Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,414)

Search Parameters:
Keywords = carbon saturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 813 KB  
Article
The Role of DLNO in the Functional Assessment of Patients with Idiopathic Pulmonary Fibrosis
by Pasquale Tondo, Josuel Ora, Matteo Pio Natale, Giulia Scioscia, Bartolomeo Zerillo, Matteo Salvatore Di Maggio, Paola Rogliani and Donato Lacedonia
Medicina 2026, 62(1), 208; https://doi.org/10.3390/medicina62010208 - 19 Jan 2026
Abstract
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by alveolar-capillary membrane remodeling and impaired gas diffusion. The diffusing capacity of the lung for nitric oxide (DLNO) has been proposed as a physiological parameter reflecting membrane diffusing [...] Read more.
Background and Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by alveolar-capillary membrane remodeling and impaired gas diffusion. The diffusing capacity of the lung for nitric oxide (DLNO) has been proposed as a physiological parameter reflecting membrane diffusing capacity and pulmonary vascular involvement, potentially providing complementary information to diffusing capacity of the lung for carbon monoxide (DLCO). This study aimed to evaluate the role of DLNO in the functional assessment of patients with IPF and its correlation with clinical and echocardiographic outcomes. Materials and Methods: This observational, retrospective study included 35 consecutive IPF patients receiving antifibrotic therapy between February and December 2023. All participants underwent plethysmography, combined single-breath DLNO and DLCO testing, six-minute walk test (6MWT), mMRC dyspnea scale assessment, and echocardiography for the estimation of a higher probability of pulmonary hypertension (PH). Results: DLNO was significantly lower in males compared to females (49.3 ± 16.7% vs. 74.6 ± 16.1%, p < 0.001), with a reduced DLNO/DLCO ratio in men. DLNO correlated with oxygen therapy requirement (p = 0.010) and lower oxygen saturation during the 6MWT (p = 0.021). Patients with higher echocardiographic probability of PH showed markedly reduced DLNO values (17.6 ± 7.6%, p = 0.016) and higher FVC/DLNO ratios (2.31 ± 0.85 vs. 1.65 ± 0.64, p = 0.023), together with lower DLCO levels (p = 0.037). Conclusions: DLNO may complement DLCO in the evaluation of gas exchange and alveolar-capillary dysfunction in IPF. Although preliminary, these findings support the potential clinical utility of DLNO as an adjunct parameter in the functional characterization of IPF. Further multicenter studies are warranted to confirm these results. Full article
Show Figures

Figure 1

12 pages, 1419 KB  
Article
Experimental Investigation of Injection Pressure and Permeability Effect on CO2 EOR for Light Oil Reservoirs
by Khaled Enab
Gases 2026, 6(1), 5; https://doi.org/10.3390/gases6010005 - 17 Jan 2026
Viewed by 66
Abstract
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction [...] Read more.
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction and the ultimate recovery factor from light oil reservoirs has not been fully investigated. To address this gap, this experimental study systematically explores the effects of CO2 injection pressure and reservoir permeability on light oil recovery. This study conducted miscible, near-miscible, and immiscible gas injection experiments on two core samples with distinct permeabilities (13.4 md and 28 md), each saturated with light oil. CO2 was injected at five different pressures, including conditions ranging from immiscible to initial reservoir pressure. The primary metrics for evaluation were the recovery factor (measured at gas breakthrough, end of injection, and abandonment pressure) and the viscosity reduction of the produced oil. The results conclusively demonstrate that CO2 injection significantly enhances light oil production. A direct proportional relationship was established between both the injection pressure and the recovery factor and between permeability and overall oil production at the gas breakthrough. However, a key finding was the inverse relationship observed between permeability and viscosity reduction: the lower-permeability sample (13.4 md) consistently exhibited a greater percentage of viscosity reduction across all injection pressures than the higher-permeability sample (28 md). This unexpected trend is aligned with the inverse relationship between the permeability and the recovery factor after the gas breakthrough. This outcome suggests that enhanced CO2 solubility, driven by higher confinement pressures within the nanopores of the lower-permeability rock, promotes a localized, near-miscible state. This effect was even evident during immiscible injection, where the low-permeability sample showed a noticeable viscosity reduction and superior long-term production. These findings highlight the critical role of pore-scale confinement in governing CO2 miscibility and its associated viscosity reduction, which should be incorporated into enhanced oil recovery design for unconventional reservoirs. Full article
Show Figures

