Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = carbonylation reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1165 KiB  
Review
Maillard Reaction in Flour Product Processing: Mechanism, Impact on Quality, and Mitigation Strategies of Harmful Products
by Yajing Qi, Wenjun Wang, Tianxiang Yang, Wangmin Ding and Bin Xu
Foods 2025, 14(15), 2721; https://doi.org/10.3390/foods14152721 - 3 Aug 2025
Viewed by 325
Abstract
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A [...] Read more.
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A moderate Maillard reaction contributes to desirable color and flavor profiles in flour products, whereas an excessive reaction leads to amino acid loss and the formation of harmful substances, posing potential health risks. This review summarizes the substrate sources, reaction stages, influencing factors, impact on quality, and mitigation strategies of harmful products, aiming to provide a reference for regulating the Maillard reaction in flour product processing. Currently, most existing mitigation strategies focus on inhibiting harmful products, while research on the synergistic optimization of color and flavor remains insufficient. Future research should focus on elucidating the molecular mechanisms of reaction pathways, understanding multi-factor synergistic effects, and developing composite regulation technologies to balance the sensory quality and safety of flour products. Full article
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 170
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

17 pages, 1725 KiB  
Article
Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods
by Pedro A. S. Randi, Márcio H. F. Bettega, Nykola C. Jones, Søren V. Hoffmann, Małgorzata A. Śmiałek and Paulo Limão-Vieira
Molecules 2025, 30(15), 3137; https://doi.org/10.3390/molecules30153137 - 26 Jul 2025
Viewed by 269
Abstract
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 [...] Read more.
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 eV), together with ab initio quantum chemical calculations at the time-dependent density functional (TD-DFT) level of theory. The dominant electronic excitations are assigned to mixed valence-Rydberg and Rydberg transitions. The fine structure in the CH3CHCH2CO2 photoabsorption spectrum has been assigned to C=O stretching, v7a, CH2 wagging, v14a, C–O stretching, v22a, and C=O bending, v26a modes. Photolysis lifetimes in the Earth’s atmosphere from 0 km up to 50 km altitude have been estimated, showing to be a non-relevant sink mechanism compared to reactions with the OH radical. The nuclear dynamics along the C=O and C–C–C coordinates have been investigated at the TD-DFT level of theory, where, upon electronic excitation, the potential energy curves show important carbonyl bond breaking and ring opening, respectively. Within such an intricate molecular landscape, the higher-lying excited electronic states may keep their original Rydberg character or may undergo Rydberg-to-valence conversion, with vibronic coupling as an important mechanism contributing to the spectrum. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

14 pages, 2049 KiB  
Article
Sugars to Acids via Thioesters: A Computational Study
by Jeremy Kua and Jonathan D. Karin
Life 2025, 15(8), 1189; https://doi.org/10.3390/life15081189 - 26 Jul 2025
Viewed by 226
Abstract
Extant core metabolic cycles such as the TCA cycle and its related analog pathways utilize carboxylic acids as metabolites, with thioesters playing a key role. We examine if sugars from the potentially autocatalytic formose reaction can be converted to carboxylic acids in the [...] Read more.
Extant core metabolic cycles such as the TCA cycle and its related analog pathways utilize carboxylic acids as metabolites, with thioesters playing a key role. We examine if sugars from the potentially autocatalytic formose reaction can be converted to carboxylic acids in the absence of enzymes by calculating the thermodynamics and kinetics of such pathways. We zero in on a mechanism involving the addition of a thiol to an aldehyde, followed by intramolecular disproportionation to form a thioester that can be hydrolyzed into its carboxylic acid. This route is thermodynamically favorable but can have kinetic bottlenecks. We find that elimination of H2O or H2S is often the rate-determining step, and that alpha di-carbonyl reactants that do not require such a step are more feasible in the absence of catalysts. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

18 pages, 1175 KiB  
Article
Photochemically-Enabled Umpolung Conversion of 2-Acyloxybenzaldehydes into 2-Hydroxybenzofuranones
by Victoria E. Opryshko, Svetlana A. Krasnova, Andrey A. Mikhaylov, Yulia A. Bogdanova, Alexander Yu. Smirnov, Mikhail S. Baranov and Dmitrii S. Ivanov
Molecules 2025, 30(15), 3080; https://doi.org/10.3390/molecules30153080 - 23 Jul 2025
Viewed by 375
Abstract
2-Acyloxybenzaldehydes are converted into 2-hydroxybenzofuranones in good to excellent yields (60–99%). The reaction proceeds at room temperature in DMSO upon 365 nm LED irradiation under photocatalyst-free conditions. The present atom-economical synthetic approach represents the aldehyde group umpolung reactivity. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

