Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (661)

Search Parameters:
Keywords = carboxymethyl cellulose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 308
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

16 pages, 5071 KiB  
Article
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 - 31 Jul 2025
Viewed by 195
Abstract
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable [...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications. Full article
Show Figures

Figure 1

18 pages, 7413 KiB  
Article
Thermal Degradation of Carboxymethyl Cellulose (CMC) in Saline Solution for Applications in Petroleum Industry Fluids
by Mirele Costa da Silva Farias, Waleska Rodrigues Pontes da Costa, Karine Castro Nóbrega, Victória Bezerra Romualdo, Anna Carolina Amorim Costa, Renalle Cristina Alves de Medeiros Nascimento and Luciana Viana Amorim
Polymers 2025, 17(15), 2085; https://doi.org/10.3390/polym17152085 - 30 Jul 2025
Viewed by 300
Abstract
This work aims to evaluate the thermal degradation of carboxymethyl cellulose (CMC) in solution in the presence of salt, as well as to study the correlation of the rheological behavior of these solutions with exposure to temperature. Step 1 involved characterizing powdered low- [...] Read more.
This work aims to evaluate the thermal degradation of carboxymethyl cellulose (CMC) in solution in the presence of salt, as well as to study the correlation of the rheological behavior of these solutions with exposure to temperature. Step 1 involved characterizing powdered low- and high-viscosity CMC using SEM, FTIR, TGA/DrTGA, and DSC. In step 2, CMC solutions in fresh and saline water were characterized by TGA/DrTGA and viscosity tests. Step 3 exposed saline solutions to 70–150 °C for varying times, followed by TGA/DrTGA and viscosity analyses. There were no significant differences in the thermal degradation of LV and HV CMC, nor in terms of the physical state of the polymer. The results demonstrate that the use of CMC necessitates a combined analysis of thermal degradation and rheological behavior. Full article
(This article belongs to the Special Issue Advanced Preparation and Application of Cellulose: 2nd Edition)
Show Figures

Figure 1

19 pages, 2622 KiB  
Article
Development and Application of Biodegradable Pectin/Carboxymethylcellulose Films with Cinnamon Essential Oil and Cold Plasma Modification for Chicken Meat Preservation
by Newton Carlos Santos, Raphael L. J. Almeida, Gabriel M. da Silva, Maria T. S. da Fonseca, Cosme M. S. Farias, Virgínia M. de A. Silva, Fábio G. Teles, Victor H. de A. Ribeiro, Kalinny de A. Alves, Railene H. C. R. Araújo, Romário O. de Andrade, Rennan P. de Gusmão, Josivanda P. Gomes and Ana Paula T. Rocha
Polysaccharides 2025, 6(3), 64; https://doi.org/10.3390/polysaccharides6030064 - 23 Jul 2025
Viewed by 294
Abstract
The present study aimed to develop biodegradable films formulated with pectin/carboxymethyl cellulose (CMC) and cinnamon essential oil, investigating the effects of CP treatment time on the properties of the films. The developed films were used as packaging to evaluate the shelf life of [...] Read more.
The present study aimed to develop biodegradable films formulated with pectin/carboxymethyl cellulose (CMC) and cinnamon essential oil, investigating the effects of CP treatment time on the properties of the films. The developed films were used as packaging to evaluate the shelf life of chicken meat. Biodegradable films were produced from a film-forming solution containing pectin/CMC, glycerol (30%), and cinnamon essential oil (2%). All formulations included the essential oil, and the control group corresponded to the film that was not subjected to CP treatment. The CP treatments were applied at 22.5 L/min, 20 kV, and 80 kHz for 10, 20, and 30 min. The results showed that increasing CP treatment time led to a progressive reduction in apparent viscosity, indicating improved homogeneity of the polymer system. Hydrophobicity increased with treatment time, as shown by a higher contact angle (from 51.15° to 62.38°), resulting in lower water solubility. Mechanical properties were also enhanced, with tensile strength rising from 3.29 MPa to 6.74 MPa after 30 min of CP. Biodegradability improved with treatment time, reaching 99.51% mass loss after 15 days for the longest exposure. Films produced from the solution treated for 30 min (FCP30) were most effective in extending the shelf life of chicken breast fillets, reducing lipid oxidation (TBARS: 61.9%), peroxide content (58.7%), and microbial spoilage (TVB-N: 59.2%) compared to the untreated film. Overall, the results highlight the importance of CP treatment time as a key factor in enhancing film performance, supporting its application in sustainable active packaging. Full article
Show Figures

