Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = carboxymethyl cellulose activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2622 KiB  
Article
Development and Application of Biodegradable Pectin/Carboxymethylcellulose Films with Cinnamon Essential Oil and Cold Plasma Modification for Chicken Meat Preservation
by Newton Carlos Santos, Raphael L. J. Almeida, Gabriel M. da Silva, Maria T. S. da Fonseca, Cosme M. S. Farias, Virgínia M. de A. Silva, Fábio G. Teles, Victor H. de A. Ribeiro, Kalinny de A. Alves, Railene H. C. R. Araújo, Romário O. de Andrade, Rennan P. de Gusmão, Josivanda P. Gomes and Ana Paula T. Rocha
Polysaccharides 2025, 6(3), 64; https://doi.org/10.3390/polysaccharides6030064 - 23 Jul 2025
Viewed by 294
Abstract
The present study aimed to develop biodegradable films formulated with pectin/carboxymethyl cellulose (CMC) and cinnamon essential oil, investigating the effects of CP treatment time on the properties of the films. The developed films were used as packaging to evaluate the shelf life of [...] Read more.
The present study aimed to develop biodegradable films formulated with pectin/carboxymethyl cellulose (CMC) and cinnamon essential oil, investigating the effects of CP treatment time on the properties of the films. The developed films were used as packaging to evaluate the shelf life of chicken meat. Biodegradable films were produced from a film-forming solution containing pectin/CMC, glycerol (30%), and cinnamon essential oil (2%). All formulations included the essential oil, and the control group corresponded to the film that was not subjected to CP treatment. The CP treatments were applied at 22.5 L/min, 20 kV, and 80 kHz for 10, 20, and 30 min. The results showed that increasing CP treatment time led to a progressive reduction in apparent viscosity, indicating improved homogeneity of the polymer system. Hydrophobicity increased with treatment time, as shown by a higher contact angle (from 51.15° to 62.38°), resulting in lower water solubility. Mechanical properties were also enhanced, with tensile strength rising from 3.29 MPa to 6.74 MPa after 30 min of CP. Biodegradability improved with treatment time, reaching 99.51% mass loss after 15 days for the longest exposure. Films produced from the solution treated for 30 min (FCP30) were most effective in extending the shelf life of chicken breast fillets, reducing lipid oxidation (TBARS: 61.9%), peroxide content (58.7%), and microbial spoilage (TVB-N: 59.2%) compared to the untreated film. Overall, the results highlight the importance of CP treatment time as a key factor in enhancing film performance, supporting its application in sustainable active packaging. Full article
Show Figures

Figure 1

20 pages, 4234 KiB  
Article
Study on the Flocculation Characteristics of Protein in Modified Chitosan Membrane and Mung Bean Vermicelli Wastewater
by Zhisheng Liu, Guang Li, Xiaoyu Zhang, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 831; https://doi.org/10.3390/coatings15070831 - 16 Jul 2025
Viewed by 313
Abstract
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for [...] Read more.
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for preparing carboxymethyl chitosan film (CMCS) were determined: under conditions of 50 °C, a cellulose substrate (CS) concentration of 18.75 g/L, a NaOH concentration of 112.5 g/L, and a chloroacetic acid concentration of 18.75 g/L, the reaction proceeded for 5 h. Under these conditions, the resulting carboxymethyl chitosan film exhibited the best flocculation effect, forming chitosan films in water that had flocculation activity toward mung bean starch protein wastewater. The successful introduction of carboxyl groups at the N and O positions of the chitosan molecular chain, which reduced the crystallinity of chitosan and enhanced its water solubility, was confirmed through analysis using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared carboxymethyl chitosan film (CMCS) was applied in the flocculation recovery of protein. Through single-factor and response surface experiments, the optimal process conditions for flocculating and recovering protein with CMCS were determined: a CMCS dosage of 1.1 g/L, a reaction time of 39.6 min, a reaction temperature of 42.7 °C, and a pH of 5.2. Under these conditions, the protein recovery rate reached 56.97%. The composition and amino acid profile of the flocculated product were analyzed, revealing that the mung bean protein flocculated product contained 62.33% crude protein. The total essential amino acids (EAAs) accounted for 52.91%, non-essential amino acids (NEAAs) for 47.09%, hydrophobic amino acids for 39.56%, and hydrophilic amino acids for 12.67%. The ratio of aromatic to branched-chain amino acids was 0.31, and the ratio of basic to acidic amino acids was 1.68. These findings indicate that the recovered product has high surface activity and good protein stability, foaming ability, and emulsifying properties. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