25 pages, 4365 KiB  
Review
Advances in α-Arylation of Carbonyl Compounds: Diaryliodonium Salts as Arylating Agents
by Xiao-Wei Chen, Jia-Le Chen, Ling-Hui Zhang, Huhu Zhang, Xiaojun Chen and Xiaohui Fan
Molecules 2025, 30(14), 3019; https://doi.org/10.3390/molecules30143019 - 18 Jul 2025
Viewed by 486
Abstract
Diaryliodonium salts are an important part of hypervalent iodine chemistry, owing to their highly electrophilic character, non-toxicity, and air and moisture stability, have been identified as an important arylating agent. It has been widely applied in the synthesis of natural products, drugs, and [...] Read more.
Diaryliodonium salts are an important part of hypervalent iodine chemistry, owing to their highly electrophilic character, non-toxicity, and air and moisture stability, have been identified as an important arylating agent. It has been widely applied in the synthesis of natural products, drugs, and bioactive molecules bearing active α-arylation carbonyl units. Within the domain of α-arylation of carbonyl compounds using diaryliodonium salts, there is a notable absence in the literature of a comprehensive compilation dedicated to exclusive arylation processes involving these compounds. In this review, we focus on the overview of the recent advancements in utilizing diaryliodonium salts for α-arylation reactions, encompassing both racemic and asymmetric approaches to various carbonyl compounds including ketones, esters, enolates, and amides. Furthermore, we discuss the unique advantages and inherent limitations of diaryliodonium salts as arylating agents, as well as the underexplored application potentials that warrant further investigation in this rapidly evolving field. Full article
Show Figures

Figure 1

31 pages, 8391 KiB  
Review
Recent Advances in Catalyst Innovation, Mechanism Exploration, and Process Optimization for Synthesis of Glycerol Carbonate
by Honglei Sun, Zhenyu Lei, Jinghui Shi and Mingjun Jia
Catalysts 2025, 15(7), 668; https://doi.org/10.3390/catal15070668 - 9 Jul 2025
Viewed by 642
Abstract
The catalytic conversion of bio-based glycerol (Gly) into high-value glycerol carbonate (GC) has received great attention from both the academic and industrial fields. The development of highly efficient catalysts and economical industrial processes remains a challenging subject. In this mini-review, we summary the [...] Read more.
The catalytic conversion of bio-based glycerol (Gly) into high-value glycerol carbonate (GC) has received great attention from both the academic and industrial fields. The development of highly efficient catalysts and economical industrial processes remains a challenging subject. In this mini-review, we summary the recent advances in catalyst design, characterization, mechanism, and catalytic process optimization, including the various synthetic strategies of GC, such as the coupling of CO2 and Gly or its derivatives like glycidol (GD), the transesterification of Gly with small carbonate-containing molecules, and the carbonylation of Gly with urea. The main difficulties and challenges faced by constructing high-performance catalysts and achieving scale production of GC have been put forward, and the future research directions and opportunities in catalyst innovation, reaction mechanism exploration, and continuous catalytic process improvement have also been suggested. Full article
Show Figures

Graphical abstract

37 pages, 9468 KiB  
Review
Carbonyl–Olefin Metathesis and Its Application in Natural Product Synthesis
by Blaž Omahen, Shuhe Zheng and Francisco de Azambuja
Catalysts 2025, 15(7), 639; https://doi.org/10.3390/catal15070639 - 30 Jun 2025
Viewed by 693
Abstract
Carbonyl–olefin metathesis is an important reaction for the formation of new carbon–carbon bonds, specifically double bonds. This critical review presents an overview of the different possibilities of these reactions, highlighting their use in the synthesis of natural products. It features classical photochemical approaches [...] Read more.
Carbonyl–olefin metathesis is an important reaction for the formation of new carbon–carbon bonds, specifically double bonds. This critical review presents an overview of the different possibilities of these reactions, highlighting their use in the synthesis of natural products. It features classical photochemical approaches via [2+2]-cycloadditions, early metal-mediated reports, and emerging catalytic methods through the use of organocatalysts or Lewis or Brønsted acids. Comparisons between methods are presented throughout the text, based primarily on robustness, selectivity, methodology, experimental simplicity, and utilization in the synthesis of natural products. Full article
(This article belongs to the Special Issue Recent Catalysts for Organic Synthesis)
Show Figures