Figure 1

20 pages, 4234 KiB  
Article
Study on the Flocculation Characteristics of Protein in Modified Chitosan Membrane and Mung Bean Vermicelli Wastewater
by Zhisheng Liu, Guang Li, Xiaoyu Zhang, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 831; https://doi.org/10.3390/coatings15070831 - 16 Jul 2025
Viewed by 313
Abstract
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for [...] Read more.
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for preparing carboxymethyl chitosan film (CMCS) were determined: under conditions of 50 °C, a cellulose substrate (CS) concentration of 18.75 g/L, a NaOH concentration of 112.5 g/L, and a chloroacetic acid concentration of 18.75 g/L, the reaction proceeded for 5 h. Under these conditions, the resulting carboxymethyl chitosan film exhibited the best flocculation effect, forming chitosan films in water that had flocculation activity toward mung bean starch protein wastewater. The successful introduction of carboxyl groups at the N and O positions of the chitosan molecular chain, which reduced the crystallinity of chitosan and enhanced its water solubility, was confirmed through analysis using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared carboxymethyl chitosan film (CMCS) was applied in the flocculation recovery of protein. Through single-factor and response surface experiments, the optimal process conditions for flocculating and recovering protein with CMCS were determined: a CMCS dosage of 1.1 g/L, a reaction time of 39.6 min, a reaction temperature of 42.7 °C, and a pH of 5.2. Under these conditions, the protein recovery rate reached 56.97%. The composition and amino acid profile of the flocculated product were analyzed, revealing that the mung bean protein flocculated product contained 62.33% crude protein. The total essential amino acids (EAAs) accounted for 52.91%, non-essential amino acids (NEAAs) for 47.09%, hydrophobic amino acids for 39.56%, and hydrophilic amino acids for 12.67%. The ratio of aromatic to branched-chain amino acids was 0.31, and the ratio of basic to acidic amino acids was 1.68. These findings indicate that the recovered product has high surface activity and good protein stability, foaming ability, and emulsifying properties. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

28 pages, 6252 KiB  
Article
An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L.
by Francisco Rafael Santos da Conceição, Layara Alexandre Bessa, Marconi Batista Teixeira, Bárbara Gonçalves Cruvinel and Luciana Cristina Vitorino
Agronomy 2025, 15(7), 1668; https://doi.org/10.3390/agronomy15071668 - 10 Jul 2025
Viewed by 291
Abstract
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. [...] Read more.
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. This study employed an integrative approach combining in vitro and plant-based assays to assess the effects of starch, carboxymethyl cellulose (CMC), and trehalose in formulations containing Azospirillum brasilense, Bradyrhizobium diazoefficiens, Methylobacterium symbioticum, and Paenibacillus alvei, applied to Glycine max seeds. Our hypothesis was that the presence of these additives, each with distinct functional roles (starch as a slow-release carbon source, CMC as a structural agent and protector against physical stress, and trehalose as an osmoprotectant and membrane stabilizer), would influence not only bacterial viability but also the seed germination, growth, and physiological responses of inoculated G. max plants. Starch improved viability in A. brasilense formulations, while both starch and trehalose had positive effects on M. symbioticum. These additives also enhanced plant traits, including dry biomass, chlorophyll content, carboxylation efficiency (A/Ci), and photochemical efficiency (Fv/Fm and Pi_Abs). Trehalose was particularly effective in formulations with B. diazoefficiens and M. symbioticum, supporting its use as a versatile stabilizer. In contrast, CMC (0.25%) negatively impacted bacterial viability, especially for B. diazoefficiens and P. alvei, and impaired physiological parameters in G. max when combined with M. symbioticum. These results highlight the need to evaluate formulation components not only for their physical roles but also for their specific interactions with microbial strains and effects on host plants. Such an integrative approach is essential for designing stable, efficient bioinoculants that align with sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

