Development of Palatable Amorphous Trazodone Hydrochloride Formulations via Ion Exchange
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Drug–Resin Complexes
2.3. Characterizations of Drug–Resin Complexes
2.3.1. SEM-EDS
2.3.2. PXRD
2.3.3. Thermal Analyses
2.3.4. FT-IR
2.4. Molecular Docking
2.5. Dissolution Testing
2.6. Taste Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation of TRCs
3.2. Physical Characterizations of TRCs
3.2.1. SEM-EDS
3.2.2. Thermal Analyses
3.2.3. PXRD
3.2.4. FT-IR
3.3. Molecular Docking
3.4. Dissolution Testing
3.5. Taste Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Debotton, N.; Dahan, A. Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms. Med. Res. Rev. 2017, 37, 52–97. [Google Scholar] [CrossRef]
- Daeihamed, M.; Dadashzadeh, S.; Haeri, A.; Akhlaghi, M.F. Potential of Liposomes for Enhancement of Oral Drug Absorption. Curr. Drug Deliv. 2017, 14, 289–303. [Google Scholar] [CrossRef]
- Khan, D.; Kirby, D.; Bryson, S.; Shah, M.; Rahman Mohammed, A. Paediatric specific dosage forms: Patient and formulation considerations. Int. J. Pharm. 2022, 616, 121501. [Google Scholar] [CrossRef]
- Mu, Y.; Zhao, L.; Shen, L. Medication adherence and pharmaceutical design strategies for pediatric patients: An overview. Drug Discov. Today 2023, 28, 103766. [Google Scholar] [CrossRef]
- Simšič, T.; Planinšek, O.; Baumgartner, A. Taste-masking methods in multiparticulate dosage forms with a focus on poorly soluble drugs. Acta Pharm. 2024, 74, 177–199. [Google Scholar] [CrossRef]
- Kayitare, E.; Vervaet, C.; Mehuys, E.; Kayumba, P.C.; Ntawukulilyayo, J.D.; Karema, C.; Bortel, V.; Remon, J.P. Taste-masked quinine pamoate tablets for treatment of children with uncomplicated Plasmodium falciparum malaria. Int. J. Pharm. 2010, 392, 29–34. [Google Scholar] [CrossRef]
- Salunke, S.; O’Brien, F.; Cheng Thiam Tan, D.; Harris, D.; Math, M.C.; Ariën, T.; Klein, S.; Timpe, C. Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv. Drug Deliv. Rev. 2022, 190, 114507. [Google Scholar] [CrossRef]
- Khor, C.M.; Ng, W.K.; Kanaujia, P.; Chan, K.P.; Dong, Y. Hot-melt extrusion microencapsulation of quercetin for taste-masking. J. Microencapsul. 2017, 34, 29–37. [Google Scholar] [CrossRef]
- Xu, M.; Heng, P.W.; Liew, C.V. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor. Expert Opin. Drug Deliv. 2015, 12, 1597–1606. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, M.; Fan, Y.; Wang, L.; Yuan, L.; Sun, Y. Preparation and Evaluation of Clarithromycin Taste-Masking Dry Suspension Using Hot Melt Extrusion Based on Solid Dispersion Technology. Chem. Pharm. Bull. 2024, 72, 681–688. [Google Scholar] [CrossRef]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M. Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics 2021, 13, 1665. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Kuang, C.; Zhang, X. Preparation and evaluation of taste masked oral suspension of arbidol hydrochloride. Asian J. Pharm. Sci. 2015, 10, 73–79. [Google Scholar] [CrossRef]
- Guo, X.; Chang, R.K.; Hussain, M.A. Ion-exchange resins as drug delivery carriers. J. Pharm. Sci. 2009, 98, 3886–3902. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Shi, L.; Liu, Q.; Liu, C.; Zhang, F.; Wu, H. Development of Child-Friendly Lisdexamfetamine Chewable Tablets Using Ion Exchange Resin as a Taste-Masking Carrier Based on the Concept of Quality by Design (QbD). AAPS PharmSciTech 2023, 24, 132. [Google Scholar] [CrossRef]