Figure 1

15 pages, 790 KiB  
Article
The Role of Artificial Weathering Protocols on Abiotic and Bacterial Degradation of Polyethylene
by Pauline F. De Bigault De Cazanove, Alena Vdovchenko, Ruth S. Rose and Marina Resmini
Polymers 2025, 17(13), 1798; https://doi.org/10.3390/polym17131798 - 27 Jun 2025
Viewed by 488
Abstract
Plastic pollution poses significant environmental challenges due to its persistence and contribution to the microplastic formation, with polyethylene being among the materials more abundantly found. Understanding how different artificial weathering protocols influence the degradation of plastics is crucial for assessing their environmental impact. [...] Read more.
Plastic pollution poses significant environmental challenges due to its persistence and contribution to the microplastic formation, with polyethylene being among the materials more abundantly found. Understanding how different artificial weathering protocols influence the degradation of plastics is crucial for assessing their environmental impact. This study investigates the effects of three distinct artificial weathering protocols—continuous UV-A irradiation (ML), cyclic UV-dark exposure (MC[L→D]), and sequential UV-dark phase (ML→D)—on the physicochemical properties of plastics, using oxo-low-density polyethylene as the model material. Surface oxidation, measured by quantification of the carbonyl index, was most pronounced under the MC[L→D] protocol despite the shortest time of overall UV exposure, indicating that oxidative reactions continue during the dark phases. Vinyl group formation, however, required continuous or cyclic UV exposure, highlighting the critical role of light in this chemical process. Alterations in the surface hydrophilicity, measured by contact angle, and changes in molecular weight were quantified and found to closely link to the weathering conditions, with increased oxidations enhancing the surface hydrophilicity and the chain scission balanced by crosslinking with extended UV durations. These findings emphasize the importance of weathering protocols when trying to simulate conditions in the lab that are closer to the ones in the environment to understand plastic degradation mechanisms. Biodegradation experiments with Rhodococcus rhodochrous demonstrated that weathered oxo-LDPE samples with higher surface oxidation levels (ΔCI > 1) supported an increased CO2 production by Rhodococcus rhodochrous, with the MC[L→D]—360 h protocol yielding the highest biodegradation rates—31–43% higher than the control. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

6 pages, 1320 KiB  
Short Note
N-(2-((2-(1H-indol-3-yl)ethyl)carbamoyl)phenyl)furan-2-carboxamide
by Diyana Dimitrova, Iliyan Ivanov, Stanimir Manolov and Dimitar Bojilov
Molbank 2025, 2025(3), M2025; https://doi.org/10.3390/M2025 - 20 Jun 2025
Viewed by 803
Abstract
In the present study, we describe the synthesis of N-(2-((2-(1H-indol-3-yl)ethyl)carbamoyl)phenyl)furan-2-carboxamide via a two-step reaction sequence. Initially, isatoic anhydride was reacted with tryptamine to afford the corresponding intermediate, which was subsequently subjected to acylation using furan-2-carbonyl chloride. The final product was [...] Read more.
In the present study, we describe the synthesis of N-(2-((2-(1H-indol-3-yl)ethyl)carbamoyl)phenyl)furan-2-carboxamide via a two-step reaction sequence. Initially, isatoic anhydride was reacted with tryptamine to afford the corresponding intermediate, which was subsequently subjected to acylation using furan-2-carbonyl chloride. The final product was comprehensively characterized by melting point analysis, 1H and 13C NMR, HSQC, IR, and MS spectrometry. The combined spectroscopic and analytical data unequivocally confirm the successful synthesis and structural integrity of the target compound. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

