Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (687)

Search Parameters:
Keywords = carrier suppression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8337 KiB  
Article
CIRBP Stabilizes Slc7a11 mRNA to Sustain the SLC7A11/GPX4 Antioxidant Axis and Limit Ferroptosis in Doxorubicin-Induced Cardiotoxicity
by Yixin Xie, Yongnan Li, Yafei Xie, Jianshu Chen, Hong Ding and Xiaowei Zhang
Antioxidants 2025, 14(8), 930; https://doi.org/10.3390/antiox14080930 - 29 Jul 2025
Viewed by 120
Abstract
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein [...] Read more.
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein (CIRBP) exhibits cardioprotective effects in various pathological contexts, but its precise role in ferroptosis-related cardiotoxicity is unknown. This study investigated whether CIRBP mitigates DIC by modulating the ferroptosis pathway via the SLC7A11 (Solute carrier family 7 member 11)/GPX4 (Glutathione peroxidase 4) axis. We observed marked downregulation of CIRBP in cardiac tissues and cardiomyocytes following doxorubicin exposure. CIRBP knockout significantly exacerbated cardiac dysfunction, mitochondrial damage, oxidative stress, and lipid peroxidation, accompanied by increased mortality rates. Conversely, CIRBP overexpression alleviated these pathological changes. Molecular docking and dynamics simulations, supported by transcriptomic analyses, revealed direct binding of CIRBP to the 3′-UTR of Slc7a11 mRNA, enhancing its stability and promoting translation. Correspondingly, CIRBP deficiency markedly suppressed SLC7A11 and GPX4 expression, impairing cystine uptake, glutathione synthesis, and antioxidant defenses, thus amplifying ferroptosis. These ferroptotic alterations were partially reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Collectively, this study identifies CIRBP as a critical regulator of ferroptosis in DIC, elucidating a novel post-transcriptional mechanism involving Slc7a11 mRNA stabilization. These findings offer new insights into ferroptosis regulation and highlight CIRBP as a potential therapeutic target for preventing anthracycline-associated cardiac injury. Full article
Show Figures

Figure 1

24 pages, 3349 KiB  
Article
Effect of Damping Plate Parameters on Liquid Sloshing in Cylindrical Tanks of Offshore Launch Platforms
by Yuxin Pan, Yuanyuan Wang, Fengyuan Liu and Gang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1448; https://doi.org/10.3390/jmse13081448 - 29 Jul 2025
Viewed by 68
Abstract
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine [...] Read more.
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine environment. The complex coupling effects of wind, waves, and currents impose severe challenges upon these platforms, causing complex phenomena such as severe rocking. These phenomena pose severe threats to and significantly interfere with the stability and normal execution of offshore rocket launch operations. This study employs CFD simulation software to analyze liquid sloshing within a cylindrical tank, both with and without baffles. Following validation of the natural frequency, the analysis focuses on the suppression effect of different baffle positions and configurations on tank sloshing. The numerical simulation results indicate the following: Incorporating baffles alters the natural frequency of liquid sloshing within the tank and effectively suppresses the free surface motion. The suppression of the wave surface motion improves as the baffle is positioned closer to the free surface and as the number of perforations in the baffle increases. However, when the number of perforations exceeds a certain threshold, further increasing it yields negligible improvement in the suppression of the sloshing wave surface motion. Full article
Show Figures