- Tan, D.C.T.; Ong, J.J.; Gokhale, R.; Heng, P.W.S. Hot melt extrusion of ion-exchange resin for taste masking. Int. J. Pharm. 2018, 547, 385–394. [Google Scholar] [CrossRef]
- Siddiqui, F.; Shoaib, M.H.; Ahmed, F.R.; Qazi, F.; Yousuf, R.I.; Usmani, M.T.; Saleem, M.T.; Ahmed, K. Formulation development and optimization of taste-masked azithromycin oral suspension with ion exchange resins: Bioanalytical method development and validation, in vivo bioequivalence study, and in-silico PBPK modeling for the paediatric population. J. Drug Deliv. Sci. Technol. 2023, 79, 104048. [Google Scholar] [CrossRef]
- Hu, S.; Liu, X.; Zhang, S.; Quan, D. An Overview of Taste-Masking Technologies: Approaches, Application, and Assessment Methods. AAPS PharmSciTech 2023, 24, 67. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, P.; Zhao, X.; Zhang, H.; Yang, Y.; Ding, J. Development and in vitro/in vivo evaluation of taste-masked orodispersible films of dapoxetine hydrochloride using ion exchange resins. Drug Deliv. Transl. Res. 2025, 15, 2710–2721. [Google Scholar] [CrossRef]
- Chikukwa, M.T.R.; Wesoly, M.; Korzeniowska, A.B.; Ciosek-Skibinska, P.; Walker, R.B.; Khamanga, S.M.M. Assessment of taste masking of captopril by ion-exchange resins using electronic gustatory system. Pharm. Dev. Technol. 2020, 25, 281–289. [Google Scholar] [CrossRef]
- Han, X.; Zhang, S.; Chai, Z.; Dong, Y.; He, W.; Yin, L.; Yang, L.; Qin, C. In vitro and in vivo evaluation of the taste-masking efficiency of Amberlite IRP88 as drug carries in chewable tablets. J. Drug Deliv. Sci. Technol. 2019, 49, 547–555. [Google Scholar] [CrossRef]
- Rajesh, A.M.; Bhatt, S.A.; Brahmbhatt, H.; Anand, P.S.; Popat, K.M. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network. Asian J. Pharm. Sci. 2015, 10, 331–340. [Google Scholar] [CrossRef]
- Anand, V.; Kandarapu, R.; Garg, S. Ion-exchange resins: Carrying drug delivery forward. Drug Discov. Today 2001, 6, 905–914. [Google Scholar] [CrossRef]
- Ge, Z.; Yang, M.; Wang, Y.; Shan, L.; Gao, C. Preparation and evaluation of orally disintegrating tablets of taste masked phencynonate HCl using ion-exchange resin. Drug Dev. Ind. Pharm. 2015, 41, 934–941. [Google Scholar] [CrossRef]
- Kumar, A.; Saha, M.; Saraswat, J.; Behera, K.; Trivedi, S. Interaction between antidepressant drug trazodone with double-stranded DNA: Multi-spectroscopic and computational analysis. Int. J. Biol. Macromol. 2024, 277, 134113. [Google Scholar] [CrossRef]
- Yewale, C.P.; Rathi, M.N.; Kore, G.G.; Jadhav, G.V.; Wagh, M.P. Formulation and development of taste masked fast-disintegrating tablets (FDTs) of Chlorpheniramine maleate using ion-exchange resins. Pharm. Dev. Technol. 2013, 18, 367–376. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Shi, C.; Li, J.; Zhao, N.; Dong, Z.; Pan, W.; Zhang, X. Development and evaluation of orally disintegrating tablets containing the mosapride resin complex. Acta Pharm. 2018, 68, 159–170. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kumagai, H.; Haneda, M.; Vertzoni, M.; Ouwerkerk, N.; Murayama, D.; Katakawa, Y.; Motonaga, K.; Reppas, C.; Tajiri, T. The mechanism of solifenacin release from a pH-responsive ion-complex oral suspension in the fasted upper gastrointestinal lumen. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2020, 142, 105107. [Google Scholar] [CrossRef]
