Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Materials
2.2. Variable Exponent-Based Model
2.3. Development of Machine Learning Regression Models
2.4. Model Training and Validation
- Random Forest and XGBoost: Key hyperparameters (e.g., tree depth, number of trees, learning rate) were optimized through grid search combined with five-fold cross-validation.
- Artificial Neural Network: The number of hidden layers (one or two) and neurons per layer (32 or 64) were adjusted, using the ReLU activation function and the Adam optimizer (learning rate = 0.001).
- Support Vector Regression: An RBF kernel was employed, and hyperparameters were optimized through grid search over the ranges C ∈ {0.1,1,10,100} and ϵ ∈ {0.01,0.1,0.5}
2.5. Comparison of Model Performance and Statistical Significance in the Methodology
3. Results and Discussion
3.1. Prediction Results Using the Variable-Exponent Model
3.2. Prediction Results and Performance Comparison of Machine Learning Models
3.3. Model Performance Comparison and Statistical Significance Testing
3.4. Visualization and Interpretation of Representative Tree Stem Profiles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AE | Absolute Error |
ANN | Artificial Neural Network |
DBH | Diameter at Breast Height |
DOB | Diameter Outside Bark |
DIB | Diameter Inside Bark |
MAE | Mean Absolute Error |
NLS | Non-linear Least Squares |
RMSE | Root Mean Square Error |
R2 | Coefficient of Determination |
RBF | Radial Basis Function |
SVR | Support Vector Regression |
SH | Stem Height |
TH | Tree Height |
References
- Shin, J.-H.; Han, H.; Ko, C.; Kang, J.T.; Kim, Y.-H. Applying nonlinear mixed-effects models to taper equations: A case study of Pinus densiflora in Gangwon Province, Republic of Korea. J. Korean Soc. For. Sci. 2022, 111, 136–149. [Google Scholar] [CrossRef]
- Lee, M.W.; Lee, S.; You, J.W.; Kang, J.T.; Lee, Y.J.; Ko, C. Estimating greenhouse gas (GHG) removal by Cryptomeria japonica and Chamaecyparis obtusa Stands using new stem volume tables. J. Korean Soc. For. Sci. 2023, 112, 515–522. [Google Scholar] [CrossRef]
- Abegg, M.; Bösch, R.; Kükenbrink, D.; Morsdorf, F. Tree volume estimation with terrestrial laser scanning—Testing for bias in a 3D virtual environment. Agric. For. Meteorol. 2023, 331, 109348. [Google Scholar] [CrossRef]
- Bae, E.J.; Joo, J.W.; Jeong, J.Y.; Choi, S.-Y.; Roh, H.; Park, J.-H.; Son, Y.-M. Estimation of annual carbon absorption and derivation of stem taper form for Quercus glauca. J. Agric. Life Sci. 2023, 57, 23–30. [Google Scholar] [CrossRef]
- You, L.; Chang, X.; Sun, Y.; Pang, Y.; Feng, Y.; Song, X. Volume Estimation of Stem Segments Based on a Tetrahedron Model Using Terrestrial Laser Scanning Data. Remote Sens. 2023, 15, 5060. [Google Scholar] [CrossRef]
- Tewari, V.P.; Kumar, V.S.K. Construction and validation of tree volume functions for Dalbergia sissoo grown under irrigated conditions in the hot desert of India. J. Trop. For. Sci. 2001, 13, 503–511. [Google Scholar]
- Max, T.A.; Burkhart, H.E. Segmented polynomial regression applied to taper equations. For. Sci. 1976, 22, 283–289. [Google Scholar]
- Kozak, A. A variable-exponent taper equation. Can. J. For. Res. 1988, 18, 1363–1368. [Google Scholar] [CrossRef]
- Kozak, A. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can. J. For. Res. 1997, 27, 619–629. [Google Scholar] [CrossRef]
- Kozak, A. My last words on taper equations. For. Chron. 2004, 80, 507–515. [Google Scholar] [CrossRef]
- National Institute of Forest Science (NIFoS). Stem Volume and Biomass, Yield Table; NIFoS: Seoul, Republic of Korea, 2023. [Google Scholar]
- Kublin, E.; Breidenbach, J.; Kändler, G. A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur. J. For. Res. 2013, 132, 983–997. [Google Scholar] [CrossRef]
- Lee, W.K. Stem and stand taper model using spline function and linear equation. J. Korean Soc. For. Sci. 1994, 83, 63–74. [Google Scholar]
- Fonweban, J.; Gardiner, B.; Macdonald, E.; Auty, D. Taper functions for Scots pine (Pinus sylvestris L.) and Sitka Spruce (Picea sitchensis (Bong.) Carr.) in Northern Britain. Forestry 2011, 84, 49–60. [Google Scholar] [CrossRef]
