Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = carbon stock assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4014 KiB  
Article
Spatial Heterogeneity in Carbon Pools of Young Betula sp. Stands on Former Arable Lands in the South of the Moscow Region
by Gulfina G. Frolova, Pavel V. Frolov, Vladimir N. Shanin and Irina V. Priputina
Plants 2025, 14(15), 2401; https://doi.org/10.3390/plants14152401 - 3 Aug 2025
Viewed by 125
Abstract
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. [...] Read more.
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. The research focuses on understanding the interactions between plant cover and the environment, i.e., how environmental factors such as stand density, tree diameter and height, light conditions, and soil properties affect ecosystem carbon pools. We also studied how heterogeneity in edaphic conditions affects the formation of plant cover, particularly tree regeneration and the development of ground layer vegetation. Field measurements were conducted on a permanent 50 × 50 m sampling plot divided into 5 × 5 m subplots, in order to capture variability in vegetation and soil characteristics. Key findings reveal significant differences in carbon stocks across subplots with varying stand densities and light conditions. This highlights the role of the spatial heterogeneity of soil properties and vegetation cover in carbon sequestration. The study demonstrates the feasibility of indirect estimation of carbon stocks using stand parameters (density, height, and diameter), with results that closely match direct measurements. The total ecosystem carbon stock was estimated at 80.47 t ha−1, with the soil contribution exceeding that of living biomass and dead organic matter. This research emphasizes the importance of accounting for spatial heterogeneity in carbon assessments of post-agricultural ecosystems, providing a methodological framework for future studies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 - 3 Aug 2025
Viewed by 146
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 290
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 528
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

27 pages, 42290 KiB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 359
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Viewed by 394
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Graphical abstract

21 pages, 13413 KiB  
Article
Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios
by Shuai Wang, Shouyuan Bian, Zicheng Wang, Zijiao Yang, Chen Li, Xingyu Zhang, Di Shi and Hongbin Liu
Forests 2025, 16(8), 1209; https://doi.org/10.3390/f16081209 - 23 Jul 2025
Viewed by 234
Abstract
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated [...] Read more.
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated with deeper SOC stock dynamics. This study adopted a comprehensive methodology that integrates random forest modeling, equal-area soil profile analysis, and space-for-time substitution to predict depth-specific SOC stock dynamics under climate warming in Northeast China’s forest ecosystems. By combining these techniques, the approach effectively addresses existing research limitations and provides robust projections of soil carbon changes across various depth intervals. The analysis utilized 63 comprehensive soil profiles and 12 environmental predictors encompassing climatic, topographic, biological, and soil property variables. The model’s predictive accuracy was assessed using 10-fold cross-validation with four evaluation metrics: MAE, RMSE, R2, and LCCC, ensuring comprehensive performance evaluation. Validation results demonstrated the model’s robust predictive capability across all soil layers, achieving high accuracy with minimized MAE and RMSE values while maintaining elevated R2 and LCCC scores. Three-dimensional spatial projections revealed distinct SOC distribution patterns, with higher stocks concentrated in central regions and lower stocks prevalent in northern areas. Under simulated warming conditions (1.5 °C, 2 °C, and 4 °C increases), both topsoil (0–30 cm) and deep-layer (100 cm) SOC stocks exhibited consistent declining trends, with the most pronounced reductions observed under the 4 °C warming scenario. Additionally, the study identified mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as dominant environmental drivers controlling three-dimensional SOC spatial variability. These findings underscore the importance of depth-resolved SOC stock assessments and suggest that precise three-dimensional mapping of SOC distribution under various climate change projections can inform more effective land management strategies, ultimately enhancing regional soil carbon storage capacity in forest ecosystems. Full article
(This article belongs to the Special Issue Carbon Dynamics of Forest Soils Under Climate Change)
Show Figures

Figure 1

22 pages, 4017 KiB  
Article
Mapping and Estimating Blue Carbon in Mangrove Forests Using Drone and Field-Based Tree Height Data: A Cost-Effective Tool for Conservation and Management
by Ali Karimi, Behrooz Abtahi and Keivan Kabiri
Forests 2025, 16(7), 1196; https://doi.org/10.3390/f16071196 - 20 Jul 2025
Viewed by 491
Abstract
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of [...] Read more.
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of drones, also known as unmanned aerial vehicles (UAVs), for estimating above-ground biomass (AGB) and BC in Avicennia marina stands by integrating drone-based canopy measurements with field-measured tree heights. Using structure-from-motion (SfM) photogrammetry and a consumer-grade drone, we generated a canopy height model and extracted structural parameters from individual trees in the Melgonze mangrove patch, southern Iran. Field-measured tree heights served to validate drone-derived estimates and calibrate an allometric model tailored for A. marina. While drone-based heights differed significantly from field measurements (p < 0.001), the resulting AGB and BC estimates showed no significant difference (p > 0.05), demonstrating that crown area (CA) and model formulation effectively compensate for height inaccuracies. This study confirms that drones can provide reliable estimates of BC through non-invasive means—eliminating the need to harvest, cut, or physically disturb individual trees—supporting their application in mangrove monitoring and ecosystem service assessments, even under challenging field conditions. Full article
Show Figures