28 pages, 6252 KiB  
Article
An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L.
by Francisco Rafael Santos da Conceição, Layara Alexandre Bessa, Marconi Batista Teixeira, Bárbara Gonçalves Cruvinel and Luciana Cristina Vitorino
Agronomy 2025, 15(7), 1668; https://doi.org/10.3390/agronomy15071668 - 10 Jul 2025
Viewed by 291
Abstract
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. [...] Read more.
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. This study employed an integrative approach combining in vitro and plant-based assays to assess the effects of starch, carboxymethyl cellulose (CMC), and trehalose in formulations containing Azospirillum brasilense, Bradyrhizobium diazoefficiens, Methylobacterium symbioticum, and Paenibacillus alvei, applied to Glycine max seeds. Our hypothesis was that the presence of these additives, each with distinct functional roles (starch as a slow-release carbon source, CMC as a structural agent and protector against physical stress, and trehalose as an osmoprotectant and membrane stabilizer), would influence not only bacterial viability but also the seed germination, growth, and physiological responses of inoculated G. max plants. Starch improved viability in A. brasilense formulations, while both starch and trehalose had positive effects on M. symbioticum. These additives also enhanced plant traits, including dry biomass, chlorophyll content, carboxylation efficiency (A/Ci), and photochemical efficiency (Fv/Fm and Pi_Abs). Trehalose was particularly effective in formulations with B. diazoefficiens and M. symbioticum, supporting its use as a versatile stabilizer. In contrast, CMC (0.25%) negatively impacted bacterial viability, especially for B. diazoefficiens and P. alvei, and impaired physiological parameters in G. max when combined with M. symbioticum. These results highlight the need to evaluate formulation components not only for their physical roles but also for their specific interactions with microbial strains and effects on host plants. Such an integrative approach is essential for designing stable, efficient bioinoculants that align with sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

12 pages, 893 KiB  
Article
Antimicrobial Activity of Carboxymethyl Cellulose Films Containing Plantaricin W and Enterocin F4-9 for Meat Preservation
by Mohamed Abdelfattah Maky, Kenji Sonomoto and Takeshi Zendo
Int. J. Mol. Sci. 2025, 26(13), 6083; https://doi.org/10.3390/ijms26136083 - 25 Jun 2025
Cited by 1 | Viewed by 314
Abstract
Antimicrobial food packaging is considered a promising technology to improve food safety by inhibiting or reducing the growth of food microorganisms and minimizing the need for preservatives. This study aimed to develop and evaluate carboxymethyl cellulose (CMC) films integrated with bacteriocins for antibacterial [...] Read more.
Antimicrobial food packaging is considered a promising technology to improve food safety by inhibiting or reducing the growth of food microorganisms and minimizing the need for preservatives. This study aimed to develop and evaluate carboxymethyl cellulose (CMC) films integrated with bacteriocins for antibacterial efficacy. Plantaricin W was assessed as a potential bacteriocin for activation of CMC to control the dangerous food-borne pathogen, Listeria monocytogenes. Minced beef samples were inoculated with L. monocytogenes ATCC BAA-679 and treated with plantaricin W-activated food packaging. The results showed a significant reduction of the target pathogen by approximately 1 log cycle compared to the control group. Enterocin F4-9 is a novel bacteriocin that acts on Gram-negative microbes that were not affected by plantaricin W. Therefore, a novel food packaging activated with plantaricin W and enterocin F4-9 was developed to broaden their antimicrobial activity. The effect of this film on meat-associated microbes was investigated. The results demonstrated that the film significantly reduced the counts of mesophilic and psychotropic bacteria by 86.67% and 96.67%, respectively. Additionally, the pH values of the treated meat samples were significantly lower than those of the untreated controls. The obtained findings indicated that bacteriocin-activated CMC films could potentially be utilized as antimicrobial packaging in modern food technology. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

23 pages, 5518 KiB  
Article
In Vitro Modulation of Macrophage Inflammatory and Pro-Repair Properties Essential for Wound Healing by Calcium and Calcium-Alginate Dressings
by Yara Adib, Kevin Serror, Jose Amaya Pinzon, Laura Duciel, Marine Delagrange, Bertrand Ducos, David Boccara, Maurice Mimoun, Marc Chaouat, Armand Bensussan, Marina Samardzic, Martine Bagot, Céline Des Courtils and Laurence Michel
Cells 2025, 14(12), 909; https://doi.org/10.3390/cells14120909 - 16 Jun 2025
Viewed by 713
Abstract
Macrophages participate in cutaneous wound healing by adopting M1 pro-inflammatory and M2 immunoregulatory/pro-repair phenotypes. Chronic wounds associated with a deficient macrophage response could benefit from treatments that restore an acute inflammatory response and promote healing. Calcium-alginate dressings release calcium ions, which are potent [...] Read more.
Macrophages participate in cutaneous wound healing by adopting M1 pro-inflammatory and M2 immunoregulatory/pro-repair phenotypes. Chronic wounds associated with a deficient macrophage response could benefit from treatments that restore an acute inflammatory response and promote healing. Calcium-alginate dressings release calcium ions, which are potent bioactivators of macrophage function in wounds. Here, the effects of two calcium-alginate dressings, Algosteril® (ALG, pure Ca2+ alginate) and Biatain® Alginate (BIA, Ca2+ alginate with carboxymethyl cellulose), and a 3 mM CaCl2 solution were compared in human macrophages polarized to M1 or M2. ALG and CaCl2 preserved monocyte viability, and BIA reduced it. Both alginates and CaCl2 reinforced the M1 pro-inflammatory transcriptional profile and phenotype, with significant increases in IL-6 and TNF-α secretion by ALG only. In M2 macrophages, all conditions increased the M1-specific gene expression and reduced M2 markers, suggesting an orientation toward an inflammatory profile. Only ALG significantly increased the secretion of CCL18 and VEGF, suggesting pro-repair activity. All conditions increased M2 phagocytic activity. This work demonstrates the interest in calcium alginates for stimulating macrophage subtypes, which could help restore wound healing, especially in patients with compromised innate immunity. It highlights the differences among the calcium-alginate dressings. The pure alginate shows higher stimulation of macrophage pro-inflammatory and pro-repair functions. Full article
Show Figures

Graphical abstract

21 pages, 2890 KiB  
Article
Modulation of Biochemical Traits in Cold-Stored ‘Karaerik’ Grapes by Different Edible Coatings
by Nurhan Keskin, Sinem Karakus, Harlene Hatterman-Valenti, Ozkan Kaya, Seyda Cavusoglu, Onur Tekin, Birhan Kunter, Sıddık Keskin, Ahmet Çağlar Kaya and Birol Karadogan
Horticulturae 2025, 11(6), 672; https://doi.org/10.3390/horticulturae11060672 - 12 Jun 2025
Viewed by 416
Abstract
Understanding the effects of edible coatings on postharvest quality and shelf life of ‘Karaerik’ grapes is crucial for improving storage outcomes and reducing losses. However, limited information exists regarding the effectiveness of different coating materials on this regionally significant variety. In this study, [...] Read more.
Understanding the effects of edible coatings on postharvest quality and shelf life of ‘Karaerik’ grapes is crucial for improving storage outcomes and reducing losses. However, limited information exists regarding the effectiveness of different coating materials on this regionally significant variety. In this study, ‘Karaerik’ grapes were treated with carboxymethyl cellulose (CMC) and locust bean gum (KB) coatings and stored under cold conditions (0 ± 0.5 °C, 90–95% relative humidity) for 0, 25, 45, and 60 days. Storage duration and coating treatments significantly affected most physical, physiological, and biochemical parameters. During storage, grape weight loss progressively increased, reaching 9.60% in the control by day 60. Coatings slightly reduced this loss, with KB showing the lowest (5.11%) compared to the control (5.69%). Respiration initially declined but surged again at day 60, especially in the control (96.4 μmol CO2/kg·hour), while coatings helped mitigate this rise. Ethylene release remained unchanged. A slight pH decline (~4.6%) was observed in the control, while KB-treated grapes maintained higher pH and lower acidity. Soluble solids remained stable across treatments. Color changed notably during storage: a* nearly doubled (more redness), b* increased (less blue), and chroma (C*) declined by ~25%, especially in uncoated grapes. Total sugar dropped by ~43% in KB-treated grapes, with the control retaining the most. Tartaric acid decreased by ~55%, notably in KB samples. Antioxidant activity and total phenolics declined significantly (~66%) in the control. CMC coating better-preserved antioxidant capacity, while the control showed the highest phenolic levels overall. Ferulic, gallic, and chlorogenic acids increased toward the end of storage, particularly in coated grapes. In contrast, rutin and vanillic acid peaked mid-storage and were better preserved in the control. The heatmap showed significant metabolite changes in fruit samples across 0D, 25D, 45D, and 60D storage periods under CMC, CNT, and KB treatments, with distinct clustering patterns revealing treatment-specific biochemical responses. The correlation matrix revealed strong positive relationships (r > 0.70) between total sugar, glucose, and fructose levels, while ethylene showed significant negative correlations (−0.65 to −0.85) with maturity index, pH, and total soluble solids, indicating interconnected metabolic pathways during fruit ripening and storage. We conclude that edible coating selection significantly influences grape biochemical stability during cold storage, with CMC emerging as a superior choice for maintaining certain quality parameters. Full article
Show Figures

Figure 1

15 pages, 4184 KiB  
Article
Characterization of Cellulose and Starch Degradation by Extracellular Enzymes in Frankia Strains
by Medhat Rehan and Ahmed Alzoheiry
Recycling 2025, 10(3), 114; https://doi.org/10.3390/recycling10030114 - 7 Jun 2025
Viewed by 1310
Abstract
Annually, a considerable amount of agricultural waste is produced leading to serious environmental pollution if not managed effectively. A wide range of bio-decomposers, including fungi, bacteria, and actinomycetes may break down the complex agro-residues in an eco-friendly way through secreting many cellulolytic and [...] Read more.
Annually, a considerable amount of agricultural waste is produced leading to serious environmental pollution if not managed effectively. A wide range of bio-decomposers, including fungi, bacteria, and actinomycetes may break down the complex agro-residues in an eco-friendly way through secreting many cellulolytic and amylolytic enzymes. The present study aimed at exploring the ability of Frankia to degrade cellulose and starch and identifying the cellulase and α-amylase genes in Frankia genomes for potential agricultural waste degradation. Frankia alni ACN14a and Frankia casuarinae CcI3 produced clear zones around growing hyphae on carboxymethyl cellulose (CMC) and starch substrates. The hydrolytic index (HI) ranged from 1 to 2.14 reflecting variation in their degradation efficacy. Quantification of CMCase (carboxymethyl cellulase) production in strain ACN14a presented the maximum activity (0.504 U/mL) under 1% CMC after 16 days whereas strain CcI3 produced a weak activity after 6 days from incubation. Besides, amylase activity in strain ACN14a reached the highest value (3.215 U/mL) after 4 days of growing with 1% starch, while strain CcI3 had the superior production (3.04 U/mL) after 12 days from 1% starch condition. Data mining and genome blasting led to the identification of multiple genes related to cellulose and starch degradation. Two endoglucanases (celA1, FRAAL4955 and celA2, FRAAL4956), two glycosyl hydrolase family 16 (FRAAL6120 and FRAAL2663), and one glycosyl hydrolase family 16 (Francci3_3843) were predicted in the two genomes. Likewise, the α-amylase genes (FRAAL5900) from Frankia alni ACN14a and (Francci3_3679) from strain CcI3 were identified. The gene expression of endo-1, 4-beta-glucanase (celA2, FRAAL4956) revealed the maximum increment in its mRNA abundance under 0.25% CMC exposure and showed a 3.3-fold increase. Frankia capability to degrade cellulose and starch represents a critical process in nutrient cycling and environment protection. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