- Li, R.; Weiskittel, A.R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian region (Comparaison de formules modèles pour estimer la décroissance de la tige et le volume des principales espèces de conifères dan). Ann. For. Sci. 2010, 67, 302. [Google Scholar] [CrossRef]
- Arias-Rodil, M.; Castedo-Dorado, F.; Cámara-Obregón, A.; Diéguez-Aranda, U. Fitting and Calibrating a Multilevel Mixed-Effects Stem Taper Model for Maritime Pine in NW Spain. PLoS ONE 2015, 10, e0143521. [Google Scholar] [CrossRef]
- Kang, J.T.; Ko, C.U. The development of a stem taper equation and a stem table for standing trees of Chamaecyparis obtusa on Jeju island and in the southern regions of South Korea. J. Korean Isl. (TJOKI) 2020, 32, 221–233. [Google Scholar] [CrossRef]
- Ko, C.; Lee, S.H.; Lee, S.J.; Kim, D.G.; Kang, J.T. Development of a stem taper equation and a stem table for Cryptomeria japonica Stands in South Korea. J. Korean Soc. For. Sci. 2020, 109, 461–467. [Google Scholar]
- Hjelm, B. Taper and Volume Equations for Poplar Trees Growing on Farmland in Sweden. Licentiate Thesis, Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2011. [Google Scholar]
- Ko, C.; Moon, G.H.; Yim, J.S.; Lee, S.; Kim, D.G.; Kang, J.T. Estimation and comparison of stem volume for Larix kaempferi in South Korea using the stem volume model. J. Korean Soc. For. Sci. 2019, 108, 592–599. [Google Scholar] [CrossRef]
- Son, Y.M.; Jeon, J.H.; Pyo, J.K.; Kim, K.N.; Kim, S.W.; Lee, K.H. Development of stem volume table for Robinia pseudoacacia using Kozak’s stem profile model. J. Agric. Life Sci. 2012, 46, 43–49. [Google Scholar]
- Son, Y.M.; Kim, S.W.; Lee, S.J.; Kim, J.S. Estimation of stand yield and carbon stock for Robinia pseudoacacia Stands in Korea. J. Korean Soc. For. Sci. 2014, 103, 264–269. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Vapnik, V.; Smola, A.J. Support Vector regression machines. In Advances in Neural Information Processing Systems; Touretzky, D.S., Mozer, M.C., Hasselmo, M.E., Eds.; MIT Press: Cambridge, MA, USA, 1996; Volume 9, pp. 155–161. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support Vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Scrinzi, G.; Marzullo, L.; Galvagni, D. Development of a neural network model to update forest distribution data for managed alpine stands. Ecol. Model. 2007, 206, 331–346. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G.; Learning, D. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Nunes, M.H.; Görgens, E.B. Artificial intelligence procedures for tree taper estimation within a complex vegetation mosaic in brazil. PLoS ONE 2016, 11, e0154738. [Google Scholar] [CrossRef]
- Mauro, F.; Frank, B.; Monleon, V.J.; Temesgen, H.; Ford, K.R. Prediction of diameter distributions and tree-lists in Southwestern Oregon using LiDAR and stand-level auxiliary information. Can. J. For. Res. 2019, 49, 775–787. [Google Scholar] [CrossRef]
- Socha, J.; Netzel, P.; Cywicka, D. Stem taper approximation by artificial neural network and a regression set models. Forests 2020, 11, 79. [Google Scholar] [CrossRef]
- Yang, S.I.; Burkhart, H.E. Robustness of parametric and nonparametric fitting procedures of tree-stem taper with alternative definitions for validation data. J. For. 2020, 118, 576–583. [Google Scholar] [CrossRef]
- Salekin, S.; Catalán, C.H.; Boczniewicz, D.; Phiri, D.; Morgenroth, J.; Meason, D.F.; Mason, E.G. Global tree taper modelling: A review of applications, methods, functions, and their parameters. Forests 2021, 12, 913. [Google Scholar] [CrossRef]
- Sandoval, S.; Acuña, E. Stem taper estimation using artificial neural networks for Nothofagus Trees in natural forest. Forests 2022, 13, 2143. [Google Scholar] [CrossRef]
- Yang, S.I.; Burkhart, H.E.; Seki, M. Evaluating semi- and nonparametric regression algorithms in quantifying stem taper and volume with alternative test data selection strategies. Forestry 2023, 96, 465–480. [Google Scholar] [CrossRef]
- Pokhrel, N.R.; Subedi, M.R.; Malego, B. Fitting and evaluating taper functions to predict upper stem diameter of planted teak (Tectona grandis L.f.) in eastern and central regions of Nepal. Forests 2025, 16, 77. [Google Scholar] [CrossRef]