Figure 1

22 pages, 5844 KiB  
Article
Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors
by Weixu Gong, Zhengyang Cai, Shengcheng Geng, Zhi Gan, Junqiao Li, Tian Qiang, Yanfeng Jiang and Mengye Cai
Nanomaterials 2025, 15(15), 1168; https://doi.org/10.3390/nano15151168 - 28 Jul 2025
Viewed by 223
Abstract
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit [...] Read more.
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit obvious bipolarity, and gate-induced drain leakage (GIDL) contributes significantly to the off-state leakage current. Although the asymmetric gate strategy and feedback gate (FBG) structures proposed so far have shown the potential to suppress CNT FET leakage currents, the devices still lack scalability. Based on the analysis of the conduction mechanism of existing self-aligned gate structures, this study innovatively proposed a design strategy to extend the length of the source–drain epitaxial region (Lext) under a vertically stacked architecture. While maintaining a high drive current, this structure effectively suppresses the quantum tunneling effect on the drain side, thereby reducing the off-state leakage current (Ioff = 10−10 A), and has good scaling characteristics and leakage current suppression characteristics between gate lengths of 200 nm and 25 nm. For the sidewall gate architecture, this work also uses single-walled carbon nanotubes (SWCNTs) as the channel material and uses metal source and drain electrodes with good work function matching to achieve low-resistance ohmic contact. This solution has significant advantages in structural adjustability and contact quality and can significantly reduce the off-state current (Ioff = 10−14 A). At the same time, it can solve the problem of off-state current suppression failure when the gate length of the vertical stacking structure is 10 nm (the total channel length is 30 nm) and has good scalability. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 188
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

13 pages, 1308 KiB  
Article
Development of Palatable Amorphous Trazodone Hydrochloride Formulations via Ion Exchange
by Zhaohua Li, Junjie Wang, Huijian Wang, Yibo Li and Qiang Fu
Pharmaceutics 2025, 17(8), 972; https://doi.org/10.3390/pharmaceutics17080972 - 27 Jul 2025
Viewed by 314
Abstract
Objectives: The oral route is the most widely used method of administration. However, the bitter taste of drugs is a prevalent issue compromising patient acceptance. This study aimed to develop a palatable amorphous trazodone hydrochloride (TRA) formulation via ion exchange with Amberlite IRP88 [...] Read more.
Objectives: The oral route is the most widely used method of administration. However, the bitter taste of drugs is a prevalent issue compromising patient acceptance. This study aimed to develop a palatable amorphous trazodone hydrochloride (TRA) formulation via ion exchange with Amberlite IRP88 resin as the carrier. Methods: TRA-Amberlite IRP88 complexes (TRCs) were prepared using the static exchange method and their physical properties were then characterized. Molecular docking was carried out to elucidate the molecular interaction. Finally, the dissolution profiles and taste of TRCs were evaluated. Results: The Physical characterizations confirmed that TRA was amorphously dispersed in Amberlite IRP88. Importantly, the in vivo taste masking study suggested that the bitterness of TRA was effectively masked. The reason was that the dissociation of TRCs was suppressed in the saliva, resulting in reduced dissolution in the oral cavity. Conclusion: this study suggests that amorphization is effective in masking the bitterness of drugs and provides guidance for the development of palatable oral formulations. Full article
(This article belongs to the Special Issue Advanced Research on Amorphous Drugs)
Show Figures

Graphical abstract

18 pages, 2943 KiB  
Article
Cadmium Inhibits Proliferation of Human Bronchial Epithelial BEAS-2B Cells Through Inducing Ferroptosis via Targeted Regulation of the Nrf2/SLC7A11/GPX4 Pathway
by Huan Li, Zixin Qiu, Long Chen, Tianbao Zhang, Diandian Wei, Xue Chen and Yun Wang
Int. J. Mol. Sci. 2025, 26(15), 7204; https://doi.org/10.3390/ijms26157204 - 25 Jul 2025
Viewed by 178
Abstract
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells [...] Read more.
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells to explore the impact of ferroptosis in the inhibition of Cd-induced BEAS-2B cells proliferation. BEAS-2B cells were exposed to Cd (5 μM) with/without Lut (10 μM), ferroptosis modulators (Ferrostatin-1 (Fer-1)/Erastin), or nuclear factor erythroid 2-related factor 2 (Nrf2) regulators (tert-butylhydroquinone (TBHQ)/ML385). Viability, iron content, reactive oxygen species (ROS), LPO, mitochondrial membrane potential (MMP), and glutathione peroxidase (GSH-PX) activity were assessed. Exposure to Cd significantly decreased cell viability, increased intracellular iron levels, ROS production, and LPO activity, while simultaneously reducing MMP and GSH-PX activity. Fer-1 mitigated Cd-induced cytotoxicity, but Erastin intensified these effects. Mechanistically, Cd exposure suppressed the Nrf2/Solute Carrier Family 7 Member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway, which plays a crucial role in maintaining redox homeostasis. Activation of Nrf2 using TBHQ mitigated oxidative stress and upregulated the expression of key proteins within this pathway, while inhibition of Nrf2 with ML385 exacerbated cellular damage. Notably, Lut treatment could significantly alleviate Cd-induced cytotoxicity, oxidative stress, and downregulation of Nrf2/SLC7A11/GPX4 proteins. These findings demonstrate that ferroptosis is a critical mechanism underlying Cd-mediated lung epithelial injury and identify Lut as a promising therapeutic candidate via its activation of Nrf2-driven antioxidant defense mechanisms. This study provides novel insights into molecular targets for the prevention and treatment of Cd-associated pulmonary disorders. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 1680 KiB  
Article
IL-2 Complex Therapy Mitigates Humoral Rejection of Fully Mismatched Skin Allografts by Inhibiting IgG Alloantibody Formation
by Konstantinos Mengrelis, Mario Wiletel, Romy Steiner, Anna M. Weijler, Laurenz Wolner, Valentina Stolz, Milos Nikolic, Daniel Simon, Florian Frommlet, Jonathan Sprent, Hannes Stockinger and Nina Pilat
Cells 2025, 14(14), 1086; https://doi.org/10.3390/cells14141086 - 16 Jul 2025
Viewed by 441
Abstract
Antibody-mediated rejection (ABMR) caused by donor-specific Abs (DSAs) is still the leading cause of late graft loss following clinical organ transplantation, and effective strategies to combat ABMR are still elusive. We previously showed that rIL-2 complexed with anti-IL-2 mAb clone JES6-1A12 (IL-2 cplx) [...] Read more.
Antibody-mediated rejection (ABMR) caused by donor-specific Abs (DSAs) is still the leading cause of late graft loss following clinical organ transplantation, and effective strategies to combat ABMR are still elusive. We previously showed that rIL-2 complexed with anti-IL-2 mAb clone JES6-1A12 (IL-2 cplx) leads to the selective expansion of regulatory T cells (Tregs) and the prolonged survival of MHC-mismatched skin allografts. Although the grafts were eventually rejected, mice failed to develop DSAs. Here, we investigated the impact of IL-2 cplx on the humoral response and germinal center (GC) reaction during allograft rejection. IL-2 cplx treatment prevents Bcl-6 upregulation, leading to suppressed development of GC T and B cells. The IL-2 cplx-induced impairment of GC development limits IgG allo-Ab production but allows for IgM synthesis. By employing a hapten–carrier system to investigate affinity maturation, we found that IL-2 cplx induces a distinct shift in specific Ab production favoring low-affinity IgM while simultaneously decreasing IgG responses. These findings illuminate the potential of IL-2 cplx therapy for inducing humoral tolerance, potentially paving the way for refining strategies aimed at preventing and treating ABMR. Full article
Show Figures

Graphical abstract

21 pages, 887 KiB  
Article
Enhanced Mainlobe Jamming Suppression in Distributed Array Radar via Joint Optimization of Radar Positions and Subpulse Frequencies
by Weiming Pu, Kewei Feng, Xiaoping Wang, Zhennan Liang, Xinliang Chen and Quanhua Liu
Remote Sens. 2025, 17(14), 2423; https://doi.org/10.3390/rs17142423 - 12 Jul 2025
Viewed by 240
Abstract
This study presents a joint optimization framework for radar positions and subpulse carrier frequencies to address mainlobe jamming suppression in a distributed array radar system with one main and multiple auxiliary radars. Accounting for gain and aperture differences between the main and auxiliary [...] Read more.
This study presents a joint optimization framework for radar positions and subpulse carrier frequencies to address mainlobe jamming suppression in a distributed array radar system with one main and multiple auxiliary radars. Accounting for gain and aperture differences between the main and auxiliary radars, the grating lobe effect on jamming suppression performance is analyzed. Unlike conventional sparse array design approaches, this work introduces an architecture leveraging subpulses at distinct carrier frequencies to enhance grating lobe suppression and jamming suppression. A specific joint optimization method for radar positions and subpulse frequencies is then established. With jamming suppression performance as the objective function, the method first maps the variations induced by a range of candidate frequencies onto a single representative frequency point. This mapping enables efficient optimization of radar positions across the designated frequency band. Subsequently, a sequential scheme selects specific carrier frequencies for the subpulses. In practical anti-jamming operations, the optimal frequency for the current scenario is determined by analyzing the suppression results from these subpulses. The main radar then transmits pulses at this optimal frequency, thereby reducing both system complexity and pulse accumulation difficulty. Simulation results demonstrate that the proposed method achieves a reduction of over 3 dB in grating lobe suppression compared to conventional sparse array design methods, while enhancing the output signal-to-jamming and noise ratio by nearly 3 dB after jamming suppression. Full article
Show Figures

Figure 1

14 pages, 2175 KiB  
Article
Engineering Ultra-Low Thermal Conductivity in (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x Quaternary Lead Chalcogenides Through PbS-Induced Phase Segregation
by Dianta Ginting, Hadi Pronoto, Nurato, Kontan Tarigan, Sagir Alva, Muhamad Fitri, Dwi Nanto, Ai Nurlaela, Mashadi, Yunasfi, Toto Sudiro, Jumril Yunas and Jong-Soo Rhyee
Materials 2025, 18(14), 3232; https://doi.org/10.3390/ma18143232 - 9 Jul 2025
Viewed by 352
Abstract
The shortage of tellurium and toxicity of lead are major obstacles to scaling mid-temperature thermoelectric generators. We engineer quaternary lead chalcogenides with composition (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x (0 ≤ x ≤ 0.25), where Pb is lead, [...] Read more.
The shortage of tellurium and toxicity of lead are major obstacles to scaling mid-temperature thermoelectric generators. We engineer quaternary lead chalcogenides with composition (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x (0 ≤ x ≤ 0.25), where Pb is lead, Ge is germanium, Te is tellurium, Se is selenium, S is sulfur, and x denotes the molar fraction of lead sulfide (PbS). The primary novelty lies in achieving ultra-low thermal conductivity through controlled phase segregation induced by systematic PbS incorporation. X-ray diffraction analysis reveals single-phase solid solutions up to x ≈ 0.10, with secondary PbS precipitates forming beyond this threshold. These PbS-rich phases create hierarchical microstructures that scatter phonons across multiple length scales, suppressing total thermal conductivity to 0.6 Wm−1K−1 at x = 0.15—approximately 84% lower than pristine lead telluride (PbTe) and approaching glass-like thermal conductivity values. Electrical transport measurements demonstrate sulfur’s role as an electron donor, enabling carrier-type control from p-type to n-type conduction. Despite moderate electrical power factors, the optimized composition (x = 0.20) achieves a peak dimensionless figure of merit ZT ≈ 0.34 at 650 K. This work demonstrates an effective strategy for tellurium-lean, lead-reduced thermoelectric materials through sulfur-induced phase segregation, providing practical design guidelines for sustainable waste heat recovery applications. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 1831 KiB  
Article
Eskebornite CuFeSe2: Solid-State Synthesis and Thermoelectric Properties
by Se-Hyeon Choi and Il-Ho Kim
Inorganics 2025, 13(7), 216; https://doi.org/10.3390/inorganics13070216 - 27 Jun 2025
Viewed by 317
Abstract
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied [...] Read more.
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied antiferromagnetic semiconductor—eskebornite remains relatively underexplored, particularly regarding its solid-state synthesis and thermoelectric performance. To address this gap, pure eskebornite was synthesized via mechanical alloying followed by hot pressing, a method that enables the fine control of its phase composition and microstructural features. The synthesized undoped CuFeSe2 exhibited p-type nondegenerate semiconducting behavior, with electrical conductivity increasing monotonically over the temperature range of 323–623 K, indicative of thermally activated carrier transport. Simultaneously, a decreasing trend in thermal conductivity with temperature was observed, likely resulting from intensified phonon scattering, which serves to suppress heat transport and enhance the thermoelectric efficiency by maintaining a thermal gradient across the material. A peak in the Seebeck coefficient occurred between 473 and 523 K, suggesting the onset of intrinsic carrier excitation and a transition in dominant carrier transport mechanisms. The material exhibited a maximum power factor of 1.55 μWm−1K−2, while the dimensionless thermoelectric figure of merit (ZT) reached a peak value of 0.37 × 10−3 at 523 K. Although the ZT remains low, these results underscore the potential of eskebornite as a thermoelectric candidate, with substantial room for optimization through chemical doping, microstructural engineering, or nanostructuring approaches to enhance the carrier mobility and reduce the lattice thermal conductivity. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