Figure 1

18 pages, 2666 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Natural Forest Trees: Generalized or Species-Specific?
by Yuxin Shang, Yutong Xia, Xiaodie Ran, Xiao Zheng, Hui Ding and Yanming Fang
Diversity 2025, 17(7), 493; https://doi.org/10.3390/d17070493 - 18 Jul 2025
Viewed by 446
Abstract
Accurate estimation of aboveground biomass (AGB) in tree–shrub communities is critical for quantifying forest ecosystem productivity and carbon sequestration potential. Although generalized allometric equations offer expediency in natural forest AGB estimation, their neglect of interspecific variability introduces methodological pitfalls. Precise AGB prediction necessitates [...] Read more.
Accurate estimation of aboveground biomass (AGB) in tree–shrub communities is critical for quantifying forest ecosystem productivity and carbon sequestration potential. Although generalized allometric equations offer expediency in natural forest AGB estimation, their neglect of interspecific variability introduces methodological pitfalls. Precise AGB prediction necessitates resolving two biological constraints: phylogenetic conservation of allometric coefficients and ontogenetic regulation of scaling relationships. This study establishes an integrated framework combining the following: (1) phylogenetic signal detection (Blomberg’s K/Pagel’s λ) across 157 species’ allometric equations, revealing weak but significant evolutionary constraints (λ = 0.1249, p = 0.0027; K ≈ 0, p = 0.621); (2) hierarchical error decomposition of 9105 stems in a Mt. Wuyishan forest dynamics plot (15 species), identifying family-level error stratification (e.g., Theaceae vs. Myrtaceae, Δerror > 25%); (3) ontogenetic trajectory analysis of Castanopsis eyrei between Mt. Wuyishan and Mt. Huangshan, demonstrating significant biomass deviations in small trees (5–15 cm DBH, p < 0.05). Key findings resolve the following hypotheses: (1) absence of strong phylogenetic signals validates generalized models for phylogenetically diverse communities; (2) ontogenetic regulation dominates error magnitude, particularly in early developmental stages; (3) differential modeling is recommended: species-specific equations for pure forests/seedlings vs. generalized equations for mixed mature forests. This work establishes an error hierarchy: ontogeny > taxonomy > phylogeny, providing a mechanistic basis for optimizing forest carbon stock assessments. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