- Kandagal, P.B.; Seetharamappa, J.; Shaikh, S.M.T.; Manjunatha, D.H. Binding of trazodone hydrochloride with human serum albumin: A spectroscopic study. J. Photochem. Photobiol. A Chem. 2007, 185, 239–244. [Google Scholar] [CrossRef]
- Demurtas, A.; Nicoli, S.; Pescina, S.; Marchitto, L.; Ragni, L.; Russo, V.; Tommasi, G.; Santi, P.; Padula, C. Development, optimization and ex-vivo evaluation of a transdermal formulation containing trazodone. Eur. J. Pharm. Sci. 2024, 201, 106874. [Google Scholar] [CrossRef]
- Doty, R.L.; Shah, M.; Bromley, S.M. Drug-Induced Taste Disorders. Drug Saf. 2008, 31, 199–215. [Google Scholar] [CrossRef]
- Tekdemir, R.; Kandeğer, A. A case of trazodone induced prolonged hypogeusia. Eur. Psychiatry 2022, 65 (Suppl. 1), S719–S720. [Google Scholar] [CrossRef]
- Schiffman, S.S. Influence of medications on taste and smell. World J. Otorhinolaryngol.-Head Neck Surg. 2018, 4, 84–91. [Google Scholar] [CrossRef]
- Drašković, M.; Medarević, D.; Aleksić, I.; Parojčić, J. In vitro and in vivo investigation of taste-masking effectiveness of Eudragit E PO as drug particle coating agent in orally disintegrating tablets. Drug Dev. Ind. Pharm. 2017, 43, 723–731. [Google Scholar] [CrossRef]
- Sprockel, O.L.; Price, J.C. Evaluation of sustained release aqueous suspensions containing microencapsulated drug-resin complexes. Drug Dev. Ind. Pharm. 1989, 15, 1275–1287. [Google Scholar] [CrossRef]
- Ahamed, M.A.; Jeyakumar, D.; Burkanudeen, A.R. Removal of cations using ion-binding terpolymer involving 2-amino-6-nitro-benzothiazole and thiosemicarbazide with formaldehyde by batch equilibrium technique. J. Hazard. Mater. 2013, 248–249, 59–68. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y.; Wang, T.; Shen, L.; Zhang, Z.; Wang, Y.; Quan, D. Creation of an assessment system for measuring the bitterness of azithromycin-containing reverse micelles. Asian J. Pharm. Sci. 2018, 13, 343–352. [Google Scholar] [CrossRef]
- Sivaneswari, S.; Karthikeyan, E.; Veena, D.; Chandana, P.J.; Sai Sumana, P.; Subhashree, P.; Ramya, L.; Rajalakshmi, R.; Ashok Kumar, C.K. Physiochemical characterization of taste masking levetiracetam ion exchange resinates in the solid state and formulation of stable liquid suspension for pediatric use. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 126–133. [Google Scholar] [CrossRef]
- Ye, G.; Wang, Q.; Shang, Y.; Li, Y.; Yang, R.; Jing, B.; Fu, Q. Preparation and Characterization of Diclofenac Sodium-Purolite A430MR Complexes for Taste Masking. AAPS PharmSciTech 2025, 26, 158. [Google Scholar] [CrossRef]
- Mu, B.; Liu, P.; Li, X.; Du, P.; Dong, Y.; Wang, Y. Fabrication of flocculation-resistant pH/ionic strength/temperature multiresponsive hollow microspheres and their controlled release. Mol. Pharm. 2012, 9, 91–101. [Google Scholar] [CrossRef]
- Gorecki, D.K.J.; Verbeeck, R.K. Trazodone Hydrochloride. In Analytical Profiles of Drug Substances; Florey, K., Ed.; Academic Press: Cambridge, MA, USA, 1987; Volume 16, pp. 693–730. [Google Scholar]
- Misiuk, W.; Zalewska, M. Investigation of inclusion complex of trazodone hydrochloride with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 2009, 77, 482–488. [Google Scholar] [CrossRef]