24 pages, 4270 KiB  
Article
Differentiated GNSS Baseband Jamming Suppression Method Based on Classification Decision Information
by Zhongliang Deng, Zhichao Zhang, Xiangchuan Gao and Peijia Liu
Appl. Sci. 2025, 15(13), 7131; https://doi.org/10.3390/app15137131 - 25 Jun 2025
Viewed by 241
Abstract
In complex urban electromagnetic environments, wireless positioning signals are subject to various types of interference, including narrowband, chirp, and pulse jamming. Traditional generic suppression methods struggle to achieve global optimization tailored to specific interference mechanisms. This paper proposes a classification-driven differentiated jamming suppression [...] Read more.
In complex urban electromagnetic environments, wireless positioning signals are subject to various types of interference, including narrowband, chirp, and pulse jamming. Traditional generic suppression methods struggle to achieve global optimization tailored to specific interference mechanisms. This paper proposes a classification-driven differentiated jamming suppression (CDDJ) method, which adaptively selects the optimal mitigation strategy by pre-identifying interference types and integrating classification confidence levels. First, the theoretical bounds of the output carrier-to-noise ratio (C/N0out) under typical interference scenarios are derived, characterizing the performance distribution of anti-jamming efficiency (Γ). Then, a mapping relationship between interference categories and their corresponding suppression strategies is established, along with decision criteria for strategy switching based on signal quality evaluation metrics. Finally, an OpenMax-Lite rejection layer is designed to handle low-confidence inputs, identify unknown jamming using the Weibull distribution, and implement a broadband conservative suppression policy. Simulation results demonstrate that the proposed method exhibits significant advantages across different interference types. Under high JSR conditions, the signal recovery rate improves by over 10% and 8% compared to that of the WPT and KLT methods, respectively. In terms of SINR performance, the proposed approach outperforms the AFF, TDPB, and FDPB methods by 1.5 dB, 1.1 dB, and 5.3 dB, respectively, thereby enhancing the reliability of wireless positioning in complex environments. Full article
(This article belongs to the Special Issue Advanced GNSS Technologies: Measurement, Analysis, and Applications)
Show Figures