15 pages, 1622 KiB  
Article
An Evaluation of the Rheological and Filtration Properties of Cow Bone Powder and Calcium Carbonate as Fluid-Loss Additives in Drilling Operations
by Humphrey Nwenenda Dike, Light Nneoma Chibueze, Sunday Ipinsokan, Chizoma Nwakego Adewumi, Oluwasanmi Olabode, Damilola Deborah Olaniyan, Idorenyen Edet Pius and Michael Abidemi Oke
Processes 2025, 13(7), 2205; https://doi.org/10.3390/pr13072205 - 10 Jul 2025
Cited by 1 | Viewed by 361
Abstract
Some additives currently used to enhance drilling mud’s rheological qualities have a substantial economic impact on society. Carboxymethyl cellulose (CMC) and calcium carbonate (CaCO3) are currently imported. Food crops have influences on food security; hence, this research explored the potential of [...] Read more.
Some additives currently used to enhance drilling mud’s rheological qualities have a substantial economic impact on society. Carboxymethyl cellulose (CMC) and calcium carbonate (CaCO3) are currently imported. Food crops have influences on food security; hence, this research explored the potential of utilizing cow bone powder (CBP), a bio-waste product and a renewable resource, as an environmentally friendly fluid-loss additive for drilling applications, in comparison with CaCO3. Both samples (CBP and CaCO3) were evaluated to determine the most efficient powder sizes (coarse, medium, and fine powder), concentrations (5–15 g), and aging conditions (before or after aging) that would offer improved rheological and fluid-loss control. The results obtained showed that CBP had a significant impact on mud rheology when compared to CaCO3. Decreasing the particle size (coarse to fine particles) and increasing the concentration from 5 to 15 g positively impacted mud rheology. Among all the conditions analyzed, fine-particle CBP with a 15 g concentration produced the best characteristics, including in the apparent viscosity (37 cP), plastic viscosity (29 cP), and yield point (25.5 lb/100 ft2), and a gel strength of 16 lb/100 ft2 (10 s) and 28 lb/100 ft2 (10 min). The filtration control ability of CaCO3 was observed to be better than that of the coarse and medium CBP particle sizes; however, fine-particle-size CBP demonstrated a 6.1% and 34.6% fluid-loss reduction at 10 g and 15 g concentrations when compared to respective amounts of CaCO3. The thermal behavior of the Mud Samples demonstrated that it positively impacted rheology before aging. In contrast, after aging, it exhibited a negative effect where samples grew more viscous and exceeded the API standard range for mud properties. Therefore, CBP’s excellent rheological and fluid-loss control ability makes it a potential, sustainable, and economically viable alternative to conventional materials. This superior performance enhances the thinning properties of drilling muds in stationary and circulating conditions. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