- Lee, S.H.; Ko, C.U.; Shin, J.H.; Kang, J.T. Estimation of Stem Taper for Quercus acutissima Using Machine Learning Techniques. J. Agirc Life Sci. 2020, 54, 29–37. [Google Scholar] [CrossRef]
- Ko, C.; Kang, J.T.; Son, Y.M.; Kim, D.-G. Estimating stem volume using stem taper equation for Quercus mongolica in South Korea. For. Sci. Technol. 2019, 15, 58–62. [Google Scholar] [CrossRef]
- Czaplewski, R.L.; Brown, A.S.; Guenther, D.G. Estimating Merchantable Tree Volume in Oregon and Washington Using Stem Profile Models; res [Note], PNW-RN; USDA Forest Service: Fort Collins, CO, USA, 1989; Volume 459, pp. 1–15. [Google Scholar]
- Li, R.; Weiskittel, A.; Dick, A.R.; Kershaw, J.A., Jr.; Seymour, R.S. Regional stem taper equations for eleven conifer species in the Acadian region of North America: Development and assessment. North J. Appl. For. 2012, 29, 5–14. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann Publishers: Waltham, MA, USA, 2011; pp. 394–395. [Google Scholar]
- Sharma, M.; Zhang, S.Y. Variable-exponent taper equations for jack pine, black Spruce, and balsam fir in Eastern Canada. For. Ecol. Manag. 2004, 198, 39–53. [Google Scholar] [CrossRef]
- Özçelik, R.; Diamantopoulou, M.J.; Trincado, G. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey. Comput. Electron. Agric. 2019, 162, 773–782. [Google Scholar] [CrossRef]
- de la Torre, F.; Kanade, T. Smooth and consistent probabilistic regression trees. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 8289–8299. [Google Scholar]
- Moeinaddini, M.; Zhang, S.Y.; Auty, D. Nonlinear modeling of tree stem profiles using deep learning algorithms: A comparison with classical taper equations. Eur. J. For. Res. 2023, 142, 311–327. [Google Scholar]
- Sakici, O.E.; Ozdemir, G. Stem taper estimations with artificial neural networks for mixed oriental beech and Kazdağı fir stands in Turkey. CERNE 2018, 24, 439–451. [Google Scholar] [CrossRef]
- Gómez-García, E.; Alonso Ponce, R.; Pérez-Rodríguez, F.; Molina Terrén, C. A preliminary system of equations for predicting merchantable whole-tree volume for the decurrent non-native Quercus rubra L. Grown in Navarra (Northern Spain). Forests 2024, 15, 1698. [Google Scholar] [CrossRef]
Variable | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|
DBH (cm) | 18.35 | 7.62 | 6 | 46 |
TH (m) | 12.56 | 3.25 | 4 | 21 |
Age (yr) | 35.91 | 8.97 | 13 | 62 |
Model | Taper Equation |
---|---|
Kozak (1988) [8] | |
where Z = relative height (=) X = (p = inflection point) ai, bi = parameters d = diameter (estimated) when h/H |
Statistics | Calculation Forms |
---|---|
Root Mean Square Error (RMSE) | |
Mean Absolute Error (MAE) | |
Coefficient of Determination (R2) |
Parameter | Quercus mongolica |
---|---|
a1 | 1.1996 |
a2 | 0.9141 |
a3 | 0.9985 |
b1 | 1.3611 |
b2 | −0.3368 |
b3 | 2.2856 |
b4 | −1.1219 |
b5 | 0.1378 |
p | 0.2 |
R2 | 0.987 |
RMSE | 0.919 |
Species | Model | RMSE (cm) | R2 | MAE (cm) |
---|---|---|---|---|
Quercus mongolica | RF | 1.829 | 0.963 | 1.277 |
XGBoost | 1.834 | 0.960 | 1.211 | |
ANN | 1.654 | 0.968 | 1.138 | |
SVR | 1.710 | 0.966 | 1.170 |
Compared Models | Statistical Test | p-Value | Statistical Significance (α = 0.05) |
---|---|---|---|
ANN vs. RF | Wilcoxon signed-rank test | 0.0000 | Significant |
ANN vs. XGBoost | 0.6588 | Not Significant | |
ANN vs. SVR | 0.0005 | Significant | |
ANN vs. Kozak | 0.0014 | Significant | |
RF vs. Kozak | 0.0000 | Significant | |
XGBoost vs. Kozak | 0.6964 | Not Significant | |
SVR vs. Kozak | 0.7114 | Not Significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, C.; Kang, J.; Lim, C.; Kim, D.; Lee, M. Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles. Forests 2025, 16, 1138. https://doi.org/10.3390/f16071138
Ko C, Kang J, Lim C, Kim D, Lee M. Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles. Forests. 2025; 16(7):1138. https://doi.org/10.3390/f16071138
Chicago/Turabian StyleKo, Chiung, Jintaek Kang, Chaejun Lim, Donggeun Kim, and Minwoo Lee. 2025. "Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles" Forests 16, no. 7: 1138. https://doi.org/10.3390/f16071138
APA StyleKo, C., Kang, J., Lim, C., Kim, D., & Lee, M. (2025). Application of Machine Learning Models in the Estimation of Quercus mongolica Stem Profiles. Forests, 16(7), 1138. https://doi.org/10.3390/f16071138