Characterization of Cellulose and Starch Degradation by Extracellular Enzymes in Frankia Strains
Abstract
1. Introduction
2. Results
2.1. Screening Cellulose and Starch Degradation
2.2. Quantification of Cellulase and Amylase Activities
2.3. Genomes Analysis and Phylogenetic Tree
2.4. Expression of Identified Genes
3. Discussion
4. Materials and Methods
4.1. Frankia Strains and Culture Conditions
4.2. Primary Screening of Cellulose and Starch Degradation
4.3. Carboxymethyl Cellulase (CMCase) and α-Amylase Activity
4.4. Bioinformatic Analysis and Phylogenetic Tree Construction
4.5. Gene Expression of Cellulase Enzyme
Genes | Gene Locus_Tag | Forward | Reverse |
---|---|---|---|
putative signal peptide | FRAAL4954 | 5′-CCACTGGCTCGATCAGTTC-3′ | 5′-GGCGTGCTGAAGGTGAC-3′ |
Endo-1,4-beta-glcanase | FRAAL4955 | 5′-GGCGGTCGATATGCTCTTT-3′ | 5′-GACACACGACCTCCGAATG-3′ |
Endo-1,4-beta-glcanase | FRAAL4956 | 5′-GTACATGGTCTACGCCATCC-3′ | 5′-GACCTGACGGGTGAACTG-3′ |
rpsA | FRAAL1781 | 5′-GCAGTCGACAAGACGATCAA-3′ | 5′-CTCGGTCTTGTAACCGATGTC-3′ |
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diagne, N.; Djighaly, P.I.; Ngom, M.; Pesce, C.; Champion, A.; Svistoonoff, S.; Hocher, V.; Tisa, L.S. Chapter 30—Advances in Frankia Genome Studies and Molecular Aspects of Tolerance to Environmental Stresses. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Sharma, V., Salwan, R., Al-Ani, L.K.T., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 381–389. ISBN 978-0-12-818469-1. [Google Scholar]
- Bogusz, D.; Franche, C. Chapter 29—Frankia and the Actinorhizal Symbiosis. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Sharma, V., Salwan, R., Al-Ani, L.K.T., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 367–380. ISBN 978-0-12-818469-1. [Google Scholar]
- Sharma, R.; Salwan, R.; Sharma, V. Chapter 20—Biology of Nitrogen Fixation in Frankia. In The Chemical Dialogue Between Plants and Beneficial Microorganisms; Sharma, V., Salwan, R., Moliszewska, E., Ruano-Rosa, D., Jędryczka, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 271–281. ISBN 978-0-323-91734-6. [Google Scholar]
- Benson, D.R.; Silvester, W.B. Biology of Frankia Strains, Actinomycete Symbionts of Actinorhizal Plants. Microbiol. Rev. 1993, 57, 293–319. [Google Scholar] [CrossRef] [PubMed]
- Rehan, M.; EL-Sharkawy, A.M.L.; EL-Keredy, A.M.I.R.A.; EL-Fadly, G. Biodegradation of s-Triazine Compounds Using Actinobacterium Frankia. Egypt J. Genet. Cytol. 2015, 44, 265–280. [Google Scholar]
- Rehan, M.; Swanson, E.; Tisa, L.S. Frankia as a Biodegrading Agent; IntechOpen: London, UK, 2016. [Google Scholar]
- Rehan, M.; Kluge, M.; Fränzle, S.; Kellner, H.; Ullrich, R.; Hofrichter, M. Degradation of Atrazine by Frankia alni ACN14a: Gene Regulation, Dealkylation, and Dechlorination. Appl. Microbiol. Biotechnol. 2014, 98, 6125–6135. [Google Scholar] [CrossRef]
- Rehan, M.; El Fadly, G.; Farid, M.; El sharkawy, A.; Fränzle, S.; Ullrich, R.; Kellner, H.; Hofrichter, M. Opening the S-Triazine Ring and Biuret Hydrolysis during Conversion of Atrazine by Frankia Sp. Strain EuI1c. Int. Biodeterior. Biodegrad. 2017, 117, 14–21. [Google Scholar] [CrossRef]
- Rehan, M.; Alsohim, A.S. Bioremediation of Heavy Metals. In Environmental Chemistry and Recent Pollution Control Approaches; IntechOpen: London, UK, 2019. [Google Scholar]
- Furnholm, T.; Rehan, M.; Wishart, J.; Tisa, L.S. Pb2+ Tolerance by Frankia Sp. Strain EAN1pec Involves Surface-Binding. Microbiology 2017, 163, 472–487. [Google Scholar] [CrossRef]