22 pages, 4398 KiB  
Article
Genome-Driven Functional Validation of Bacillus amyloliquefaciens Strain MEPW12: A Multifunctional Endophyte for Sustainable Sweet Potato Cultivation
by Yiming Wang, Jingwen Hao, Jingsheng Gu, Jiaying Wu, Yongjing Zhang, Ting Liang, Haimeng Bai, Qinghe Cao, Jihong Jiang, Ludan Li and Xiaoying Cao
Microorganisms 2025, 13(6), 1322; https://doi.org/10.3390/microorganisms13061322 - 6 Jun 2025
Viewed by 569
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.), as an important crop, is rich in polyphenols, vitamins, minerals, and other nutrients in its roots and leaves and is gradually gaining popularity. The use of endophytic bacteria to improve the quality of sweet potato can [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.), as an important crop, is rich in polyphenols, vitamins, minerals, and other nutrients in its roots and leaves and is gradually gaining popularity. The use of endophytic bacteria to improve the quality of sweet potato can protect the environment and effectively promote the sustainable development of the sweet potato industry. In this study, 12 strains of endophytic bacteria were isolated from sweet potato. Through nitrogen fixation, phosphorus solubilization, indoleacetic acid production, siderophore production, ACC deaminase production, and carboxymethyl cellulose production, three strains with multiple biological activities were screened out. Among them, MEPW12 had the most plant growth-promoting functions. In addition, MEPW12 promoted host chlorophyll accumulation and inhibited pathogen growth and colonization in sweet potato roots and can utilize various carbon sources and salts for growth. It can also grow in extreme environments of high salt and weak acid. MEPW12 was identified as Bacillus amyloliquefaciens with a genome size of 3,928,046 bp and a GC content of 46.59%. After the annotation of multiple databases, it was found that MEPW12 had multiple enzymatic activities and metabolic potential. Comparative genomics and pan-genomics analyses revealed that other Bacillus sp. strains of MEPW12 have similar functions. However, due to adaptation to different growth environments, there are still genomic differences and changes. Inoculation with MEPW12 induced the high expression of IbGH3.10, IbERF1, and other genes, thereby promoting the growth of sweet potatoes. Bacillus amyloliquefaciens strain MEPW12 is a sweet potato endophyte with multiple growth-promoting functions, which can promote the growth of sweet potato seedlings. This study provides new microbial resources for developing microbial agents and improving the quality of sweet potatoes. Full article
Show Figures

Figure 1

24 pages, 4064 KiB  
Article
Active Pectin/Carboxymethylcellulose Composite Films for Bread Packaging
by Lavinia Doveri, Yuri Antonio Diaz Fernandez, Giacomo Dacarro, Pietro Grisoli, Chiara Milanese, Maria Urena, Nicolas Sok, Thomas Karbowiak and Piersandro Pallavicini
Molecules 2025, 30(11), 2257; https://doi.org/10.3390/molecules30112257 - 22 May 2025
Viewed by 633
Abstract
A new active composite film intended for bread packaging is described here. The active film has the aim of prolonging bread’s shelf life while avoiding the use of nanoparticles that, with very few exceptions, are a type of material not allowed by regulatory [...] Read more.
A new active composite film intended for bread packaging is described here. The active film has the aim of prolonging bread’s shelf life while avoiding the use of nanoparticles that, with very few exceptions, are a type of material not allowed by regulatory agencies like EFSA (European Food Safety Agency) and FDA (US Food and Drug Administration) in food contact materials. Moreover, the increasing consumer demand for natural and wholesome products, possibly “clean label”, and packaged in natural, non-petroleum-based materials has been taken into consideration. Accordingly, precursor materials from renewable sources were used to prepare the active film: pectin from citrus peel (PEC) and carboxymethyl cellulose (CMC) were used as the matrix, with oleic acid (OA) as plasticizer. Moreover, the bread preservative calcium propionate (CaP) was used as the crosslinker, and also zeolite microparticles loaded with silver ions (AgZ) were added to the films as an additional antimold agent. This strategy allows us to avoid the addition to bread of the now commonly used preservatives ethanol and calcium propionate, moving the latter to the packaging. Permeance measurements revealed excellent barrier properties against O2 and CO2, while the typical high water vapor permeance of polysaccharide films was mitigated by the non-hydrophilic OA plasticizer. Moreover, the quantities of Ag+ and CaP released in bread are low and below the limits imposed by regulatory agencies. The antimold activity of the films is excellent, with Aspergillus niger, Penicillium janthinellum, and wild-type Penicillim molds reduction on bread in the 99.20–99.95% range for the films containing only CaP and in the 99.97–99.998% range for the films containing both CaP and AgZ. Finally, the rheological properties of the film-forming solutions were investigated, demonstrating their potential application as coatings on natural packaging materials for bread, such as paper. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