20 pages, 4548 KiB  
Article
Experimental Study on the Effect of Hydroxyethyl Cellulose on the Friction-Reducing Performance of Thixotropic Slurries in Pipe Jacking Construction
by Xiao Yu, Yajun Cao, Fubing Tian, Chaowei Chen, Chao Chen, Wei Wang and Yaru Jiang
Materials 2025, 18(13), 3155; https://doi.org/10.3390/ma18133155 - 3 Jul 2025
Viewed by 310
Abstract
In pipe jacking construction, thixotropic slurry critically governs lubrication, friction reduction, and ground support. This study evaluated slurry performance through six parameters: specific gravity (SG), pH, fluid loss (FL), water separation rate (WSR), filter cake thickness (FCT), and funnel viscosity (FV). Orthogonal experiments [...] Read more.
In pipe jacking construction, thixotropic slurry critically governs lubrication, friction reduction, and ground support. This study evaluated slurry performance through six parameters: specific gravity (SG), pH, fluid loss (FL), water separation rate (WSR), filter cake thickness (FCT), and funnel viscosity (FV). Orthogonal experiments optimizing bentonite, carboxymethyl cellulose (CMC), and sodium carbonate (Na2CO3) ratios established 10 wt.% bentonite, 0.3 wt.% CMC, and 0.4 wt.% Na2CO3 as the optimal formulation. Subsequently, to address performance limitations in challenging conditions, this study introduces hydroxyethyl cellulose (HEC) as a novel additive, with potential advantages under high-salinity and variable pH conditions. Comparative experiments demonstrated that HEC, as a non-ionic water-soluble cellulose, not only significantly increases FV and reduces FL while maintaining SG, FCT, and WSR within acceptable thresholds, but also exhibits superior pH stability compared to CMC. Based on the aforementioned results, interface friction characterization tests were conducted on representative slurry formulations with varying FVs, quantitatively demonstrating the viscosity-dependent friction-reduction performance. Complementary scanning electron microscopy (SEM) analysis of three distinct thixotropic slurry compositions systematically revealed their microstructural characteristics, with microscopic evidence confirming the excellent compatibility between HEC and thixotropic slurry matrix. These findings highlight HEC’s potential as an effective alternative in pipe jacking, particularly in demanding geological environments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2633 KiB  
Article
Optimizing Tannin-NaCMC Compositions via DOE for Enhanced Carbon Yield and Strength in 3D-Printed Porous Carbon
by Wonseok Tae, Hao Cheng, Sangyou Kim, Yeongjun Lee and Wonsuk Jung
Polymers 2025, 17(13), 1859; https://doi.org/10.3390/polym17131859 - 3 Jul 2025
Viewed by 376
Abstract
We report the fabrication of lightweight porous carbon structures via UV-assisted photopolymerization molding using a commercial photocurable resin modified with natural tannin and sodium carboxymethyl cellulose (NaCMC) as sustainable additives. A systematic analysis was conducted by applying a Design of Experiments (DOE) approach [...] Read more.
We report the fabrication of lightweight porous carbon structures via UV-assisted photopolymerization molding using a commercial photocurable resin modified with natural tannin and sodium carboxymethyl cellulose (NaCMC) as sustainable additives. A systematic analysis was conducted by applying a Design of Experiments (DOE) approach and regression modeling to evaluate the effects of varying blend compositions on carbon yield and mechanical strength. The results indicate that increasing the tannin content led to a maximum carbon yield of 13.43%, with an average porosity of approximately 80% and a compressive strength around 1 kPa. NaCMC was found to effectively control the resin viscosity within printable limits of 0.2537 Pa·s, although NaCMC indirectly improved carbonization efficiency through normalized yield analysis. This work highlights the synergistic role of bio-based polymers in tuning porous carbon properties. The findings provide a data-driven framework for designing sustainable polymer-derived carbon materials, bridging additive manufacturing with green chemistry. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 3452 KiB  
Article
Silk Fibroin Microparticle/Carboxymethyl Cellulose Composite Gel for Wound Healing Applications
by Alexander Pashutin, Ekaterina Podbolotova, Luidmila Kirsanova, Onur Dosi, Anton E. Efimov, Olga Agapova and Igor Agapov
Biomimetics 2025, 10(7), 434; https://doi.org/10.3390/biomimetics10070434 - 2 Jul 2025
Viewed by 548
Abstract
Silk fibroin has recently gained considerable attention as a promising biomaterial for use in medical and bioengineering technologies due to its biocompatibility and favorable mechanical properties. In this study, composite gel based on silk fibroin microparticles and carboxymethyl cellulose was developed, characterized by [...] Read more.
Silk fibroin has recently gained considerable attention as a promising biomaterial for use in medical and bioengineering technologies due to its biocompatibility and favorable mechanical properties. In this study, composite gel based on silk fibroin microparticles and carboxymethyl cellulose was developed, characterized by a viscous, homogeneous white mass containing uniformly distributed fibroin microparticles ranging from 1 to 20 μm in size. The gel exhibited a kinematic viscosity of 36.5 × 10−6 St, allowing for convenient application to wounds using a syringe or spatula while preventing uncontrolled spreading. The cytocompatibility of the gel was confirmed using the methylthiazol tetrazolium (MTT) assay, which showed no cytotoxic effects on 3T3 fibroblast cells. Furthermore, the gel remained stable for over one year when stored at 10 °C, in contrast to conventional fibroin solutions, which typically lose stability within a month under similar conditions. In a full-thickness skin wound model in rats, the application of the gel significantly accelerated skin regeneration, with complete wound closure observed by day 15, compared with 30 days in the control group. Histological analysis confirmed the restoration of all skin layers. These findings demonstrate the high potential of the gel for applications in regenerative medicine and tissue engineering. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Wound Healing Application)
Show Figures