- Rehan, M.; Alhusays, A.; Serag, A.M.; Boubakri, H.; Pujic, P.; Normand, P. The CadCA and CadB/DX Operons Are Possibly Induced in Cadmium Resistance Mechanism by Frankia alni ACN14a. Electron. J. Biotechnol. 2022, 60, 86–96. [Google Scholar] [CrossRef]
- Rehan, M.; Furnholm, T.; Finethy, R.H.; Chu, F.; El-Fadly, G.; Tisa, L.S. Copper Tolerance in Frankia Sp. Strain EuI1c Involves Surface Binding and Copper Transport. Appl. Microbiol. Biotechnol. 2014, 98, 8005–8015. [Google Scholar] [CrossRef]
- Rehan, M.; Alsohim, A.S.; El-Fadly, G.; Tisa, L.S. Detoxification and Reduction of Selenite to Elemental Red Selenium by Frankia. Antonie Van Leeuwenhoek 2019, 112, 127–139. [Google Scholar] [CrossRef]
- Oshone, R.; Ngom, M.; Chu, F.; Mansour, S.; Sy, M.O.; Champion, A.; Tisa, L.S. Genomic, Transcriptomic, and Proteomic Approaches towards Understanding the Molecular Mechanisms of Salt Tolerance in Frankia Strains Isolated from Casuarina Trees. BMC Genom. 2017, 18, 633. [Google Scholar] [CrossRef]
- Ngom, M.; Gray, K.; Diagne, N.; Oshone, R.; Fardoux, J.; Gherbi, H.; Hocher, V.; Svistoonoff, S.; Laplaze, L.; Tisa, L.S.; et al. Symbiotic Performance of Diverse Frankia Strains on Salt-Stressed Casuarina glauca and Casuarina equisetifolia Plants. Front. Plant Sci. 2016, 7, 1331. [Google Scholar] [CrossRef]
- Chen, H.; Renault, S.; Markham, J. The Effect of Frankia and Hebeloma crustiliniforme on Alnus alnobetula Subsp. Crispa Growing in Saline Soil. Plants 2022, 11, 1860. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Singh, S.S.; Mishra, A.K. Sodium Transport and Mechanism(s) of Sodium Tolerance in Frankia Strains. J. Basic Microbiol. 2013, 53, 163–174. [Google Scholar] [CrossRef]
- Burggraaf, A.J.P.; Shipton, W.A. Estimates of Frankia Growth under Various PH and Temperature Regimes. Plant Soil 1982, 69, 135–147. [Google Scholar] [CrossRef]
- Ngom, M.; Oshone, R.; Diagne, N.; Cissoko, M.; Svistoonoff, S.; Tisa, L.S.; Laplaze, L.; Sy, M.O.; Champion, A. Tolerance to Environmental Stress by the Nitrogen-Fixing Actinobacterium Frankia and Its Role in Actinorhizal Plants Adaptation. Symbiosis 2016, 70, 17–29. [Google Scholar] [CrossRef]
- Mastronunzio, J.E.; Tisa, L.S.; Normand, P.; Benson, D.R. Comparative Secretome Analysis Suggests Low Plant Cell Wall Degrading Capacity in Frankia Symbionts. BMC Genom. 2008, 9, 47. [Google Scholar] [CrossRef]
- Schwencke, J.; Carú, M. Advances in Actinorhizal Symbiosis: Host Plant- Frankia Interactions, Biology, and Applications in Arid Land Reclamation. A Review. Arid. Land Res. Manag. 2001, 15, 285–327. [Google Scholar] [CrossRef]
- Nouioui, I.; Cortés-albayay, C.; Carro, L.; Castro, J.F.; Gtari, M.; Ghodhbane-Gtari, F.; Klenk, H.-P.; Tisa, L.S.; Sangal, V.; Goodfellow, M. Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus Frankia. Front. Microbiol. 2019, 10, 1457. [Google Scholar] [CrossRef]