16 pages, 3385 KiB  
Article
Effects of C-Ring Structural Differences on the Inhibition of Nε-(Carboxyethyl)lysine in the Methylglyoxal-Lysine System by Flavonoids
by Yating Ling, Linlin Zhang, Bangzhu Peng and Zhuo Zhang
Int. J. Mol. Sci. 2025, 26(12), 5914; https://doi.org/10.3390/ijms26125914 - 19 Jun 2025
Viewed by 439
Abstract
This study investigated the effects of taxifolin (Tax), quercetin (Que), (+)-catechin (Cat) and luteolin (Lute) on the advanced Maillard reaction stage in the methylglyoxal-lysine (MGO-Lys) system. Since the four flavonoids share identical A- and B-ring structures, the inhibitory effects and molecular [...] Read more.
This study investigated the effects of taxifolin (Tax), quercetin (Que), (+)-catechin (Cat) and luteolin (Lute) on the advanced Maillard reaction stage in the methylglyoxal-lysine (MGO-Lys) system. Since the four flavonoids share identical A- and B-ring structures, the inhibitory effects and molecular mechanisms of flavonoids with different C-ring structures on Nε-(carboxyethyl)lysine (CEL) formation were revealed. The results demonstrated that Cat exhibited the best inhibitory effect on CEL with an inhibition rate of 53.78%, while Lute showed the lowest inhibition rate of 3.97%. The flavonoids (i.e., Tax, Que, Cat and Lute) inhibited the formation of non-fluorescent CEL, where hydroxylation at C3 on the C-ring favored the enhancement of the inhibitory effect of the flavonoids on CEL, while the C2-C3 double bond and the carbonyl group at the C4 position reduced their inhibitory ability. The alkaline environment favored the enhancement of the inhibition of CEL by Tax, Que, Cat and Lute. Notably, Tax, Que, Cat and Lute can inhibit CEL formation by competitively capturing MGO to form mono- or di-adducts and reducing lysine consumption. This study provides innovative strategies and a theoretical foundation for developing effective CEL inhibitors in food thermal processing. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

25 pages, 6108 KiB  
Article
Preparation and Composition Analysis of Modified Asphalt for Preparing Carbon Fiber from Coal Direct Liquefaction Asphalt
by Yong Liu, Chenguang Jiang and Miao Gao
Processes 2025, 13(6), 1869; https://doi.org/10.3390/pr13061869 - 13 Jun 2025
Viewed by 412
Abstract
The modified asphalt with high softening point was prepared by air oxidation polymerization with coal liquefied asphalt as raw material. The quality control model regarding the coking value and softening point of the product were established based on the DFSS (Design for Six [...] Read more.
The modified asphalt with high softening point was prepared by air oxidation polymerization with coal liquefied asphalt as raw material. The quality control model regarding the coking value and softening point of the product were established based on the DFSS (Design for Six Sigma) and RSM (response surface method). By means of elemental analysis, infrared, XPS, XRD, nuclear magnetic, MALDI-TOF and other characterization methods, the composition and structure characteristics of the modified asphalt were analyzed. Using the target product as raw material, general base asphalt carbon fiber was prepared by spinning, pre-oxidation and carbonization. The results show that the fitting effect of the quality control model about the coking value and softening point of the product is good, and the operating window range of the polymerization process parameters corresponding to the preparation of target product is wide. It can be found that the oxidation time and oxidation temperature has the most significant effect on the coking value and softening point of products, respectively, and all of them show a positive correlation. The dealkylation reaction and oxidative crosslinking reaction were carried out at the same time, and the bridging products of methylene bridging products, ether–oxygen bonds, carbonyl bonds, anhydride bonds and other oxygen-containing groups were generated. The properties of carbon fiber prepared with the target product are better: the tensile strength is 775 MPa, the elastic modulus is 68.6 GPa and the elongation at break is 1.13%. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

29 pages, 2376 KiB  
Review
Role of Redox-Induced Protein Modifications in Spermatozoa in Health and Disease
by Chika Onochie, Keturah Evi and Cristian O’Flaherty
Antioxidants 2025, 14(6), 720; https://doi.org/10.3390/antiox14060720 - 12 Jun 2025
Viewed by 777
Abstract
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them [...] Read more.
Male infertility contributes to approximately half of all infertility cases, with most cases associated with oxidative stress. Spermatozoa depend on finely tuned redox signaling for critical processes such as capacitation, motility, and fertilization competence; however, their unique structural and metabolic features render them particularly vulnerable to oxidative damage. Reversible oxidative modifications regulate enzymatic activity, signaling cascades, and structural stability, supporting normal sperm function, whereas irreversible oxidative damage impairs motility, acrosome reaction, and DNA integrity, contributing to male infertility. The intricate balance between physiological redox signaling and pathological oxidative stress demonstrates the potential of redox modifications as biomarkers for infertility diagnosis and as targets for antioxidant-based therapeutic interventions. This review explores the role of redox-induced protein modifications in sperm function, focusing on thiol oxidation, S-nitrosylation, sulfhydration, glutathionylation, CoAlation, and protein carbonylation. By uncovering the mechanisms of these redox modifications, we provide a framework for their modulation in the development of targeted redox interventions to improve male fertility. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