Figure 1

17 pages, 8792 KiB  
Essay
Composite Effect of Nanoparticles and Conventional Additives on Hydrate Formation in Seawater-Based Drilling Fluids
by Dongdong Guo, Yunhong Zhang, Ling Ji, Hengyin Zhu, Jinjin Yao, Ran Li and Zhipeng Xin
Processes 2025, 13(7), 2058; https://doi.org/10.3390/pr13072058 - 28 Jun 2025
Cited by 1 | Viewed by 410
Abstract
The design of high-performance drilling fluid systems is of vital importance for the safe and efficient exploitation of natural gas hydrates. Incorporating appropriate nanoparticles into drilling fluids can significantly enhance drilling fluid loss control, wellbore stability, and hydrate inhibition. However, the combined effects [...] Read more.
The design of high-performance drilling fluid systems is of vital importance for the safe and efficient exploitation of natural gas hydrates. Incorporating appropriate nanoparticles into drilling fluids can significantly enhance drilling fluid loss control, wellbore stability, and hydrate inhibition. However, the combined effects of nanoparticles and conventional additives on hydrate inhibition in drilling fluid systems remain poorly understood. In this study, the influence of nanoparticles on hydrate formation was first evaluated in a base mud, followed by an investigation of their combined effects with common drilling fluid additives. The results demonstrate that hydrophilic nano-CaCO3 particles exhibit hydrate inhibitory effects, with the strongest inhibition observed at 3.0%. Composite system tests (incorporating nanoparticles with sepiolite, filtrate reducers, and flow modifiers) revealed diverse effects on hydrate formation. Specifically, the combination of nanoparticles and sepiolite promoted hydrate formation; the combination of nanoparticles and filtrate reducers showed divergent effects. Mixtures of nanoparticles with 0.2% low-viscosity anionic cellulose (LV-PAC), carboxymethyl starch (CMS), and low-viscosity carboxymethyl cellulose (LV-CMC) inhibited hydrate formation, while mixtures with 0.2% sulfonated phenolic resin (SMP-2) and hydrolyzed ammonium polyacrylonitrile (NH4-HPAN) accelerated hydrate formation. Notably, the incorporation of nanoparticles with 0.3% guar gum, sesbania gum, high-viscosity carboxymethyl cellulose (HV-CMC), or high-viscosity polyanionic cellulose (HV-PAC) resulted in the complete inhibition of hydrate formation. By contrast, the synergistic inhibition effect of the nanoparticle/xanthan gum (XC) composite system was relatively weak, with the optimal compounding concentration determined to be 0.3%. These findings provide critical insights for the development of drilling fluid systems in natural gas hydrate reservoirs, facilitating the optimization of drilling performance and enhancing operational safety in hydrate-bearing formations. Full article
(This article belongs to the Special Issue Advances in Gas Hydrate: From Formation to Exploitation Processes)
Show Figures

Figure 1

12 pages, 893 KiB  
Article
Antimicrobial Activity of Carboxymethyl Cellulose Films Containing Plantaricin W and Enterocin F4-9 for Meat Preservation
by Mohamed Abdelfattah Maky, Kenji Sonomoto and Takeshi Zendo
Int. J. Mol. Sci. 2025, 26(13), 6083; https://doi.org/10.3390/ijms26136083 - 25 Jun 2025
Cited by 1 | Viewed by 314
Abstract
Antimicrobial food packaging is considered a promising technology to improve food safety by inhibiting or reducing the growth of food microorganisms and minimizing the need for preservatives. This study aimed to develop and evaluate carboxymethyl cellulose (CMC) films integrated with bacteriocins for antibacterial [...] Read more.
Antimicrobial food packaging is considered a promising technology to improve food safety by inhibiting or reducing the growth of food microorganisms and minimizing the need for preservatives. This study aimed to develop and evaluate carboxymethyl cellulose (CMC) films integrated with bacteriocins for antibacterial efficacy. Plantaricin W was assessed as a potential bacteriocin for activation of CMC to control the dangerous food-borne pathogen, Listeria monocytogenes. Minced beef samples were inoculated with L. monocytogenes ATCC BAA-679 and treated with plantaricin W-activated food packaging. The results showed a significant reduction of the target pathogen by approximately 1 log cycle compared to the control group. Enterocin F4-9 is a novel bacteriocin that acts on Gram-negative microbes that were not affected by plantaricin W. Therefore, a novel food packaging activated with plantaricin W and enterocin F4-9 was developed to broaden their antimicrobial activity. The effect of this film on meat-associated microbes was investigated. The results demonstrated that the film significantly reduced the counts of mesophilic and psychotropic bacteria by 86.67% and 96.67%, respectively. Additionally, the pH values of the treated meat samples were significantly lower than those of the untreated controls. The obtained findings indicated that bacteriocin-activated CMC films could potentially be utilized as antimicrobial packaging in modern food technology. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