27 pages, 4738 KiB  
Article
A Dual-Variable Selection Framework for Enhancing Forest Aboveground Biomass Estimation via Multi-Source Remote Sensing
by Dapeng Chen, Hongbin Luo, Zhi Liu, Jie Pan, Yong Wu, Er Wang, Chi Lu, Lei Wang, Weibin Wang and Guanglong Ou
Remote Sens. 2025, 17(14), 2493; https://doi.org/10.3390/rs17142493 - 17 Jul 2025
Viewed by 301
Abstract
Integrating multi-source remote sensing can improve the accuracy of forest aboveground biomass (AGB) estimation. However, the accuracy and stability of the forest AGB estimation results are affected by multiple remote sensing feature variables as well as parameter tuning of machine learning algorithms. To [...] Read more.
Integrating multi-source remote sensing can improve the accuracy of forest aboveground biomass (AGB) estimation. However, the accuracy and stability of the forest AGB estimation results are affected by multiple remote sensing feature variables as well as parameter tuning of machine learning algorithms. To this end, this study employed six types of remote sensing data—Landsat 8 OLI, Sentinel-2A, GEDI, ICESat-2, ALOS-2, and SAOCOM. A dual-variable selection strategy based on SHapley Additive exPlanations (SHAP) was developed, and a genetic algorithm (GA) was used to optimize the parameters of five machine learning models—elastic net (EN), least absolute shrinkage and selection operator (Lasso), support vector regression (SVR), Random Forest (RF), and Categorical Boosting (CatBoost)—to estimate the AGB of Pinus kesiya var. langbianensis forest in Wuyi Village, Zhenyuan County. The dual-variable selection strategy integrates SHAP with the Pearson correlation coefficient (PC), RF, EN, and Lasso to enhance feature screening robustness and interpretability. The results of the study showed that Lasso-SHAP dual-variate screening was more stable than SHAP univariate screening. In particular, the Lasso-SHAP strategy improved the average R2 from 0.59 (using SHAP alone) to above 0.70, achieving an enhancement of 11%. Among GA-optimized parametric machine learning models, the linear GA-Lasso achieved the best performance, with an R2 of 0.91 and an RMSE of 12.94 Mg/ha, followed by the GA-EN model (R2 = 0.89, RMSE = 14.46 Mg/ha). For nonlinear models, GA-SVR performed the best (R2 = 0.74, RMSE = 22.07 Mg/ha), surpassing the GA-CatBoost model (R2 = 0.64, RMSE = 25.88 Mg/ha). In summary, the Lasso-SHAP dual-variable selection strategy effectively improves the estimation accuracy of AGB for Pinus kesiya var. langbianensis forests, while GA-optimized machine learning models demonstrate excellent performance, providing strong support for regional-scale forest resource monitoring and carbon stock assessment. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Viewed by 329
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 2402 KiB  
Article
Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles
by Chiung Ko, Jintaek Kang, Chaejun Lim, Donggeun Kim and Minwoo Lee
Forests 2025, 16(7), 1138; https://doi.org/10.3390/f16071138 - 10 Jul 2025
Viewed by 306
Abstract
Accurate estimation of stem profiles is critical for forest management, timber yield prediction, and ecological modeling. However, traditional taper equations often fail to capture species-specific growth variability and exhibit significant biases, particularly in the upper stem regions. Machine learning regression models were applied [...] Read more.
Accurate estimation of stem profiles is critical for forest management, timber yield prediction, and ecological modeling. However, traditional taper equations often fail to capture species-specific growth variability and exhibit significant biases, particularly in the upper stem regions. Machine learning regression models were applied to estimate Quercus mongolica stem profiles across South Korea, and performance was compared with that of a traditional taper equation. A total of 2503 sample trees were used to train and validate Random Forest (RF), XGBoost (XGB), Artificial Neural Network (ANN), and Support Vector Regression (SVR) models. Predictive performance was evaluated using root mean square error, mean absolute error, and coefficient of determination metrics, and performance differences were validated statistically. The ANN model exhibited the highest predictive accuracy and stability across all diameter classes, maintaining smooth and consistent stem profiles even in the upper stem regions where the traditional taper model exhibited significant errors. RF and XGB models had moderate performance but exhibited localized fluctuations, whereas the Kozak taper equation tended to overestimate basal diameters and underestimate crown-top diameters. Machine learning models, particularly ANN, offer a robust alternative to fixed-form taper equations, contributing substantially to forest resource inventory, carbon stock assessment, and climate-adaptive forest management planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 14490 KiB  
Article
Estimation of Forest Aboveground Biomass Using Sentinel-1/2 Synergized with Extrapolated Parameters from LiDAR Data and Analysis of Its Ecological Driving Factors
by Xu Xu, Jingyu Yang, Shanze Qi, Yue Ma, Wei Liu, Luanxin Li, Xiaoqiang Lu and Yan Liu
Remote Sens. 2025, 17(14), 2358; https://doi.org/10.3390/rs17142358 - 9 Jul 2025
Viewed by 341
Abstract
Accurate estimation of forest aboveground biomass (AGB) and understanding its ecological drivers are vital for carbon monitoring and sustainable forest management. However, AGB estimation using remote sensing is hindered by signal saturation in high-biomass areas and insufficient attention to ecological structural factors. Focusing [...] Read more.
Accurate estimation of forest aboveground biomass (AGB) and understanding its ecological drivers are vital for carbon monitoring and sustainable forest management. However, AGB estimation using remote sensing is hindered by signal saturation in high-biomass areas and insufficient attention to ecological structural factors. Focusing on Guangdong Province, this study proposes a novel approach that spatially extrapolates airborne LiDAR-derived Forest structural parameters and integrates them with Sentinel-1/2 data to construct an AGB prediction model. Results show that incorporating structural parameters significantly reduces saturation effects, improving prediction accuracy and AGB maximum range in high-AGB regions (R2 from 0.724 to 0.811; RMSE = 10.64 Mg/ha; max AGB > 180 Mg/ha). Using multi-scale geographically weighted regression (MGWR), we further examined the spatial influence of forest type, age structure, and species mixture. Forest age showed a strong positive correlation with AGB in over 95% of the area, particularly in mountainous and hilly regions (coefficients up to 1.23). Species mixture had positive effects in 87.7% of the region, especially in the north and parts of the south. Natural forests consistently exhibited higher AGB than plantations, with differences amplifying at later successional stages. Highly mixed natural forests showed faster biomass accumulation and higher steady-state AGB, highlighting the regulatory role of structural complexity and successional maturity. This study not only mitigates remote sensing saturation issues but also deepens understanding of spatial and ecological drivers of AGB, offering theoretical and technical support for targeted carbon stock assessment and forest management strategies. Full article
Show Figures