14 pages, 2373 KiB  
Article
Isomeric Anthraquinone-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Peroxide Generation
by Shengrong Yan, Songhu Shi, Wenhao Liu, Fang Duan, Shuanglong Lu and Mingqing Chen
Catalysts 2025, 15(6), 556; https://doi.org/10.3390/catal15060556 - 3 Jun 2025
Viewed by 583
Abstract
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs [...] Read more.
Utilizing isomeric monomers to construct covalent organic frameworks (COFs) could easily and precisely regulate their structure in order to raise the photocatalytic performance towards two-step single-electron oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). Herein, isomeric anthraquinone (AQ)-based COFs (designated as 1,4-DQTP and 2,6-DQTP) were successfully fabricated through a simple yet effective one-step solvothermal synthesis approach, only utilizing isomeric monomers with alterations in the catalysts. Specifically, the black 1,4-DQTP displayed a high photocatalytic H2O2 production rate of 865.4 µmol g−1 h−1, with 2.44-fold enhancement compared to 2,6-DQTP (354.7 µmol g−1 h−1). Through a series of experiments such as electron paramagnetic resonance (EPR) spectroscopy and the free radical quenching experiments, as well as density functional theory (DFT) calculations, the photocatalytic mechanism revealed that compared with 2,6-DQTP, 1,4-DQTP possessed a stronger and broader visible light absorption capacity, and thus generated more photogenerated e-h+ pairs. Ultimately, more photogenerated electrons were enriched on the AQ motif via a more apparent electron push–pull effect, which provided a stable transfer channel for e and thus facilitated the generation of superoxide anion radical intermediates (•O2). On the other hand, the negative charge region of AQ’s carbonyl group evidently overlapped with that of TP, indicating that 1,4-DQTP had a higher chemical affinity for the uptake of protons, and thus afforded a more favorable hydrogen donation for H+. As a consequence, the rational design of COFs utilizing isomeric monomers could synergistically raise the proton-coupled electron transfer (PCET) kinetics for two-step single-electron ORR to H2O2 under visible light illumination. This work provides some insights for the design and fabrication of COFs through rational isomer engineering to modulate their photocatalytic activities. Full article
(This article belongs to the Special Issue Nanostructured Photocatalysts for Hydrogen Production)
Show Figures

Graphical abstract

14 pages, 1353 KiB  
Article
One-Pot Syntheses and Characterization of Group VI Carbonyl NHC Coordination Compounds
by Zala Stopar, Evelin Gruden, Melita Tramšek and Gašper Tavčar
Molecules 2025, 30(11), 2433; https://doi.org/10.3390/molecules30112433 - 2 Jun 2025
Viewed by 518
Abstract
The reactions of N-heterocyclic carbenes (IMesNHC and IPrNHC) with transition metal carbonyls of group VI (Cr(CO)6, Mo(CO)6, and W(CO)6) were carried out in acetonitrile in simple one-pot syntheses and led to the formation of the coordination [...] Read more.
The reactions of N-heterocyclic carbenes (IMesNHC and IPrNHC) with transition metal carbonyls of group VI (Cr(CO)6, Mo(CO)6, and W(CO)6) were carried out in acetonitrile in simple one-pot syntheses and led to the formation of the coordination compounds IMesNHC–Cr(CO)5 (1a), IMesNHC–Mo(CO)5 (2a), IMesNHC–W(CO)5 (3a), IPrNHC–Cr(CO)5 (1b), IPrNHC–Mo(CO)5 (2b), and IPrNHC–W(CO)5 (3b). With the exception of 1b, the coordination compounds were formed selectively and in high yields. The method represents an effective and easy-to-perform alternative to the previously described methods for NHC–M(CO)5 (M = Cr, Mo, W). All prepared compounds were characterized by NMR and Raman spectroscopy. Compounds 1a, 2a, 3a, and 2b were also crystallized and structurally characterized by X-ray structure analysis. Finally, the structural features of all compounds were compared with DFT calculations of structurally optimized coordination compounds. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop