident SV waves in the directional identification of weld defects. Furthermore, the paper discusses the potential of integrating EMAT with multiple technologies, demonstrating how multi-physical field synergy enhances detection reliability. Finally, it summarizes the remaining challenges in practical engineering applications, providing references for advancing the field toward intelligent and high-precision development. Full article
Show Figures

Figure 1

16 pages, 2458 KB  
Article
Reducing Aflatoxin Accumulation in Maize: Development and Performance of a Novel Biological Input
by Paloma Rhein, Marianela Bossa, María del Pilar Monge, Diego Giovanini, César Alfredo Barbero, Sofía Noemí Chulze, María Laura Chiotta and María Silvina Alaniz-Zanon
Toxins 2026, 18(1), 49; https://doi.org/10.3390/toxins18010049 - 17 Jan 2026
Viewed by 134
Abstract
Aflatoxin contamination of maize by Aspergillus section Flavi constitutes a major health and economic concern. While biological control using non-toxigenic strains has proven effective, the increasing global food demand underscores the need for alternative carrier materials to replace seeds and grains. The aims [...] Read more.
Aflatoxin contamination of maize by Aspergillus section Flavi constitutes a major health and economic concern. While biological control using non-toxigenic strains has proven effective, the increasing global food demand underscores the need for alternative carrier materials to replace seeds and grains. The aims of the present study were (1) to develop an innovative macroporous starch polymer in which the biocontrol agent can grow and be transported to fields where the bioformulate is applied, and (2) to evaluate the effectiveness of this new formulate in reducing AF contamination in maize kernels in field trials, in comparison with the traditional formulate based on long-grain rice as a substrate. Several methods and different starch sources were tested, and the formulation consisting of 10% maize starch, 0.5% citric acid, 3% sucrose, 0.3% urea, and distilled water was the most effective. Furthermore, this bioformulate demonstrated a performance comparable to that of the traditional long-grain rice-based formulation, reducing AF accumulation by up to 81% in maize kernels under field conditions. The implementation of this macroporous starch polymer-based formulation, in combination with the biological control agent A. flavus AFCHG2, would not only reduce aflatoxin contamination in maize kernels but also minimise the use of food-grade seeds and grains for industrial purposes, thereby preserving their availability for human and animal nutrition. Consequently, this development could enhance the availability of these substrates for food and feed use, thereby contributing to improved safety and food security. Full article
(This article belongs to the Special Issue Mycotoxins in Food Safety: Challenges and Biocontrol Strategies)
Show Figures

Figure 1

19 pages, 2476 KB  
Article
Coagulation Coupled with the Contact Oxidation Biofilter Process for Malodorous Blackwater Treatment
by Ping Kuang, Hengheng Jiao, Yingxue Sun, Juan Peng and Xiaolei Zhang
Water 2026, 18(2), 245; https://doi.org/10.3390/w18020245 - 16 Jan 2026
Viewed by 180
Abstract
With accelerating urbanization, rivers have been severely polluted, resulting in widespread black and odorous waterways. The coagulation–sedimentation and contact oxidation bypass treatment process is characterized by low operational cost and simple operation and management. In this study, a coagulation–sedimentation–contact oxidation biofilter process was [...] Read more.
With accelerating urbanization, rivers have been severely polluted, resulting in widespread black and odorous waterways. The coagulation–sedimentation and contact oxidation bypass treatment process is characterized by low operational cost and simple operation and management. In this study, a coagulation–sedimentation–contact oxidation biofilter process was developed to treat heavily polluted malodorous blackwater. Among the tested biofilm carriers, rigid aramid fiber exhibited the fastest biofilm formation and the best pollutant removal performance. Based on a comprehensive evaluation of effluent quality and treatment capacity, the optimal operating conditions of the proposed process were identified as a PAC dosage of 50 mg/L, an air-to-water ratio of 7:1, and a hydraulic retention time (HRT) of 2 h. Under these conditions, the effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and suspended solids (SSs) were consistently maintained below 30, 5, and 5 mg/L, respectively. Moreover, the optimized system demonstrated strong resistance to shock loading, maintaining stable operation at influent COD and SS concentrations of approximately 150 mg/L and 40 mg/L, respectively, while complying with the Class A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants. This study provides an efficient treatment strategy for malodorous blackwater remediation. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Figure 1