12 pages, 3066 KiB  
Article
Evaluation of Carboxymethyl Cellulose as an Additive for Selective Protein Removal from Wine
by Stephan Sommer
Fermentation 2025, 11(5), 273; https://doi.org/10.3390/fermentation11050273 - 10 May 2025
Viewed by 745
Abstract
Achieving protein stability is one of the main objectives before bottling wine. Traditionally, this is accomplished via bentonite fining, but the application has drawbacks and is not the most sustainable practice. A promising alternative was previously identified in modified cellulose, which is approved [...] Read more.
Achieving protein stability is one of the main objectives before bottling wine. Traditionally, this is accomplished via bentonite fining, but the application has drawbacks and is not the most sustainable practice. A promising alternative was previously identified in modified cellulose, which is approved for tartrate stabilization but, as a side activity, could also help remove protein from wine. This study was designed to evaluate powdered carboxymethyl cellulose (CMC) and a liquid formulation in model wine using bovine serum albumin (BSA) and egg white as model proteins. The solubility of BSA proved to be insufficient, so experiments in wine were conducted with egg white protein only. Low-addition levels of liquid CMC showed the highest protein removal rates in real wine, so final trials were conducted with 13 commercial wines to evaluate the performance in different wine styles. The protein removal rate ranged from 12% to 84%, with an overall average of 57%. While these results do not reach the efficiency of bentonite, CMC is showing promise as an additional stabilization tool for a wide variety of wines. It can stabilize over the entire pH range of wine between 2.9 and 4.1, which is a unique feature of this method. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

20 pages, 2557 KiB  
Article
Improving Reusability of Biocatalysts by Exploiting Cross-Linked Enzyme Aggregates (CLEAs) with Commercial Cellulolytic Cocktails for Hydrolysis of Green Coconut Waste
by Jéssica R. F. Morais, Isabela O. Costa, Carlos E. A. Padilha, Nathália S. Rios and Everaldo S. dos Santos
Sustainability 2025, 17(9), 4221; https://doi.org/10.3390/su17094221 - 7 May 2025
Viewed by 560
Abstract
Efficient hydrolysis of cellulose in agricultural waste (e.g., coconut fiber) is critical for biorefining processes such as second-generation bioethanol (2G ethanol) production. However, free cellulases suffer from low thermal stability and challenges in recovery. To address this, we developed cross-linked enzyme aggregates (CLEAs) [...] Read more.
Efficient hydrolysis of cellulose in agricultural waste (e.g., coconut fiber) is critical for biorefining processes such as second-generation bioethanol (2G ethanol) production. However, free cellulases suffer from low thermal stability and challenges in recovery. To address this, we developed cross-linked enzyme aggregates (CLEAs) combined with magnetic nanoparticles (magnetic CLEAs, m-CLEAs) to enhance enzyme stability and reusability. In this context, solutions of ethanol, acetone, and ammonium sulfate were used to prepare enzymatic aggregates, with subsequent use of glutaraldehyde and magnetic nanoparticles to obtain the biocatalysts. The addition of bovine serum albumin (BSA) protein was also tested to improve immobilization. Biocatalysts with ethanol and acetone performed better. Acetone (AC) and BSA yielded the highest enzymatic activities (287.27 ± 42.59 U/g for carboxymethyl cellulase (CMCase) with Celluclast; 425.37 ± 48.11 U/g for CMCase with Cellic CTec2). Magnetic nanoparticles were incorporated to expand the industrial applicability, producing m-CLEAs with excellent thermal stability and high catalytic activities. The m-CLEA–Celluclast–AC–BSA–GA 5% maintained 58% of its activity after 72 h at 70 °C. The m-CLEA–Celluclast-AC–BSA–GA 2.5% proved effective in hydrolyzing coconut fiber and isolated cellulose, producing up to 0.91 ± 0.01 g/L of glucose and 2.7 ± 0.15 g/L of glucose, respectively, after 72 h. Therefore, this approach supports sustainability by using coconut fiber, which is often discarded into the environment. Full article
(This article belongs to the Special Issue Utilization of Biomass: Energy, Catalysts, and Applications)
Show Figures

