IL-2 Complex Therapy Mitigates Humoral Rejection of Fully Mismatched Skin Allografts by Inhibiting IgG Alloantibody Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice and Study Approval
2.2. Sex as a Biological Variable
2.3. IL-2 Cplx Preparation
2.4. Flow Cytometric Analysis and mAbs
2.5. MHC-Specific ELISA
2.6. NP-KLH Immunization
2.7. Affinity Binding Assay
2.8. Skin Grafting
2.9. Anti-Donor Flow Cytometric Crossmatch
2.10. Statistical Analysis
3. Results
3.1. IL-2 Cplx Treatment of MHC-Mismatched Skin-Grafted Mice Leads to Impaired GC T-Cell Formation
3.2. IL-2 Cplx Treatment of MHC-Mismatched Skin-Grafted Mice Leads to Impaired GC B-Cell Formation
3.3. Circulating Alloantigen-Specific IgG but Not IgM Isotypes Are Significantly Decreased in Serum of Skin-Grafted Mice Treated with IL-2 Cplx
3.4. IL-2 Cplx Treatment Leads to Qualitative Changes in the Ab Response to a Hapten–Carrier Conjugate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABMR | antibody-mediated rejection |
DLN | draining lymph node |
DSA | donor-specific antibody |
EAE | experimental autoimmune encephalomyelitis |
GC | germinal center |
GVHD | graft-versus-host disease |
KLH | keyhole limpet hemocyanin |
MST | median survival time |
MZ B cells | marginal zone B cells |
NP | 4-Hydroxy-3-nitrophenylacetyl |
PLN | peripheral lymph node |
SHM | somatic hypermutation |
Tfh | T follicular helper cells |
Tfr | T follicular regulatory cells |
Tfr-phen | T follicular regulatory phenotype |
Tregs | regulatory T cells |
References
- Budde, K.; Durr, M. Any Progress in the Treatment of Antibody-Mediated Rejection? J. Am. Soc. Nephrol. 2018, 29, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.A.; Cozzi, E.; West, L.J.; Warren, D.S. Humoral immunity and antibody-mediated rejection in solid organ transplantation. Semin. Immunol. 2011, 23, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Bolton, E.; Saeb-Parsy, K.; Bradley, J.A.; Pettigrew, G. Targeting indirect pathway CD4 T-cell alloresponses in the prevention of chronic transplant rejection. Lancet 2015, 385 (Suppl. S1), S17. [Google Scholar] [CrossRef] [PubMed]
- Sicard, A.; Lamarche, C.; Speck, M.; Wong, M.; Rosado-Sánchez, I.; Blois, M.; Glaichenhaus, N.; Mojibian, M.; Levings, M.K. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am. J. Transplant. 2020, 20, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Klatzmann, D.; Abbas, A.K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 2015, 15, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Koreth, J.; Kim, H.T.; Bascug, G.; McDonough, S.; Kawano, Y.; Murase, K.; Cutler, C.; Ho, V.T.; Alyea, E.P.; et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci. Transl. Med. 2013, 5, 179ra143. [Google Scholar] [CrossRef] [PubMed]
- Rosenzwajg, M.; Churlaud, G.; Mallone, R.; Six, A.; Derian, N.; Chaara, W.; Lorenzon, R.; Long, S.A.; Buckner, J.H.; Afonso, G.; et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J. Autoimmun. 2015, 58, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Pilon, C.B.; Petillon, S.; Naserian, S.; Martin, G.H.; Badoual, C.; Lang, P.; Azoulay, D.; Piaggio, E.; Grimbert, P.; Cohen, J.L. Administration of low doses of IL-2 combined to rapamycin promotes allogeneic skin graft survival in mice. Am. J. Transplant. 2014, 14, 2874–2882. [Google Scholar] [CrossRef] [PubMed]
- Boyman, O.; Kovar, M.; Rubinstein, M.P.; Surh, C.D.; Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006, 311, 1924–1927. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Walters, S.; Kohler, R.E.; Mrkvan, T.; Boyman, O.; Surh, C.D.; Grey, S.T.; Sprent, J. In vivo expansion of T reg cells with IL-2-mAb complexes: Induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J. Exp. Med. 2009, 206, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Iwasaki, T.; Kitano, S.; Satake, A.; Nomura, S.; Furukawa, T.; Matsui, K.; Sano, H. IL-2-Anti-IL-2 Monoclonal Antibody Immune Complexes Inhibit Collagen-Induced Arthritis by Augmenting Regulatory T Cell Functions. J. Immunol. 