21 pages, 3422 KB  
Article
Synergistic Effects of 25-Hydroxyvitamin D3, Phytase, and Probiotics on Growth, Calcium and Phosphorus Metabolism, and Bone Development in Weaned Piglets Fed Low Ca-P Diets
by Baoshi Shi, Saiming Gong, Zhenyang Wang, Jingjing Wang, Cunji Shui, Zhiru Tang, Xie Peng, Yetong Xu and Zhihong Sun
Animals 2026, 16(2), 278; https://doi.org/10.3390/ani16020278 - 16 Jan 2026
Viewed by 122
Abstract
Seventy 28-day-old weaned barrow piglets (Duroc × Landrace × Large White; 7.2 ± 0.20 kg) were used to determine the effects of 25-hydroxyvitamin D3 (25-OH-VD3) combined with phytase and probiotics on calcium and phosphorus metabolism and bone development. Five dietary [...] Read more.
Seventy 28-day-old weaned barrow piglets (Duroc × Landrace × Large White; 7.2 ± 0.20 kg) were used to determine the effects of 25-hydroxyvitamin D3 (25-OH-VD3) combined with phytase and probiotics on calcium and phosphorus metabolism and bone development. Five dietary groups were tested: basal diet + 50 µg/kg 25-OH-VD3 (CON); basal diet with 17% reduced calcium and phosphorus + 50 µg/kg 25-OH-VD3 (LCP); LCP + 50 mg/kg phytase (LH); LCP + 10 mg/kg probiotics (LC); LCP + 50 mg/kg phytase + 10 mg/kg probiotics (LHC). The experiment lasted for 31 days, including 3 days adaptation period. Apparent phosphorus digestibility was higher in the LH and LHC groups than in the CON group (p < 0.05). Bone mineral density and calcium content in metacarpal and rib bones were also higher in the LHC group compared with the CON, LCP, LC, and LH groups (p < 0.05). The jejunal mRNA expression of solute carrier family 34 members (SLC34A1, SLC34A2, and SLC34A3) members was higher in the LHC group than the CON, LCP, LC, and LH groups (p < 0.05), while the relative protein expression of the calcium-sensing receptor in the kidneys was lower in the CON group than in the LCP, LH, LC, and LHC groups (p < 0.05). Additionally, supplementation with 25-OH-VD3, either alone or in combination with phytase and probiotics, was associated with an increased abundance of beneficial gut bacteria. Overall, combined supplementation of 25-OH-VD3, phytase and probiotics enhanced bone development in weaned piglets fed a low-calcium, low-phosphorus diet by improving calcium and phosphorus utilization and calcium–phosphorus metabolic regulation. Full article
Show Figures

Figure 1

23 pages, 612 KB  
Article
Synergistic Enhancement of Low-Carbon City Policies and National Big Data Comprehensive Experimental Zone Policies on Green Total Factor Productivity: Evidence from Pilot Cities in China
by Yan Wang and Zhiqing Xia
Sustainability 2026, 18(2), 936; https://doi.org/10.3390/su18020936 - 16 Jan 2026
Viewed by 124
Abstract
Green total factor productivity (GTFP), as an important indicator considering both economic development and environmental protection, has prompted countries around the world to actively explore ways to improve it in the context of the global transition to a green economy. The Low-Carbon City [...] Read more.
Green total factor productivity (GTFP), as an important indicator considering both economic development and environmental protection, has prompted countries around the world to actively explore ways to improve it in the context of the global transition to a green economy. The Low-Carbon City Policy (LCCP) implemented by the Chinese government, along with the National Big Data Comprehensive Pilot Zone Policy (NBDCPZ), which serve as key carriers of green regulation and digital innovation, respectively, play an important role in improving green total factor productivity (GTFP) and achieving high-quality economic development. This study aims to deeply explore whether there is a collaborative enabling effect of the Low-Carbon City Policy (LCCP) and the National Big Data Comprehensive Pilot Zone Policy (NBDCPZ) on green total factor productivity (GTFP) and to reveal the internal mechanism by which they improve GTFP through green technological innovation and industrial agglomeration. Specifically, based on the panel data of 269 prefecture-level cities in China from 2006 to 2022, a “dual-pilot” policy is constructed through LCCP and NBDCPZ, and a multi-period difference-in-differences model (DID) is used to evaluate the collaborative effect of the “dual-pilot” policy on GTFP. The results show that the “dual-pilot” policy has a significant collaborative effect on green total factor productivity (GTFP), and its enabling effect is more obvious than that of the “single-pilot” policy. These conclusions still hold after a series of endogeneity and robustness tests. Mechanism analysis shows that the “dual-pilot” policy can also improve green total factor productivity (GTFP) through green technological innovation and industrial agglomeration. Heterogeneity analysis reveals that the collaborative enabling effect of the “dual-pilot” policy is influenced by geographical location and population density. Specifically, the “dual-pilot” policy significantly promotes green total factor productivity (GTFP) in coastal cities and those with high population density. These research results provide a scientific basis for formulating green development policies in China and other countries, as well as a direction for subsequent research on the collaborative enabling effect of multiple policies. Full article
Show Figures

Figure 1

16 pages, 276 KB  
Article
Clinical and Genetic Characteristics of Pheochromocytoma and Paraganglioma: A Single-Center Experience Including a Rare VHL Variant
by Merve Korkmaz Yilmaz, Ozlem Kandemir Alibakan, Aydeniz Aydin Gumus, Alper Gezdirici, Huseyin Karatay, Serkan Sari, Tugba Matlim Ozel, Mutlu Niyazoglu and Esra Hatipoglu
J. Clin. Med. 2026, 15(2), 712; https://doi.org/10.3390/jcm15020712 - 15 Jan 2026
Viewed by 136
Abstract
Background/Objectives: Advances in the genetic understanding of pheochromocytoma–paraganglioma (PPGL) have considerably refined personalized approaches to diagnosis and management. This study aims to present our institutional experience on the diagnostic characteristics, clinical course, and genetic background of patients with PPGL, in the context of [...] Read more.
Background/Objectives: Advances in the genetic understanding of pheochromocytoma–paraganglioma (PPGL) have considerably refined personalized approaches to diagnosis and management. This study aims to present our institutional experience on the diagnostic characteristics, clinical course, and genetic background of patients with PPGL, in the context of the current literature. Methods: This retrospective analysis included 35 patients diagnosed with PPGL between years 2020 and 2024, all of whom underwent surgical resection and next-generation sequencing for germline mutations in major PPGL susceptibility genes. Clinical presentation, biochemical profile, pathological findings, and follow-up outcomes were compared between mutation-positive and mutation-negative cases. Results: Of the 35 patients with PPGL, germline mutations were identified in 6 patients (17%): 2 in Cluster 1A genes (SDHA, SDHB), 2 in Cluster 1B (VHL), and 2 in Cluster 2 (NF1). Consistent with existing literature, pathogenic germline variants—particularly SDHB and VHL—were identified in our cohort exclusively in patients younger than 30 years (ages 17, 20, and 25). Mutation-positive patients more frequently exhibited noradrenergic or non-secretory profiles (p = 0.01). Among the three non-secretory tumors in the cohort, two harbored genetic mutations (SDHA, NF1). Interestingly, both NF1-positive patients were normotensive—one (c.3496G > A) with a non-secretory tumor and the other (c.2329T > A) presenting at an unusually late age (63 years)—a strikingly atypical spectrum that underscores the phenotypic variability of NF1-associated PPGL. Bilateral disease was observed exclusively in VHL carriers (p = 0.03). Importantly, we identified a rare VHL c.369delG frameshift variant, not previously reported in association with PPGLs, in a patient with PPGL. No significant difference was observed between SDHB loss (p = 0.1) and proliferative indices (mitotic count, Ki-67) (p = 0.07, p = 0.6) between the two groups. During a median follow-up of 24 months (IQR: 18–36), one SDHB-positive patient had a recurrence, while no distant metastases were detected in the remaining mutation carriers. Conclusions: These findings support characteristic clinical patterns among mutation-positive PPGL and underscore the importance of systematic germline testing in all cases—irrespective of age, family history, or biochemical profile—to guide individualized management and enable cascade screening. The identification of a rare VHL c.369delG variant, previously unreported in association with PPGL, within a characteristic VHL-related clinical phenotype highlights the importance of this association. Similarly, atypical NF1 cases emphasize phenotypic variability and reinforce the importance of germline testing even in clinically silent presentations. Full article
(This article belongs to the Section Endocrinology & Metabolism)
15 pages, 1580 KB  
Article
Electrical Muscle Stimulation with Russian Current in Chronic Cerebral Ischaemia
by Nelly M. A. Artamonova, Alina A. Saveko, Tatiana A. Shigueva, Vladimir V. Kitov, Maria A. Avdeeva, Valentina N. Tsyganova, Tatyana Yu. Orestova, Alla B. Guekht and Elena S. Tomilovskaya
Life 2026, 16(1), 126; https://doi.org/10.3390/life16010126 - 14 Jan 2026
Viewed by 163
Abstract
Objective: To test whether inpatient electrical muscle stimulation (EMS) using Russian current (5 kHz carrier, 50 Hz modulation; 4 s ON/6 s OFF) improves mobility and balance in elderly people with chronic cerebral ischaemia. Design: Prospective single-centre controlled observational pilot, embedded in routine [...] Read more.
Objective: To test whether inpatient electrical muscle stimulation (EMS) using Russian current (5 kHz carrier, 50 Hz modulation; 4 s ON/6 s OFF) improves mobility and balance in elderly people with chronic cerebral ischaemia. Design: Prospective single-centre controlled observational pilot, embedded in routine inpatient rehabilitation; no concealed randomisation (EMS + standard care; sham EMS + standard care; standard care only (control)). Methods: A single-centre controlled observational study with three groups was conducted (EMS n = 27, control n = 10, sham n = 7) with 3–9 sessions over 2 weeks (20 min; quadriceps and calves). Pre/Post Outcomes: Tinetti (balance/gait), Rivermead Mobility Index, Timed Up and Go (TUG), ankle extensor maximal voluntary force (MVF), stabilography (statokinesiogram path length (L), mean velocity of COP (V), sway area (S), and myotonometry; ANOVA, α = 0.05). Ethics approval and informed consent were obtained. Between-group differences in change scores were evaluated descriptively, and no formal hypothesis-testing was planned. Results: EMS showed significant gains versus control/sham—higher Tinetti total and Rivermead scores, faster TUG, higher MVF, and improved stabilography in the eyes-closed condition (reduced L, V, and S), with good tolerability and no serious adverse events (SAEs). Conclusions: Short-course Russian-current EMS is feasible and associated with clinically meaningful improvements in balance, gait, and strength in elderly patients with chronic cerebral ischaemia; however, larger randomised trials are warranted. Full article
Show Figures

Figure 1

19 pages, 3650 KB  
Article
Impacts of Hydrogen Blending on High-Rise Building Gas Distribution Systems: Case Studies in Weifang, China
by Yitong Xie, Xiaomei Huang, Haidong Xu, Guohong Zhang, Binji Wang, Yilin Zhao and Fengwen Pan
Buildings 2026, 16(2), 294; https://doi.org/10.3390/buildings16020294 - 10 Jan 2026
Viewed by 146
Abstract
Hydrogen is widely regarded as a promising clean energy carrier, and blending hydrogen into existing natural gas pipelines is considered a cost-effective and practical pathway for large-scale deployment. Supplying hydrogen-enriched natural gas to buildings requires careful consideration of the safe operation of pipelines [...] Read more.
Hydrogen is widely regarded as a promising clean energy carrier, and blending hydrogen into existing natural gas pipelines is considered a cost-effective and practical pathway for large-scale deployment. Supplying hydrogen-enriched natural gas to buildings requires careful consideration of the safe operation of pipelines and appliances without introducing new risks. In this study, on-site demonstrations and experimental tests were conducted in two high-rise buildings in Weifang to evaluate the impact of hydrogen addition on high-rise building natural gas distribution systems. The results indicate that hydrogen blending up to 20% by volume does not cause stratification in building risers and leads only to a relatively minor increase in additional pressure, approximately 0.56 Pa/m for every 10% increase in hydrogen addition. While hydrogen addition may increase leakage primarily in aging indoor gas systems, gas meter leakage rates under a 10% hydrogen blend remain below 3 mL/h, satisfying safety requirements. In addition, in-service domestic gas alarms remain effective under hydrogen ratios of 0–20%, with average response times of approximately 19–20 s. These findings help clarify the safety performance of hydrogen-blended natural gas in high-rise building distribution systems and provide practical adjustment measures to support future hydrogen injection projects. Full article
Show Figures

Figure 1

27 pages, 3313 KB  
Article
Weather Routing Optimisation for Ships with Wind-Assisted Propulsion
by Ageliki Kytariolou and Nikos Themelis
J. Mar. Sci. Eng. 2026, 14(2), 148; https://doi.org/10.3390/jmse14020148 - 9 Jan 2026
Viewed by 202
Abstract
Wind-assisted ship propulsion (WASP) has gained considerable interest as a means of reducing fuel consumption and Greenhouse Gas (GHG) emissions, with further benefits when combined with weather-optimized routing. This study employs and extends a National Technical University of Athens (NTUA) weather-routing optimization tool [...] Read more.
Wind-assisted ship propulsion (WASP) has gained considerable interest as a means of reducing fuel consumption and Greenhouse Gas (GHG) emissions, with further benefits when combined with weather-optimized routing. This study employs and extends a National Technical University of Athens (NTUA) weather-routing optimization tool to more realistically assess WASP performance through integrated modeling. The original tool minimized fuel consumption using forecasted weather data and a physics-based performance model. A previous extension to account for the WASP effect introduced a 1-Degree Of Freedom (DOF) model that accounted only for longitudinal hydrodynamic and aerodynamic forces, estimating the reduced main-engine power required to maintain speed in given conditions. The current study incorporates a 3-DOF model that includes side forces and yaw moments, capturing resulting drift and rudder deflection effects. A Kamsarmax bulk carrier equipped with suction sails served as the case study. Initial simulations across various operating and weather conditions compared the two models. The 1-DOF model predicted fuel-saving potential up to 26% for the tested apparent wind speed and the range of possible headings, whereas the 3-DOF model indicated that transverse effects reduce WASP benefits by 2–7%. Differences in Main Engine (ME) power estimates between the two models reached up to 7% Maximum Continuous Rating (MCR) depending on the speed of wind. The study then applied both models within a weather-routing optimization framework to assess whether the optimal routes produced by each model differ and to quantify performance losses. It was found that the revised optimal route derived from the 3-DOF model improved total Fuel Oil Consumption (FOC) savings by 1.25% compared with the route optimized using the 1-DOF model when both were evaluated with the 3-DOF model. Full article
Show Figures

Figure 1

Back to TopTop