Figure 1

25 pages, 8350 KiB  
Article
High-Resolution Mapping and Impact Assessment of Forest Aboveground Carbon Stock in the Pinglu Canal Basin: A Multi-Sensor and Multi-Model Machine Learning Approach
by Weifeng Xu, Xuzhi Mai, Songwen Deng, Wenhuan Wang, Wenqian Wu, Wei Zhang and Yinghui Wang
Forests 2025, 16(7), 1130; https://doi.org/10.3390/f16071130 - 9 Jul 2025
Viewed by 334
Abstract
Accurate estimation of forest aboveground carbon stock (AGC) is critical for climate change mitigation and ecological management. This study develops a high-resolution AGC estimation workflow for the Pinglu Canal basin, integrating Sentinel-2, Sentinel-1, ALOS PALSAR, and SRTM data with field survey measurements. Feature [...] Read more.
Accurate estimation of forest aboveground carbon stock (AGC) is critical for climate change mitigation and ecological management. This study develops a high-resolution AGC estimation workflow for the Pinglu Canal basin, integrating Sentinel-2, Sentinel-1, ALOS PALSAR, and SRTM data with field survey measurements. Feature selection via Recursive Feature Elimination and modeling with a Random Forest algorithm—optimized through hyperparameter tuning—yielded high predictive accuracy under the ALL data combination (R2 = 0.818, RMSE = 11.126 tC/ha), enabling the generation of a 10 m-resolution AGC map. The total AGC in 2024 was estimated at 2.26 × 106 tC. To evaluate human-induced changes, we established a baseline scenario based on historical AGC trends (2002–2021) and climate data. Comparisons revealed that afforestation and vegetation restoration during canal construction led to higher AGC values than projected under natural conditions. This positive deviation highlights the effectiveness of targeted ecological interventions in mitigating carbon loss and promoting forest recovery. Our results demonstrate a cost-effective, scalable method for AGC mapping using freely accessible remote sensing data and machine learning. The findings also provide insights into balancing large-scale infrastructure development with ecosystem conservation. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

25 pages, 24212 KiB  
Article
Spatial Prediction of Soil Organic Carbon Based on a Multivariate Feature Set and Stacking Ensemble Algorithm: A Case Study of Wei-Ku Oasis in China
by Zuming Cao, Xiaowei Luo, Xuemei Wang and Dun Li
Sustainability 2025, 17(13), 6168; https://doi.org/10.3390/su17136168 - 4 Jul 2025
Viewed by 300
Abstract
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) [...] Read more.
Accurate estimation of soil organic carbon (SOC) content is crucial for assessing terrestrial ecosystem carbon stocks. Although traditional methods offer relatively high estimation accuracy, they are limited by poor timeliness and high costs. Combining measured data, remote sensing technology, and machine learning (ML) algorithms enables rapid, efficient, and accurate large-scale prediction. However, single ML models often face issues like high feature variable redundancy and weak generalization ability. Integrated models can effectively overcome these problems. This study focuses on the Weigan–Kuqa River oasis (Wei-Ku Oasis), a typical arid oasis in northwest China. It integrates Sentinel-2A multispectral imagery, a digital elevation model, ERA5 meteorological reanalysis data, soil attribute, and land use (LU) data to estimate SOC. The Boruta algorithm, Lasso regression, and its combination methods were used to screen feature variables, constructing a multidimensional feature space. Ensemble models like Random Forest (RF), Gradient Boosting Machine (GBM), and the Stacking model are built. Results show that the Stacking model, constructed by combining the screened variable sets, exhibited optimal prediction accuracy (test set R2 = 0.61, RMSE = 2.17 g∙kg−1, RPD = 1.61), which reduced the prediction error by 9% compared to single model prediction. Difference Vegetation Index (DVI), Bare Soil Evapotranspiration (BSE), and type of land use (TLU) have a substantial multidimensional synergistic influence on the spatial differentiation pattern of the SOC. The implementation of TLU has been demonstrated to exert a substantial influence on the model’s estimation performance, as evidenced by an augmentation of 24% in the R2 of the test set. The integration of Boruta–Lasso combination screening and Stacking has been shown to facilitate the construction of a high-precision SOC content estimation model. This model has the capacity to provide technical support for precision fertilization in oasis regions in arid zones and the management of regional carbon sinks. Full article
Show Figures

Figure 1

Back to TopTop