Figure 1

26 pages, 5702 KB  
Article
Flexural Behaviour of Corroded RC Beams Strengthened with CFRCM: Refined Modelling, Parametric Analysis, and Design Assessment
by Chaoqun Zeng, Jing-Pu Tang, Liangliang Wei, Miaochang Zhu, Ran Feng and Panpan Liu
Buildings 2026, 16(2), 377; https://doi.org/10.3390/buildings16020377 - 16 Jan 2026
Viewed by 170
Abstract
Reinforced concrete (RC) beams strengthened with carbon-fabric-reinforced cementitious matrix (CFRCM) systems have shown potential for restoring flexural performance, yet their effectiveness under different corrosion levels remains insufficiently understood. This study presents a numerical investigation of the flexural behaviour of simply supported RC beams [...] Read more.
Reinforced concrete (RC) beams strengthened with carbon-fabric-reinforced cementitious matrix (CFRCM) systems have shown potential for restoring flexural performance, yet their effectiveness under different corrosion levels remains insufficiently understood. This study presents a numerical investigation of the flexural behaviour of simply supported RC beams externally strengthened with CFRCM plates. Refined finite element models (FEMs) were developed by explicitly incorporating the steel–concrete bond-slip behaviour, the carbon fabric (CF) mesh–cementitious matrix (CM) interface, and the CFRCM–concrete substrate interaction and were validated against experimental results in terms of failure modes, load–deflection responses, and flexural capacities. A parametric study was then conducted to examine the effects of CFRCM layer number, steel corrosion level, and longitudinal reinforcement ratio. The results indicate that the baseline flexural capacity can be fully restored only when the corrosion level remains below approximately 15%; beyond this threshold, none of the CFRCM configurations achieved full recovery. The influence of the reinforcement ratio was found to depend on corrosion severity, while increasing CFRCM layers enhanced flexural performance but exhibited saturation effects for thicker configurations. In addition, corrosion level and CFRCM thickness jointly influenced the failure mode. Comparisons with design predictions show that bilinear CFRCM constitutive models are conservative, whereas existing FRP-based design codes provide closer agreement with numerical and experimental results. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 220 KB  
Article
Climate-Conscious Medication Therapy Management: Perspectives of Canadian Primary Care Pharmacists
by Zubin Austin and Paul Gregory
Climate 2026, 14(1), 17; https://doi.org/10.3390/cli14010017 - 15 Jan 2026
Viewed by 120
Abstract
(1) Background: The climate impact of health care work has raised interest in climate-conscious health care practice. Medications contribute significantly to the carbon footprint; there has been insufficient work describing climate-conscious medication therapy management practices that could be useful to address climate change [...] Read more.
(1) Background: The climate impact of health care work has raised interest in climate-conscious health care practice. Medications contribute significantly to the carbon footprint; there has been insufficient work describing climate-conscious medication therapy management practices that could be useful to address climate change caused by health care work. (2) Methods: This exploratory qualitative research study focused on climate-conscious medication therapy management practices. A semi-structured interview protocol was used. A total of 17 primary care pharmacists were interviewed (following informed consent) to the point of thematic saturation. A constant-comparative analysis was undertaken to identify and categorize themes. The research was undertaken based on a protocol approved by the University of Toronto Research Ethics Board. (3) Result: Three main themes emerged: (a) There is insufficient evidence currently available to guide climate conscious medication therapy management; (b) seven specific climate-conscious medication therapy management strategies were identified as being most likely to be acceptable by primary care pharmacists; (c) medication therapy management services focused on climate adaptation strategies for patients should be expanded; (4) Conclusions: As medications become the primary intervention used in health care, climate-conscious medication therapy management becomes more essential than ever. Further work in providing evidence to guide climate-conscious prescribing decisions is needed. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
28 pages, 5978 KB  
Article
Physically Interpretable Soft Sensor for Deformation Diagnostics in Extrusion-Based Shaping: A Case Study on Ceramic Roof Tiles
by Milica Vidak Vasić, Zoran Bačkalić and Pedro Muñoz
Processes 2026, 14(2), 279; https://doi.org/10.3390/pr14020279 - 13 Jan 2026
Viewed by 111
Abstract
This study examines the longitudinal shortening of clay blanks during extrusion and introduces a hybrid soft sensor framework for early prediction of ceramic roof tile performance. Targeted properties include shrinkage, water absorption, and saturation. The models integrate real-time process data collected after vacuum [...] Read more.
This study examines the longitudinal shortening of clay blanks during extrusion and introduces a hybrid soft sensor framework for early prediction of ceramic roof tile performance. Targeted properties include shrinkage, water absorption, and saturation. The models integrate real-time process data collected after vacuum extrusion and pressing with clay-specific descriptors such as carbonate content and granulometry, alongside additional variables including moisture, firing temperature, and length reduction. Partial Least Squares (PLS) regression was adopted as the core method due to robustness against multicollinearity and ease of industrial integration. In contrast to complex machine learning pipelines, PLS-based soft sensors enable lightweight edge deployment without reliance on IoT infrastructure. Complementary regression and machine learning models were used to benchmark predictive accuracy and explore nonlinear effects. The results confirm reliable prediction of key performance indicators and reveal mechanistic links between extrusion-induced deformation and downstream behavior. Although developed for clay systems, the framework is generalizable and can be adapted to other traditional ceramic processes or industries seeking interpretable, locally deployable solutions for process control. Full article
Show Figures