- Gtari, M. Taxogenomic Status of Phylogenetically Distant Frankia Clusters Warrants Their Elevation to the Rank of Genus: A Description of Protofrankia Gen. Nov., Parafrankia Gen. Nov., and Pseudofrankia Gen. Nov. as Three Novel Genera within the Family Frankiaceae. Front. Microbiol. 2022, 13, 1041425. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, A.; Joshi, S.; Gangola, S.; Rani, A. Chapter 9—Role of Microorganisms in Agricultural Waste Management. In Advanced Microbial Technology for Sustainable Agriculture and Environment; Gangola, S., Kumar, S., Joshi, S., Bhatt, P., Eds.; Developments in Applied Microbiology and Biotechnology; Academic Press: Cambridge, MA, USA, 2023; pp. 137–153. ISBN 978-0-323-95090-9. [Google Scholar]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural Waste Concept, Generation, Utilization and Management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Alharbi, H.A.; Yaish, M.W.; Ahmed, I.; Alharbi, S.A.; Alotaibi, F.; Kuzyakov, Y. Date Palm Cultivation: A Review of Soil and Environmental Conditions and Future Challenges. Land Degrad. Dev. 2023, 34, 2431–2444. [Google Scholar] [CrossRef]
- Manikandan, S.K.; Jenifer, A.D.; Gowda, N.K.; Nair, V.; Al-Ruzouq, R.; Gibril, M.B.A.; Lamghari, F.; Klironomos, J.; Hmoudi, M.A.; Sheteiwy, M.; et al. Advancing Date Palm Cultivation in the Arabian Peninsula and beyond: Addressing Stress Tolerance, Genetic Diversity, and Sustainable Practices. Agric. Water Manag. 2025, 307, 109242. [Google Scholar] [CrossRef]
- Aljasass, F. Assessment of Post-Harvest Loss and Waste for Date Palms in the Kingdom of Saudi Arabia. Int. J. Environ. Agric. Res. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- El Abed, H.; Khemakhem, B.; Fendri, I.; Chakroun, M.; Triki, M.; Drira, N.; Mejdoub, H. Extraction, Partial Purification and Characterization of Amylase from Parthenocarpic Date (Phoenix dactylifera): Effect on Cake Quality. J. Sci. Food Agric. 2017, 97, 3445–3452. [Google Scholar] [CrossRef]
- Shafiei, M.; Karimi, K.; Taherzadeh, M.J. Palm Date Fibers: Analysis and Enzymatic Hydrolysis. Int. J. Mol. Sci. 2010, 11, 4285–4296. [Google Scholar] [CrossRef]
- Saha, B.; Kumar, S.; Verma, D.K.; Nag, A.; Bhattacharya, P.; Dutta, S.K.; Kumar, V.; Kumari, S.; Anjum, M.; Kumari, S.; et al. Microbial Biodegradation of the Agricultural Wastes for Environmental Sustainability. In Agro-Waste to Microbe Assisted Value Added Product: Challenges and Future Prospects: Recent Developments in Agro-Waste Valorization Research; Saha, S.P., Mazumdar, D., Roy, S., Mathur, P., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 157–174. ISBN 978-3-031-58025-3. [Google Scholar]
- Singh, A.; Singh, A. Microbial Degradation and Value Addition to Food and Agriculture Waste. Curr. Microbiol. 2022, 79, 119. [Google Scholar] [CrossRef] [PubMed]
- Mir, T.A.; Jan, M.; Rabani, M. Microbial Intervention for Degradation of Agricultural Wastes. In Environmental Biotechnology; Apple Academic Press: Palm Bay, FL, USA, 2021; ISBN 9781774638309. [Google Scholar]
- Ljungdahl Lars, G.; Eriksson, K.-E. Ecology of Microbial Cellulose Degradation. In Advances in Microbial Ecology: Volume 8; Marshall, K.C., Ed.; Springer: Boston, MA, USA, 1985; pp. 237–299. ISBN 978-1-4615-9412-3. [Google Scholar]
- Barhoum, A.; Jeevanandam, J.; Rastogi, A.; Samyn, P.; Boluk, Y.; Dufresne, A.; Danquah, M.K.; Bechelany, M. Plant Celluloses, Hemicelluloses, Lignins, and Volatile Oils for the Synthesis of Nanoparticles and Nanostructured Materials. Nanoscale 2020, 12, 22845–22890. [Google Scholar] [CrossRef]
- Zhang, Z.; Shah, A.M.; Mohamed, H.; Tsiklauri, N.; Song, Y. Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes. Biomed. Res. Int. 2021, 2021, 5514745. [Google Scholar] [CrossRef] [PubMed]
- Weimer, P.J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]