2018, 201, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Pilat, N.; Wiletel, M.; Weijler, A.M.; Steiner, R.; Mahr, B.; Warren, J.; Corpuz, T.M.; Wekerle, T.; Webster, K.E.; Sprent, J. Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc. Natl. Acad. Sci. USA 2019, 116, 13508–13516. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; He, J.; Wei, Y.; Zeng, Q.; Gong, D.; Qin, J.; Ding, H.; Chen, Z.; Zhou, P.; Niu, P.; et al. Sustained low-dose interleukin-2 therapy alleviates pathogenic humoral immunity via elevating the Tfr/Tfh ratio in lupus. Clin. Transl. Immunol. 2021, 10, e1293. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, B.; Vigneron, J.; Levacher, B.; Vazquez, T.; Pitoiset, F.; Brimaud, F.; Churlaud, G.; Klatzmann, D.; Bellier, B. Low-Dose IL-2 Induces Regulatory T Cell-Mediated Control of Experimental Food Allergy. J. Immunol. 2016, 197, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Efe, O.; Gassen, R.B.; Morena, L.; Ganchiku, Y.; Al Jurdi, A.; Lape, I.T.; Ventura-Aguiar, P.; LeGuern, C.; Madsen, J.C.; Shriver, Z.; et al. A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J. Clin. Investig. 2024, 134, e173107. [Google Scholar] [CrossRef] [PubMed]
- Pilat, N.; Sprent, J. Treg Therapies Revisited: Tolerance Beyond Deletion. Front. Immunol. 2020, 11, 622810. [Google Scholar] [CrossRef] [PubMed]
- Noviski, M.; Mueller, J.L.; Satterthwaite, A.; Garrett-Sinha, L.A.; Brombacher, F.; Zikherman, J. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate. eLife 2018, 7, e35074. [Google Scholar] [CrossRef] [PubMed]
- Zaheen, A.; Boulianne, B.; Parsa, J.Y.; Ramachandran, S.; Gommerman, J.L.; Martin, A. AID constrains germinal center size by rendering B cells susceptible to apoptosis. Blood 2009, 114, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Kitano, M.; Moriyama, S.; Ando, Y.; Hikida, M.; Mori, Y.; Kurosaki, T.; Okada, T. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 2011, 34, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Palm, A.K.; Friedrich, H.C.; Kleinau, S. Nodal marginal zone B cells in mice: A novel subset with dormant self-reactivity. Sci. Rep. 2016, 6, 27687. [Google Scholar] [CrossRef] [PubMed]
- Pracht, K.; Meinzinger, J.; Daum, P.; Schulz, S.R.; Reimer, D.; Hauke, M.; Roth, E.; Mielenz, D.; Berek, C.; Corte-Real, J.; et al. A new staining protocol for detection of murine antibody-secreting plasma cell subsets by flow cytometry. Eur. J. Immunol. 2017, 47, 1389–1392. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, J.R.; Jones, D.D.; Allman, D. Protocol for improved resolution of plasma cell subpopulations by flow cytometry. Eur. J. Immunol. 2017, 47, 1386–1388. [Google Scholar] [CrossRef] [PubMed]
- Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Yang, J.A.; Yusuf, I.; Johnston, R.J.; Greenbaum, J.; Peters, B.; Crotty, S. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 2013, 190, 4014–4026. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 2011, 29, 621–663. [Google Scholar] [CrossRef] [PubMed]
- Wing, J.B.; Kitagawa, Y.; Locci, M.; Hume, H.; Tay, C.; Morita, T.; Kidani, Y.; Matsuda, K.; Inoue, T.; Kurosaki, T.; et al. A distinct subpopulation of CD25(-) T-follicular regulatory cells localizes in the germinal centers. Proc. Natl. Acad. Sci. USA 2017, 114, E6400–E6409. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.R.; Ribeiro, F.; Graca, L. T follicular regulatory (Tfr) cells: Dissecting the complexity of Tfr-cell compartments. Immunol. Rev. 2019, 288, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, X.; Zheng, B.; Han, S. IgM-mediated signaling is required for the development of a normal B cell memory response. Mol. Immunol. 2008, 45, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Lalor, P.A.; Nossal, G.J.; Sanderson, R.D.; McHeyzer-Williams, M.G. Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur. J. Immunol. 1992, 22, 3001–3011. [Google Scholar] [CrossRef] [PubMed]