Graphical abstract

22 pages, 9119 KB  
Article
Seismic Behaviour of Concrete-Filled End-Bearing Fibre-Reinforced Polymer (FRP) Piles in Cohesionless Soils Using Shaking Table Test
by Aliu Abdul-Hamid and Mohammad Tofigh Rayhani
Infrastructures 2026, 11(1), 22; https://doi.org/10.3390/infrastructures11010022 - 12 Jan 2026
Viewed by 77
Abstract
This study evaluates the performance of single concrete-filled frictional Fibre-Reinforced Polymer (FRP) piles embedded in saturated liquefiable sand and subjected to seismic loading using a shaking table. A unidirectional shaking table equipped with a 1000 mm × 1000 mm × 1000 mm laminar [...] Read more.
This study evaluates the performance of single concrete-filled frictional Fibre-Reinforced Polymer (FRP) piles embedded in saturated liquefiable sand and subjected to seismic loading using a shaking table. A unidirectional shaking table equipped with a 1000 mm × 1000 mm × 1000 mm laminar shear box with 27 lamina rings was utilized in the study. FRP tubes manufactured from epoxy-saturated Carbon Fibre-Reinforced Polymer (CFRP) and Glass Fibre-Reinforced Polymer (GFRP) fabrics were filled with 35 MPa concrete and allowed to cure for 28 days, serving as model piles for the experimental programme, with cylindrical concrete prisms employed to represent the behaviour of traditional piles. Pile dimensions and properties based on scaling relationships were selected to account for the nonlinear nature of soil–pile systems under seismic loading. Scaled versions of ground motions from the 2010 Val-des-Bois and 1995 Hyogo-Ken Nambu earthquakes were implemented as input motions in the tests. The results show limited variation in the inertial and kinematic responses of the piles, especially before liquefaction. Head rocking displacements were within 5% of each other during liquefaction. Post liquefaction, the concrete-filled FRP piles showed lower response compared to the traditional concrete pile. The results suggests that concrete-filled FRP piles, especially those made from carbon fibre, provide practical alternatives for use. Full article
Show Figures