23 pages, 5518 KiB  
Article
In Vitro Modulation of Macrophage Inflammatory and Pro-Repair Properties Essential for Wound Healing by Calcium and Calcium-Alginate Dressings
by Yara Adib, Kevin Serror, Jose Amaya Pinzon, Laura Duciel, Marine Delagrange, Bertrand Ducos, David Boccara, Maurice Mimoun, Marc Chaouat, Armand Bensussan, Marina Samardzic, Martine Bagot, Céline Des Courtils and Laurence Michel
Cells 2025, 14(12), 909; https://doi.org/10.3390/cells14120909 - 16 Jun 2025
Viewed by 713
Abstract
Macrophages participate in cutaneous wound healing by adopting M1 pro-inflammatory and M2 immunoregulatory/pro-repair phenotypes. Chronic wounds associated with a deficient macrophage response could benefit from treatments that restore an acute inflammatory response and promote healing. Calcium-alginate dressings release calcium ions, which are potent [...] Read more.
Macrophages participate in cutaneous wound healing by adopting M1 pro-inflammatory and M2 immunoregulatory/pro-repair phenotypes. Chronic wounds associated with a deficient macrophage response could benefit from treatments that restore an acute inflammatory response and promote healing. Calcium-alginate dressings release calcium ions, which are potent bioactivators of macrophage function in wounds. Here, the effects of two calcium-alginate dressings, Algosteril® (ALG, pure Ca2+ alginate) and Biatain® Alginate (BIA, Ca2+ alginate with carboxymethyl cellulose), and a 3 mM CaCl2 solution were compared in human macrophages polarized to M1 or M2. ALG and CaCl2 preserved monocyte viability, and BIA reduced it. Both alginates and CaCl2 reinforced the M1 pro-inflammatory transcriptional profile and phenotype, with significant increases in IL-6 and TNF-α secretion by ALG only. In M2 macrophages, all conditions increased the M1-specific gene expression and reduced M2 markers, suggesting an orientation toward an inflammatory profile. Only ALG significantly increased the secretion of CCL18 and VEGF, suggesting pro-repair activity. All conditions increased M2 phagocytic activity. This work demonstrates the interest in calcium alginates for stimulating macrophage subtypes, which could help restore wound healing, especially in patients with compromised innate immunity. It highlights the differences among the calcium-alginate dressings. The pure alginate shows higher stimulation of macrophage pro-inflammatory and pro-repair functions. Full article
Show Figures

Graphical abstract

23 pages, 8674 KiB  
Article
Porous and Tough Polyacrylamide/Carboxymethyl Cellulose Gels Chemically Crosslinked via Cryo-UV Polymerization for Sustained Drug Release
by Duangkamon Viboonratanasri, Daniel Rudolf King, Tsuyoshi Okumura, Mohamad Alaa Terkawi, Yoshinori Katsuyama, Milena Lama, Tomoki Yasui and Takayuki Kurokawa
Gels 2025, 11(6), 453; https://doi.org/10.3390/gels11060453 - 13 Jun 2025
Viewed by 526
Abstract
While carboxymethyl cellulose (CMC)—a biocompatible and water-soluble cellulose derivative—holds promise for biomedical applications, challenges remain in synthesizing CMC-based hydrogels with covalent crosslinking through free radical polymerization without requiring complex, multi-step processes. In this study, we introduce a facile one-pot strategy that combines CMC [...] Read more.
While carboxymethyl cellulose (CMC)—a biocompatible and water-soluble cellulose derivative—holds promise for biomedical applications, challenges remain in synthesizing CMC-based hydrogels with covalent crosslinking through free radical polymerization without requiring complex, multi-step processes. In this study, we introduce a facile one-pot strategy that combines CMC with acrylamide (AAm) under cryogelation and low-intensity UV irradiation to achieve covalent bonding and a high polymerization yield. The resulting polyacrylamide/carboxymethyl cellulose (PAAm/CMC) porous gels were systematically evaluated for their chemical, physical, thermal, and drug-release properties, with a focus on the effects of AAm concentration and polymerization temperature (frozen vs. room temperature). Notably, the cryogel synthesized with 2.5 M AAm (PC2.5) exhibited significantly enhanced mechanical properties—that is, an 8.4-fold increase in tensile modulus and a 26-fold increase in toughness—compared with the non-cryo gel. Moreover, PC2.5 demonstrated excellent cyclic compression stability in water and phosphate-buffered saline (PBS), with less than 10% reduction in modulus after 100 cycles. These increases in the mechanical properties of PC2.5 are attributed to the formation of macropores with high polymer density and high crosslinking density at the pore walls. PC2.5 also showed slower drug release in PBS and good cytocompatibility. This study presents a simplified and efficient route for fabricating mechanically robust, covalently crosslinked PAAm/CMC cryogels, highlighting their strong potential for biomedical applications in drug delivery systems. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