Figure 1

17 pages, 4677 KiB  
Article
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking
by Hebat-Allah S. Tohamy
Gels 2025, 11(5), 329; https://doi.org/10.3390/gels11050329 - 28 Apr 2025
Cited by 2 | Viewed by 722
Abstract
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed [...] Read more.
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed the successful grafting of AMPS and incorporation of N-fullerenes, indicated by characteristic peaks and a shift in the N–H/O–H stretching frequency. Density Functional Theory (DFT) calculations revealed that the CMC–N-fullerene–AMPS hydrogel exhibited higher stability and a lower band gap energy (0.0871 eV) compared to the CMC–AMPS hydrogel, which means a high reactivity of CMC–N-fullerene–AMPS. The incorporation of N-fullerenes significantly enhanced the hydrogel’s antibacterial activity, demonstrating a 22 mm inhibition zone against E. coli and a 24 mm zone against S. aureus, suggesting potential for active food packaging applications. Critically, the hydrogel displayed a unique “turn-on” fluorescence response in the presence of bacteria, with distinct color changes observed upon interaction with E. coli (orange-red) and S. aureus (bright green). This fluorescence enhancement, coupled with the porous morphology observed via SEM (pore size 377–931 µm), suggests the potential of this hydrogel as a sensing platform for bacterial contamination within food packaging. These combined properties of enhanced antibacterial activity and a distinct, bacteria-induced fluorescence signal make the CMC–N-fullerene–AMPS hydrogel a promising candidate for developing intelligent food packaging materials capable of detecting bacterial spoilage. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

22 pages, 3863 KiB  
Article
An Injectable Kartogenin-Incorporated Hydrogel Supports Mesenchymal Stem Cells for Cartilage Tissue Engineering
by Chongquan Huang, Guoqing Zhong, Jin Xiao, Xiaolan Wang, Weijuan Huang, Lingyun Chen, Yu Zhang and Shi Cheng
Bioengineering 2025, 12(5), 434; https://doi.org/10.3390/bioengineering12050434 - 22 Apr 2025
Viewed by 861
Abstract
Background: Cartilage defects and injuries often lead to osteoarthritis, posing significant challenges for cartilage repair. Traditional treatments have limited efficacy, necessitating innovative therapeutic strategies. This study aimed to develop an injectable hydrogel-based tissue engineering construct to enhance cartilage regeneration by combining mesenchymal stem [...] Read more.
Background: Cartilage defects and injuries often lead to osteoarthritis, posing significant challenges for cartilage repair. Traditional treatments have limited efficacy, necessitating innovative therapeutic strategies. This study aimed to develop an injectable hydrogel-based tissue engineering construct to enhance cartilage regeneration by combining mesenchymal stem cells (MSCs) and the small molecule drug kartogenin (KGN). Methods: An injectable hydrogel was synthesized by crosslinking carboxymethyl chitosan (CMC) with aldehyde-modified cellulose nanocrystals (DACNCs). KGN was incorporated into the hydrogel during crosslinking to achieve sustained drug release. Three hydrogels with varying CMC/DACNC molar ratios (MR = 0.11, 0.22, and 0.33) were developed and characterized for their structural, mechanical, and biocompatible properties. The hydrogel with the optimal ratio (MR = 0.33) was further evaluated for its ability to support MSC viability and differentiation in vitro. Additionally, signaling pathways (TGF-β, FOXO, and PI3K-AKT) were investigated to elucidate the underlying mechanisms. In vivo efficacy was assessed using a rabbit femoral trochlear cartilage defect model. Results: The hydrogel with a higher CMC/DACNC molar ratio (MR = 0.33) exhibited increased compressive modulus, a reduced swelling rate, and superior biocompatibility, effectively promoting MSC differentiation in vitro. Signaling pathway analysis revealed activation of the TGF-β, FOXO, and PI3K-AKT pathways, suggesting enhanced chondrogenic potential. In vivo experiments demonstrated that the KGN-MSC-encapsulated hydrogel significantly improved cartilage repair. Conclusions: The injectable CMC/DACNC hydrogel, combined with KGN and MSCs, synergistically enhanced cartilage regeneration both in vitro and in vivo. This study highlights the potential of this hydrogel as a promising scaffold for cartilage tissue engineering, offering a novel therapeutic approach for cartilage defects and injuries. Full article
Show Figures