Figure 1

23 pages, 4069 KiB  
Article
Engineered Sustainable Mxene-PVA Hydrogel as an Inspiring Co-Delivery Carrier for Targeting Solid Tumors
by Elham Ghazizadeh, Mahya Sadeghi, Hans-Peter Deigner and Ali Neshastehriz
Pharmaceutics 2025, 17(7), 823; https://doi.org/10.3390/pharmaceutics17070823 - 25 Jun 2025
Viewed by 484
Abstract
Background: Solid tumors have long presented a significant challenge in the field of oncology due to their ability to develop resistance to multiple drugs, known as multidrug resistance (MDR). This phenomenon often leads to treatment failure and poor patient outcomes. In recent years, [...] Read more.
Background: Solid tumors have long presented a significant challenge in the field of oncology due to their ability to develop resistance to multiple drugs, known as multidrug resistance (MDR). This phenomenon often leads to treatment failure and poor patient outcomes. In recent years, researchers have been exploring innovative approaches to combat MDR, including the use of hydrogels for localized drug delivery. Methods: Through the biological crosslinking of an MB-smDNA-MB agent to form a pH sensitive hydrogel matrix, we introduce the injection coating of a novel PVA-MB-smDNA-MB-Mxene (PMSDMM) carrier for Adriamycin (a potent chemotherapy drug) and miR-375 (as tumor-suppressive microRNA) delivery. Results: We aimed to enhance the effectiveness of drug delivery to solid tumors while minimizing systemic toxicity via the pH-sensitive characteristics of methylene blue at the end of smDNA as a dsDNA biological crosslinking agent, i.e., anti-miR-375 PMSDMM ADR. Our hydrogel was shown to improve the release of the drug in the acid tumor environment. In the first 24 h, the cumulative release rate was higher at pH = 5.5 than at pH = 7.4. Conclusions: We show that this DNA bio-inspired PMSDMM hydrogel has potential in hydrogel injection applications for tumor suppression and tissue regeneration after the surgical resection of tumors. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 2189 KiB  
Article
First-Principles Study of Halide Modulation on Deep-Level Traps in FAPbI3
by Jiaqi Dai, Wenchao Tang, Tingfeng Li, Cuiping Xu, Min Zhao, Peiqi Ji, Xiaolei Li, Fengming Zhang, Hongling Cai and Xiaoshan Wu
Nanomaterials 2025, 15(13), 981; https://doi.org/10.3390/nano15130981 - 24 Jun 2025
Cited by 1 | Viewed by 298
Abstract
In this study, we investigate the influence of the halogen elements bromine (Br) and chlorine (Cl) on iodine defect properties primarily in FAPbI3 through first-principles calculations, aiming to understand the effect of high defect densities on the efficiency of organic–inorganic hybrid perovskite [...] Read more.
In this study, we investigate the influence of the halogen elements bromine (Br) and chlorine (Cl) on iodine defect properties primarily in FAPbI3 through first-principles calculations, aiming to understand the effect of high defect densities on the efficiency of organic–inorganic hybrid perovskite cells. The results indicate that Br and Cl interstitials minimally alter the overall band structure of FAPbI3 but significantly modify the defect energy levels. Br and Cl interstitials, with defect states closer to the valence band and lower formation energies, effectively convert deep-level traps induced by iodine interstitials (Ii) into shallow-level traps. This conversion enhances carrier transport by reducing non-radiative recombination while preserving light absorption efficiency. Excess Br/Cl co-doping in FAPbI3 synthesis thereby suppresses non-radiative recombination and mitigates the detrimental effects of iodide-related defects. Full article
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 374
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

23 pages, 4740 KiB  
Article
Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel
by Abinaya Radhakrishnan, Manoja Tharmaraj, Anuradha Ramani and Nagarajan Srinivasan
Electrochem 2025, 6(2), 21; https://doi.org/10.3390/electrochem6020021 - 12 Jun 2025
Viewed by 1301
Abstract
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with [...] Read more.
In recent years, protecting stainless steel from corrosion has become crucial, particularly in harsh environments. The present study focuses on improving the photocathodic corrosion resistance of 304 stainless steel (304SS) by fabricating TiO2/CuO composite coatings using the spin coating technique with varying CuO weight percentages. Structural characterization through X-ray diffraction (XRD) confirmed the presence of the anatase phase of TiO2 and the successful integration of CuO. Raman spectroscopy demonstrated redshifts in the TiO2 characteristic peaks, suggesting changes in bond lengths attributed to CuO incorporation. These findings were further corroborated by Fourier-transform infrared (FTIR) spectroscopy. Surface characterization showed uniform, porous coatings with pore sizes ranging from 75 to 200 nm, which contributed to improved barrier properties. UV–visible diffuse reflectance spectroscopy (UV-DRS) demonstrated enhanced visible light absorption in the heterostructures. Mott–Schottky analysis confirmed improved charge carrier density and favorable band alignment, facilitating efficient charge separation. The electrochemical performance was evaluated in 3.5% NaCl solution under dark and light environments. The results demonstrated that the TiO2/CuO heterostructure significantly enhanced electron transfer and suppressed electron-hole recombination, providing adequate photocathodic protection. Notably, under illumination, the TiO2/CuO (0.005 g) coating achieved a corrosion potential of −255 mV vs SCE and reduced the corrosion current density to 0.460 × 10−6 mA cm−2. These findings suggest that TiO2/CuO coatings offer a promising, durable, and cost-effective solution for corrosion protection in industries such as oil, shipbuilding, and pipelines. Full article
Show Figures

Graphical abstract

Back to TopTop