21 pages, 2890 KiB  
Article
Modulation of Biochemical Traits in Cold-Stored ‘Karaerik’ Grapes by Different Edible Coatings
by Nurhan Keskin, Sinem Karakus, Harlene Hatterman-Valenti, Ozkan Kaya, Seyda Cavusoglu, Onur Tekin, Birhan Kunter, Sıddık Keskin, Ahmet Çağlar Kaya and Birol Karadogan
Horticulturae 2025, 11(6), 672; https://doi.org/10.3390/horticulturae11060672 - 12 Jun 2025
Viewed by 416
Abstract
Understanding the effects of edible coatings on postharvest quality and shelf life of ‘Karaerik’ grapes is crucial for improving storage outcomes and reducing losses. However, limited information exists regarding the effectiveness of different coating materials on this regionally significant variety. In this study, [...] Read more.
Understanding the effects of edible coatings on postharvest quality and shelf life of ‘Karaerik’ grapes is crucial for improving storage outcomes and reducing losses. However, limited information exists regarding the effectiveness of different coating materials on this regionally significant variety. In this study, ‘Karaerik’ grapes were treated with carboxymethyl cellulose (CMC) and locust bean gum (KB) coatings and stored under cold conditions (0 ± 0.5 °C, 90–95% relative humidity) for 0, 25, 45, and 60 days. Storage duration and coating treatments significantly affected most physical, physiological, and biochemical parameters. During storage, grape weight loss progressively increased, reaching 9.60% in the control by day 60. Coatings slightly reduced this loss, with KB showing the lowest (5.11%) compared to the control (5.69%). Respiration initially declined but surged again at day 60, especially in the control (96.4 μmol CO2/kg·hour), while coatings helped mitigate this rise. Ethylene release remained unchanged. A slight pH decline (~4.6%) was observed in the control, while KB-treated grapes maintained higher pH and lower acidity. Soluble solids remained stable across treatments. Color changed notably during storage: a* nearly doubled (more redness), b* increased (less blue), and chroma (C*) declined by ~25%, especially in uncoated grapes. Total sugar dropped by ~43% in KB-treated grapes, with the control retaining the most. Tartaric acid decreased by ~55%, notably in KB samples. Antioxidant activity and total phenolics declined significantly (~66%) in the control. CMC coating better-preserved antioxidant capacity, while the control showed the highest phenolic levels overall. Ferulic, gallic, and chlorogenic acids increased toward the end of storage, particularly in coated grapes. In contrast, rutin and vanillic acid peaked mid-storage and were better preserved in the control. The heatmap showed significant metabolite changes in fruit samples across 0D, 25D, 45D, and 60D storage periods under CMC, CNT, and KB treatments, with distinct clustering patterns revealing treatment-specific biochemical responses. The correlation matrix revealed strong positive relationships (r > 0.70) between total sugar, glucose, and fructose levels, while ethylene showed significant negative correlations (−0.65 to −0.85) with maturity index, pH, and total soluble solids, indicating interconnected metabolic pathways during fruit ripening and storage. We conclude that edible coating selection significantly influences grape biochemical stability during cold storage, with CMC emerging as a superior choice for maintaining certain quality parameters. Full article
Show Figures

Figure 1

Back to TopTop