- Ronsard, L.; Yousif, A.S.; Nait Mohamed, F.A.; Feldman, J.; Okonkwo, V.; McCarthy, C.; Schnabel, J.; Caradonna, T.; Barnes, R.M.; Rohrer, D.; et al. Engaging an HIV vaccine target through the acquisition of low B cell affinity. Nat. Commun. 2023, 14, 5249. [Google Scholar] [CrossRef] [PubMed]
- Silva-Cayetano, A.; Fra-Bido, S.; Robert, P.A.; Innocentin, S.; Burton, A.R.; Watson, E.M.; Lee, J.L.; Webb, L.M.C.; Foster, W.S.; McKenzie, R.C.J.; et al. Spatial dysregulation of T follicular helper cells impairs vaccine responses in aging. Nat. Immunol. 2023, 24, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Inaba, A.; Tuong, Z.K.; Zhao, T.X.; Stewart, A.P.; Mathews, R.; Truman, L.; Sriranjan, R.; Kennet, J.; Saeb-Parsy, K.; Wicker, L.; et al. Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat. Commun. 2023, 14, 2071. [Google Scholar] [CrossRef] [PubMed]
- Martinic, M.M.; van den Broek, M.F.; Rulicke, T.; Huber, C.; Odermatt, B.; Reith, W.; Horvath, E.; Zellweger, R.; Fink, K.; Recher, M.; et al. Functional CD8+ but not CD4+ T cell responses develop independent of thymic epithelial MHC. Proc. Natl. Acad. Sci. USA 2006, 103, 14435–14440. [Google Scholar] [CrossRef] [PubMed]
- Sundling, C.; Lau, A.W.Y.; Bourne, K.; Young, C.; Laurianto, C.; Hermes, J.R.; Menzies, R.J.; Butt, D.; Krautler, N.J.; Zahra, D.; et al. Positive selection of IgG(+) over IgM(+) B cells in the germinal center reaction. Immunity 2021, 54, 988–1001.e1005. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ramirez, S.; Al Jurdi, A.; Konvalinka, A.; Riella, L.V. Antibody-mediated rejection: Prevention, monitoring and treatment dilemmas. Curr. Opin. Organ Transplant. 2022, 27, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Haberman, A.M.; Gonzalez, D.G.; Wong, P.; Zhang, T.T.; Kerfoot, S.M. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol. Rev. 2019, 288, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Betzler, A.C.; Ushmorov, A.; Brunner, C. The transcriptional program during germinal center reaction—A close view at GC B cells, Tfh cells and Tfr cells. Front. Immunol. 2023, 14, 1125503. [Google Scholar] [CrossRef] [PubMed]
- Wing, J.B.; Lim, E.L.; Sakaguchi, S. Control of foreign Ag-specific Ab responses by Treg and Tfr. Immunol. Rev. 2020, 296, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Botta, D.; Fuller, M.J.; Marquez-Lago, T.T.; Bachus, H.; Bradley, J.E.; Weinmann, A.S.; Zajac, A.J.; Randall, T.D.; Lund, F.E.; Leon, B.; et al. Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat. Immunol. 2017, 18, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Santana, S.; Papillion, A.; Foote, J.B.; Bachus, H.; Leon, B.; De Miguel, C.; Ballesteros-Tato, A. Cutting Edge: Low-dose Recombinant IL-2 Treatment Prevents Autoantibody Responses in Systemic Lupus Erythematosus via Regulatory T Cell-independent Depletion of T Follicular Helper Cells. J. Immunol. 2024, 213, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.S.K. The link between circulating follicular helper T cells and autoimmunity. Nat. Rev. Immunol. 2022, 22, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Xiao, X.; Tian, J.; Zhufeng, Y.; Feng, R.; Zhang, R.; Chen, J.; Zhang, X.; Huang, B.; Jin, Y.; et al. Therapeutic potential of targeting Tfr/Tfh cell balance by low-dose-IL-2 in active SLE: A post hoc analysis from a double-blind RCT study. Arthritis Res. Ther. 2021, 23, 167. [Google Scholar] [CrossRef] [PubMed]
- Jandl, C.; Liu, S.M.; Canete, P.F.; Warren, J.; Hughes, W.E.; Vogelzang, A.; Webster, K.; Craig, M.E.; Uzel, G.; Dent, A.; et al. IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2. Nat Commun 2017, 8, 14647. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, B.; Oya, Y.; Akkaya, M.; Al Souz, J.; Holstein, A.H.; Kamenyeva, O.; Kabat, J.; Matsumura, R.; Dorward, D.W.; Glass, D.D.; et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat. Immunol. 2019, 20, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Craft, J. T Follicular Regulatory Cells: Choreographers of Productive Germinal Center Responses. Front. Immunol. 2021, 12, 679909. [Google Scholar] [CrossRef] [PubMed]