- Zhang, G.; Dong, Y. Design and Application of an Efficient Cellulose-Degrading Microbial Consortium and Carboxymethyl Cellulase Production Optimization. Front. Microbiol. 2022, 13, 957444. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Zühlke, D.; Becher, D.; Riedel, K.; Baldrian, P. Cellulose and Hemicellulose Decomposition by Forest Soil Bacteria Proceeds by the Action of Structurally Variable Enzymatic Systems. Sci. Rep. 2016, 6, 25279. [Google Scholar] [CrossRef]
- Datta, R. Enzymatic Degradation of Cellulose in Soil: A Review. Heliyon 2024, 10, e24022. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.; Iqbal, N.; Agrawal, A.; Kumar, J. Role of Decomposers in Agricultural Waste Management. In Biotechnological Applications of Biomass; Peixoto Basso, T., Basso, T.O., Basso, L.C., Eds.; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-83881-182-2. [Google Scholar]
- Yi Wei and Ziyu, Z. and Ziyu, Z. and S.Y. and H.L. and N.A. and Z.S.-H. Cellulose Degradation Microorganisms and Environmental-Friendly Solution to the Agricultural Waste Management. In Beneficial Microorganisms in Agriculture; Prasad, R., Zhang, S.-H., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 307–328. ISBN 978-981-19-0733-3. [Google Scholar]
- López-Mondéjar, R.; Zühlke, D.; Větrovský, T.; Becher, D.; Riedel, K.; Baldrian, P. Decoding the Complete Arsenal for Cellulose and Hemicellulose Deconstruction in the Highly Efficient Cellulose Decomposer Paenibacillus O199. Biotechnol. Biofuels 2016, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural Waste and Wastewater as Feedstock for Bioelectricity Generation Using Microbial Fuel Cells: Recent Advances. Fermentation 2021, 7, 169. [Google Scholar] [CrossRef]
- Sri Hastuti, U.; Yakub, P.; Nurul Khasanah, H. Biodiversity of Indigenous Amylolytic and Cellulolytic Bacteria in Sago Waste Product at Susupu, North Moluccas. J. Life Sci. 2014, 8, 920–924. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, C.; Li, Y.; Sun, J.; Chen, Z.; Zhang, Q.; Sun, G. Screening, Identification, and Mechanism Analysis of Starch-Degrading Bacteria during Curing Process in Tobacco Leaf. Front. Bioeng. Biotechnol. 2024, 12, 1332113. [Google Scholar] [CrossRef] [PubMed]
- Guder, D.G.; Krishna, M.S.R. Isolation and Characterization of Potential Cellulose Degrading Bacteria from Sheep Rumen. J. Pure Appl. Microbiol. 2019, 13, 1831–1839. [Google Scholar] [CrossRef]
- Li, W.; Zhao, L.; He, X. Degradation Potential of Different Lignocellulosic Residues by Trichoderma Longibrachiatum and Trichoderma Afroharzianum under Solid State Fermentation. Process Biochem. 2022, 112, 6–17. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Zhou, J.; Lü, X. Degradation of Switchgrass by Bacillus Subtilis 1AJ3 and Expression of a Beta-Glycoside Hydrolase. Front. Microbiol. 2022, 13, 922371. [Google Scholar] [CrossRef]
- Saratale, G.D.; Kshirsagar, S.D.; Sampange, V.T.; Saratale, R.G.; Oh, S.-E.; Govindwar, S.P.; Oh, M.-K. Cellulolytic Enzymes Production by Utilizing Agricultural Wastes Under Solid State Fermentation and Its Application for Biohydrogen Production. Appl. Biochem. Biotechnol. 2014, 174, 2801–2817. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Zhang, Y.; Xu, X.; Zhao, Y.; Jiang, X.; Zhang, R.; Gui, Z. Characterization of Cellulose-Degrading Bacteria Isolated from Silkworm Excrement and Optimization of Its Cellulase Production. Polymers 2023, 15, 4142. [Google Scholar] [CrossRef]