- Aman, R.M.; Meshali, M.M.; Abdelghani, G.M. Ion-exchange complex of famotidine: Sustained release and taste masking approach of stable liquid dosage form. Drug Discov. Ther. 2014, 8, 268–275. [Google Scholar] [CrossRef]
- Li, C.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Wang, Z.; Zheng, A. Study on the Complexation and Release Mechanism of Methylphenidate Hydrochloride Ion Exchange Resin Complex. Polymers 2021, 13, 4394. [Google Scholar] [CrossRef]
- Patel, H.H.; Maniar, M.; Ren, C.; Dave, R.H. Determination of Degradation Kinetics and Effect of Anion Exchange Resin on Dissolution of Novel Anticancer Drug Rigosertib in Acidic Conditions. AAPS PharmSciTech 2018, 19, 93–100. [Google Scholar] [CrossRef]
- Allaboun, H.; Alkhamis, K.A.; Al-Nimry, S.S. Preparation of Sustained Release Formulation of Verapamil Hydrochloride Using Ion Exchange Resins. AAPS PharmSciTech 2023, 24, 114. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Du, R.F.; Wang, Y.J.; Hu, J.L.; Wu, F.; Feng, Y. Research Progress of Preparation Technology of Ion-Exchange Resin Complexes. AAPS PharmSciTech 2022, 23, 105. [Google Scholar] [CrossRef]
- Gupta, S.; Benien, P.; Sahoo, P.K. Ion Exchange Resins Transforming Drug Delivery Systems. Curr. Drug Deliv. 2010, 7, 252–262. [Google Scholar] [CrossRef]
- Pydi, S.P.; Sobotkiewicz, T.; Billakanti, R.; Bhullar, R.P.; Loewen, M.C.; Chelikani, P. Amino acid derivatives as bitter taste receptor (T2R) blockers. J. Biol. Chem. 2014, 289, 25054–25066. [Google Scholar] [CrossRef]
- Katsuragi, Y.; Kashiwayanagi, M.; Kurihara, K. Specific inhibitor for bitter taste: Inhibition of frog taste nerve responses and human taste sensation to bitter stimuli. Brain Res. Protoc. 1997, 1, 292–298. [Google Scholar] [CrossRef]
- Kouchak, M.; Ramezani, Z.; Bagheri, F. Preparation and Evaluation of Taste Masking Iron Suspension: Taking Advantage of Weak Cationic Exchange Resin. AAPS PharmSciTech 2018, 19, 719–729. [Google Scholar] [CrossRef]
Participants | TRA | Amberlite IRP88 | PM | TRCs2:1 |
---|---|---|---|---|
1 | 5 | 0 | 4 | 0 |
2 | 5 | 0 | 5 | 1 |
3 | 5 | 0 | 5 | 0 |
4 | 5 | 0 | 4 | 1 |
5 | 5 | 0 | 5 | 0 |
6 | 5 | 0 | 5 | 2 |
7 | 5 | 0 | 4 | 0 |
8 | 5 | 0 | 5 | 0 |
9 | 5 | 0 | 4 | 0 |
10 | 5 | 0 | 5 | 1 |
Sum | 30 | 0 | 46 | 4 |
Average | 5.0 | 0.0 *** | 4.6 | 0.5 *** |
SD | 0.0 | 0.0 | 0.5 | 0.7 |
RSD (%) | 0.0 | \ | 0.1 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, J.; Wang, H.; Li, Y.; Fu, Q. Development of Palatable Amorphous Trazodone Hydrochloride Formulations via Ion Exchange. Pharmaceutics 2025, 17, 972. https://doi.org/10.3390/pharmaceutics17080972
Li Z, Wang J, Wang H, Li Y, Fu Q. Development of Palatable Amorphous Trazodone Hydrochloride Formulations via Ion Exchange. Pharmaceutics. 2025; 17(8):972. https://doi.org/10.3390/pharmaceutics17080972
Chicago/Turabian StyleLi, Zhaohua, Junjie Wang, Huijian Wang, Yibo Li, and Qiang Fu. 2025. "Development of Palatable Amorphous Trazodone Hydrochloride Formulations via Ion Exchange" Pharmaceutics 17, no. 8: 972. https://doi.org/10.3390/pharmaceutics17080972
APA StyleLi, Z., Wang, J., Wang, H., Li, Y., & Fu, Q. (2025). Development of Palatable Amorphous Trazodone Hydrochloride Formulations via Ion Exchange. Pharmaceutics, 17(8), 972. https://doi.org/10.3390/pharmaceutics17080972