Figure 1

30 pages, 13959 KiB  
Article
A Comparison Between High- and Low-Performing Lambs and Their Impact on the Meat Quality and Development Level Using a Multi-Omics Analysis of Rumen Microbe–Muscle–Liver Interactions
by Haibo Wang, Jinshun Zhan, Shengguo Zhao, Haoyun Jiang, Haobin Jia, Yue Pan, Xiaojun Zhong and Junhong Huo
Microorganisms 2025, 13(4), 943; https://doi.org/10.3390/microorganisms13040943 - 19 Apr 2025
Viewed by 714
Abstract
Through an integrated multi-omics analysis of rumen microbial communities, muscle transcriptomes, metabolic profiles, and liver metabolic profiles, this study systematically compared high- and low-performing lambs to elucidate their divergent effects on meat quality attributes and growth development. A total of 100 male lambs [...] Read more.
Through an integrated multi-omics analysis of rumen microbial communities, muscle transcriptomes, metabolic profiles, and liver metabolic profiles, this study systematically compared high- and low-performing lambs to elucidate their divergent effects on meat quality attributes and growth development. A total of 100 male lambs with similar birth weight (3.07 ± 0.06 kg) were selected within 72 h. All test lambs were synchronized weaning at 45 days of age and uniformly fed the same diet (total mixed ration) in the same pen until 180 days of age, with ad libitum access to food and water throughout this period. Subsequently, the eight lambs with the highest (HADG) and lowest (LADG) average daily gains were slaughtered for performance evaluation and multi-omics analysis. This study found that HADG lambs increased body weight, muscle fiber diameter, eye muscle area, improved amino acid (histidine, arginine, valine, isoleucine, essential amino acid/total amino acid, and essential amino acid/nonessential amino acid), and fatty acid (linoleic acid, behenic acid, and arachidonic acid) composition enhanced rumen enzymes (pepsase, lipase, xylanase, amylase, and carboxymethyl cellulose) and promoted efficient fermentation (p < 0.05). Analysis of microbial populations indicated a notable increase in Prevotella levels within the rumen of HADG lambs. Furthermore, the rumen markers Schwartzia and Streptococcus exhibited significant correlations with differential meat quality traits. Analysis of the muscle transcriptome indicated a significant correlation between the turquoise module and host phenotypes, particularly body weight. Additionally, muscle metabolism is primarily concentrated within the black module; however, it exhibits a significant correlation with the host body phenotype in the yellow module (p < 0.05). Moreover, liver metabolites, rumen microbes, host phenotype, and muscle transcripts were significantly correlated (p < 0.05). In conclusion, the interactions among rumen microbes, muscle, and liver in lambs promote rumen fermentation, which in turn regulate muscle transcriptional activity and modify metabolic profiles in both the liver and muscle. Moreover, PCK1, SPP1, FGF7, NR4A1, DUSP5, GADD45B, etc., can be candidate genes for muscle growth and development. This finding provides a theoretical basis for further exploiting the production potential of Hu lambs. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

31 pages, 10917 KiB  
Article
Rheological Insight into the 3D Printability of Carboxymethyl Cellulose-Based Hydrogels
by Itziar Insua, Oliver Etzold, Itxaso Calafel, Robert Aguirresarobe, Marcelo Calderón and Mercedes Fernández
Gels 2025, 11(4), 259; https://doi.org/10.3390/gels11040259 - 1 Apr 2025
Cited by 2 | Viewed by 1927
Abstract
Direct Ink Writing (DIW) is an advanced additive manufacturing 3D-printing technique with significant potential for producing hydrogels in biomedical and engineering applications. This study presents a comprehensive rheological analysis of the yielding and recovery properties critical for ensuring the printability of carboxymethyl cellulose [...] Read more.
Direct Ink Writing (DIW) is an advanced additive manufacturing 3D-printing technique with significant potential for producing hydrogels in biomedical and engineering applications. This study presents a comprehensive rheological analysis of the yielding and recovery properties critical for ensuring the printability of carboxymethyl cellulose (CMC)-based hydrogels incorporating atenolol, an antihypertensive agent, as the active ingredient. The viscoelastic properties under shear conditions were examined using Large Amplitude Oscillatory Shear (LAOS) testing. To obtain both qualitative and quantitative insight into hydrogel dynamics, Lissajous-Bowditch plots and Fourier Transform (FT) coefficients were analyzed. The evaluation of stress signal anharmonicity and the decomposition of stress into its elastic and viscous components allowed for distinguishing structural evolution under flow among the tested hydrogels. Additionally, the analysis of the Sequence of Physical Processes (SPP) during each deformation cycle provided deeper insight into oscillatory yielding behavior, emphasizing the role of elastic strains in determining printability. Overall, the study offers valuable understanding of the nonlinear viscoelastic behavior of CMC-based hydrogels, providing a framework for optimizing hydrogel formulations in DIW applications. Full article
(This article belongs to the Special Issue Thixotropic Gels: Mechanisms, Functions and Applications)
Show Figures

Graphical abstract

Back to TopTop