- Singh, S.; Moholkar, V.S.; Goyal, A. Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung. Int. Sch. Res. Not. 2013, 2013, 728134. [Google Scholar] [CrossRef]
- Chen, S.J.; Lam, M.Q.; Thevarajoo, S.; Abd Manan, F.; Yahya, A.; Chong, C.S. Genome Analysis of Cellulose and Hemicellulose Degrading Micromonospora Sp. CP22. 3 Biotech. 2020, 10, 160. [Google Scholar] [CrossRef]
- Fatani, S.; Saito, Y.; Alarawi, M.; Gojobori, T.; Mineta, K. Genome Sequencing and Identification of Cellulase Genes in Bacillus paralicheniformis Strains from the Red Sea. BMC Microbiol. 2021, 21, 254. [Google Scholar] [CrossRef]
- Xu, T.; Qi, M.; Liu, H.; Cao, D.; Xu, C.; Wang, L.; Qi, B. Chitin Degradation Potential and Whole-Genome Sequence of Streptomyces diastaticus Strain CS1801. AMB Express 2020, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Tomotsune, K.; Kasuga, K.; Tsuchida, M.; Shimura, Y.; Kobayashi, M.; Agematsu, H.; Ikeda, H.; Ishikawa, J.; Kojima, I. Cloning and Sequence Analysis of the Cellulase Genes Isolated from Two Cellulolytic Streptomycetes and Their Heterologous Expression in Streptomyces lividans. Int. J. Soc. Mater. Eng. Resour. 2014, 20, 213–218. [Google Scholar] [CrossRef]
- Yoshida, M.; Igarashi, K.; Kawai, R.; Aida, K.; Samejima, M. Differential Transcription of β-Glucosidase and Cellobiose Dehydrogenase Genes in Cellulose Degradation by the Basidiomycete Phanerochaete chrysosporium. FEMS Microbiol. Lett. 2004, 235, 177–182. [Google Scholar] [CrossRef]
- Al Makishah, N.H.; Elfarash, A.E. Molecular Characterization of Cellulase Genes in Pseudomonas stutzeri. Electron. J. Biotechnol. 2022, 59, 55–61. [Google Scholar] [CrossRef]
- Shan, X.; Yao, F.; Lu, L.; Fang, M.; Lu, J.; Sun, X. Study of the Degradation and Utilization of Cellulose from Auricularia heimuer and the Gene Expression Level of Its Decomposition Enzyme. Agriculture 2024, 14, 2027. [Google Scholar] [CrossRef]
- Han, S.O.; Yukawa, H.; Inui, M.; Doi, R.H. Regulation of Expression of Cellulosomal Cellulase and Hemicellulase Genes in Clostridium cellulovorans. J. Bacteriol. 2003, 185, 6067–6075. [Google Scholar] [CrossRef]
- Amran, M.A.; Palaniveloo, K.; Fauzi, R.; Satar, N.M.; Mohidin, T.B.M.; Mohan, G.; Razak, S.A.; Arunasalam, M.; Nagappan, T.; Sathiya Seelan, J.S. Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability 2021, 13, 11432. [Google Scholar] [CrossRef]
- Tisa, L.S.; Chval, M.S.; Krumholz, G.D.; Richards, J. Antibiotic Resistance Patterns of Frankia Strains. Can. J. Bot. 1999, 77, 1257–1260. [Google Scholar] [CrossRef]
- Teather, R.M.; Wood, P.J. Use of Congo Red-Polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rumen. Appl. Environ. Microbiol. 1982, 43, 777–780. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, V.; Saxena, J.; Chandra, R.; Alam, A.; Prakash, A. Isolation and Screening of Amylolytic Bacteria from Soil. Int. J. Sci. Res. Agric. Sci. 2015, 2, 159–165. [Google Scholar] [CrossRef]
- Banerjee, S.; Maiti, T.K.; Roy, R.N. Production, Purification, and Characterization of Cellulase from Acinetobacter junii GAC 16.2, a Novel Cellulolytic Gut Isolate of Gryllotalpa africana, and Its Effects on Cotton Fiber and Sawdust. Ann. Microbiol. 2020, 70, 28. [Google Scholar] [CrossRef]