- Clement, R.L.; Daccache, J.; Mohammed, M.T.; Diallo, A.; Blazar, B.R.; Kuchroo, V.K.; Lovitch, S.B.; Sharpe, A.H.; Sage, P.T. Follicular regulatory T cells control humoral and allergic immunity by restraining early B cell responses. Nat. Immunol. 2019, 20, 1360–1371. [Google Scholar] [CrossRef] [PubMed]
- Preite, S.; Baumjohann, D.; Foglierini, M.; Basso, C.; Ronchi, F.; Fernandez Rodriguez, B.M.; Corti, D.; Lanzavecchia, A.; Sallusto, F. Somatic mutations and affinity maturation are impaired by excessive numbers of T follicular helper cells and restored by Treg cells or memory T cells. Eur. J. Immunol. 2015, 45, 3010–3021. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Figueroa, P.; Roco, J.A.; Papa, I.; Nunez Villacis, L.; Stanley, M.; Linterman, M.A.; Dent, A.; Canete, P.F.; Vinuesa, C.G. Follicular regulatory T cells produce neuritin to regulate B cells. Cell 2021, 184, 1775–1789 e1719. [Google Scholar] [CrossRef] [PubMed]
- Sage, P.T.; Ron-Harel, N.; Juneja, V.R.; Sen, D.R.; Maleri, S.; Sungnak, W.; Kuchroo, V.K.; Haining, W.N.; Chevrier, N.; Haigis, M.; et al. Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nat. Immunol. 2016, 17, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Hillsamer, P.; Banham, A.H.; Kim, C.H. Cutting edge: Direct suppression of B cells by CD4+ CD25+ regulatory T cells. J. Immunol. 2005, 175, 4180–4183. [Google Scholar] [CrossRef] [PubMed]
- Gotot, J.; Gottschalk, C.; Leopold, S.; Knolle, P.A.; Yagita, H.; Kurts, C.; Ludwig-Portugall, I. Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc. Natl. Acad. Sci. USA 2012, 109, 10468–10473. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.M.; Thornton, A.M.; DiPaolo, R.J.; Shevach, E.M. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 2006, 107, 3925–3932. [Google Scholar] [CrossRef] [PubMed]
Phenotypes | References | |
---|---|---|
B-cell subpopulations | ||
Mature B cells | B220 + IgM + IgD + CD23+ | [17] |
GC B cells | B220 + GL7 + Fas + Bcl-6+ | [18,19] |
Marginal zone B cells | B220 + IgM + CD1d + CD23− | [20] |
Plasma cells | B220-CD19-CD3-CD138 + Blimp-1+ | [21,22] |
T-cell subpopulations | ||
Tregs | CD4 + CD25 + FoxP3+ | [23] |
GC T cells | CD4 + CXCR5 + PD-1 + Bcl-6+ | [24] |
Tfh | CD4 + CXCR5 + PD-1 + Bcl-6 + FoxP3− | [25] |
Tfr | CD4 + CXCR5 + PD-1 + FoxP3 + CD25− | [26] |
Tfr-phenotype (Tfr-phen) | CD4 + CXCR5 + PD-1 + FoxP3+ | [27] |
Pre-Tfr | CD4 + CXCR5 + PD-1 + FoxP3 + CD25+ | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengrelis, K.; Wiletel, M.; Steiner, R.; Weijler, A.M.; Wolner, L.; Stolz, V.; Nikolic, M.; Simon, D.; Frommlet, F.; Sprent, J.; et al. IL-2 Complex Therapy Mitigates Humoral Rejection of Fully Mismatched Skin Allografts by Inhibiting IgG Alloantibody Formation. Cells 2025, 14, 1086. https://doi.org/10.3390/cells14141086
Mengrelis K, Wiletel M, Steiner R, Weijler AM, Wolner L, Stolz V, Nikolic M, Simon D, Frommlet F, Sprent J, et al. IL-2 Complex Therapy Mitigates Humoral Rejection of Fully Mismatched Skin Allografts by Inhibiting IgG Alloantibody Formation. Cells. 2025; 14(14):1086. https://doi.org/10.3390/cells14141086
Chicago/Turabian StyleMengrelis, Konstantinos, Mario Wiletel, Romy Steiner, Anna M. Weijler, Laurenz Wolner, Valentina Stolz, Milos Nikolic, Daniel Simon, Florian Frommlet, Jonathan Sprent, and et al. 2025. "IL-2 Complex Therapy Mitigates Humoral Rejection of Fully Mismatched Skin Allografts by Inhibiting IgG Alloantibody Formation" Cells 14, no. 14: 1086. https://doi.org/10.3390/cells14141086
APA StyleMengrelis, K., Wiletel, M., Steiner, R., Weijler, A. M., Wolner, L., Stolz, V., Nikolic, M., Simon, D., Frommlet, F., Sprent, J., Stockinger, H., & Pilat, N. (2025). IL-2 Complex Therapy Mitigates Humoral Rejection of Fully Mismatched Skin Allografts by Inhibiting IgG Alloantibody Formation. Cells, 14(14), 1086. https://doi.org/10.3390/cells14141086