- Yong, T.C.; Chiu, C.-S.; Chen, C.-N.N. Optimization of a Simple, Accurate and Low Cost Method for Starch Quantification in Green Microalgae. Bot. Stud. 2019, 60, 25. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Banik, S.P.; Khowala, S. Mustard Stalk and Straw: A New Source for Production of Lignocellulolytic Enzymes by the Fungus Termitomyces clypeatus and as a Substrate for Saccharification. Ind. Crops Prod. 2013, 41, 283–288. [Google Scholar] [CrossRef]
- Markowitz, V.M.; Korzeniewski, F.; Palaniappan, K.; Szeto, E.; Werner, G.; Padki, A.; Zhao, X.; Dubchak, I.; Hugenholtz, P.; Anderson, I.; et al. The Integrated Microbial Genomes (IMG) System. Nucleic Acids Res. 2006, 34, D344–D348. [Google Scholar] [CrossRef]
- Kajisa, T.; Igarashi, K.; Samejima, M. The Genes Encoding Glycoside Hydrolase Family 6 and 7 Cellulases from the Brown-Rot Fungus Coniophora puteana. J. Wood Sci. 2009, 55, 376–380. [Google Scholar] [CrossRef]
- Baldrian, P.; Valášková, V. Degradation of Cellulose by Basidiomycetous Fungi. FEMS Microbiol. Rev. 2008, 32, 501–521. [Google Scholar] [CrossRef]
- Hegazy, W.K.; Abdel-Salam, M.S.; Hussain, A.A.; Abo-Ghalia, H.H.; Hafez, S.S. Improvement of Cellulose Degradation by Cloning of Endo-β-1, 3-1, 4 Glucanase (Bgls) Gene from Bacillus subtilis BTN7A Strain. J. Genet. Eng. Biotechnol. 2018, 16, 281–285. [Google Scholar] [CrossRef]
- Tempelaars, C.A.; Birch, P.R.; Sims, P.F.; Broda, P. Isolation, Characterization, and Analysis of the Expression of the CbhII Gene of Phanerochaete Chrysosporium. Appl. Environ. Microbiol. 1994, 60, 4387–4393. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Kan, X.; Yan, H.; Wang, D. Characterization of Extracellular Cellulose-Degrading Enzymes from Bacillus thuringiensis Strains. Electron. J. Biotechnol. 2012, 15, 2. [Google Scholar] [CrossRef]
- Chauhan, G.; Kumar, V.; Arya, M.; Kumari, A.; Srivastava, A.; Khanna, P.; Sharma, M. Mining of Thermostable Alpha-Amylase Gene from Geothermal Springs Using a Metagenomics Approach. J. Pure Appl. Microbiol. 2023, 17, 362–370. [Google Scholar] [CrossRef]
- Zhang, Q.; Pritchard, J.; Mieog, J.; Byrne, K.; Colgrave, M.L.; Wang, J.-R.; Ral, J.-P.F. Overexpression of a Wheat α-Amylase Type 2 Impact on Starch Metabolism and Abscisic Acid Sensitivity during Grain Germination. Plant J. 2021, 108, 378–393. [Google Scholar] [CrossRef]
- Sugimura, Y.; Michiyama, H.; Hirano, T. Involvement of α-Amylase Genes in Starch Degradation in Rice Leaf Sheaths at the Post-Heading Stage. Plant Prod. Sci. 2015, 18, 277–283. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Khiddir, S.M. A Statistical Approach in the Use of Parametric Systems Applied to the FAO Framework for Land Evaluation. Ph.D. Thesis, State University Ghent, Gent, Belgium, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehan, M.; Alzoheiry, A. Characterization of Cellulose and Starch Degradation by Extracellular Enzymes in Frankia Strains. Recycling 2025, 10, 114. https://doi.org/10.3390/recycling10030114
Rehan M, Alzoheiry A. Characterization of Cellulose and Starch Degradation by Extracellular Enzymes in Frankia Strains. Recycling. 2025; 10(3):114. https://doi.org/10.3390/recycling10030114
Chicago/Turabian StyleRehan, Medhat, and Ahmed Alzoheiry. 2025. "Characterization of Cellulose and Starch Degradation by Extracellular Enzymes in Frankia Strains" Recycling 10, no. 3: 114. https://doi.org/10.3390/recycling10030114
APA StyleRehan, M., & Alzoheiry, A. (2025). Characterization of Cellulose and Starch Degradation by Extracellular Enzymes in Frankia Strains. Recycling, 10(3), 114. https://doi.org/10.3390/recycling10030114