Figure 1

19 pages, 6114 KB  
Article
Hydrogen Storage on Activated Carbons from Avocado Biomass Residues: Synthesis Route Assessment, Surface Properties and Multilayer Adsorption Modeling
by Zayda V. Herrera-Cuadrado, Lizeth J. Bastidas-Solarte, Erwin García-Hernández, Adrián Bonilla-Petriciolet, Carlos J. Duran-Valle, Didilia I. Mendoza-Castillo, Hilda E. Reynel-Ávila, Ma. del Rosario Moreno-Virgen, Gloria Sandoval-Flores and Sofía Alvarado-Reyna
C 2026, 12(1), 5; https://doi.org/10.3390/c12010005 - 12 Jan 2026
Viewed by 319
Abstract
This manuscript reports the preparation, surface characterization, and modeling of chars and activated carbons obtained from avocado biomass for hydrogen storage. Activated carbons were prepared from avocado biomass via the following stages: (a) pyrolysis of avocado biomass, (b) impregnation of the avocado-based char [...] Read more.
This manuscript reports the preparation, surface characterization, and modeling of chars and activated carbons obtained from avocado biomass for hydrogen storage. Activated carbons were prepared from avocado biomass via the following stages: (a) pyrolysis of avocado biomass, (b) impregnation of the avocado-based char using an aqueous lithium solution, and (c) thermal activation of lithium-loaded avocado char. The synthesis conditions of char and activated carbon samples were tailored to maximize their hydrogen adsorption properties at 77 K, where the impact of both pyrolysis and activation conditions was assessed. The hydrogen storage mechanism was discussed based on computational chemistry calculations and multilayer adsorption simulation. The modelling focuses on the analysis of the saturation of activated carbon active sites via the adsorption of multiple hydrogen molecules. The results showed that the activated carbon samples displayed adsorption capacities higher than their char counterparts by 71–91% because of the proposed activation protocol. The best activated carbon obtained from avocado residues showed a maximum hydrogen adsorption capacity of 142 cm3/g, and its storage performance can compete with other carbonaceous adsorbents reported in the literature. The hydrogen adsorption mechanism implied the formation of 2–4 layers on activated carbon surface, where physical interactions via oxygenated functionalities played a relevant role in the binding of hydrogen dimers and trimers. The results of this study contribute to the application of low-cost activated carbons from residual biomass as a storage medium in the green hydrogen supply chain. Full article
Show Figures

Graphical abstract

40 pages, 318496 KB  
Article
Hydrogeochemical Characteristics and Genetic Mechanism of the Shiqian Hot Spring Group in Southwestern China: A Study Based on Water–Rock Interaction
by Jianlong Zhou, Jianyou Chen, Yupei Hao, Zhengshan Chen, Mingzhong Zhou, Chao Li, Pengchi Yang and Yu Ao
Minerals 2026, 16(1), 61; https://doi.org/10.3390/min16010061 - 7 Jan 2026
Viewed by 193
Abstract
Shiqian County, located within a key geothermal fluids belt in Guizhou Province, China, has abundant underground hot water resources. Therefore, elucidating the hydrogeochemical characteristics and formation mechanisms of thermal mineral water in this area is essential for evaluating and sustainably utilizing regional geothermal [...] Read more.
Shiqian County, located within a key geothermal fluids belt in Guizhou Province, China, has abundant underground hot water resources. Therefore, elucidating the hydrogeochemical characteristics and formation mechanisms of thermal mineral water in this area is essential for evaluating and sustainably utilizing regional geothermal fluids. This study focuses on the Shiqian Hot Spring Group and employs integrated analytical techniques, including rock geochemistry, hydrogeochemistry, isotope hydrology, digital elevation model (DEM) data analysis, remote sensing interpretation, geological surveys, mineral saturation index calculations, and PHREEQC-based inverse hydrogeochemical modeling, to elucidate its hydrogeochemical characteristics and formation mechanisms. The results show that strontium concentrations range from 0.06 to 7.17 mg/L (average 1.65 mg/L) and metasilicic acid concentrations range from 19.46 to 65.51 mg/L (average 33.64 mg/L). Most samples meet the national standards for natural mineral water and are classified as Sr-metasilicic acid type. Isotope analysis indicates that the geothermal water is recharged by meteoric precipitation at elevations between 911 m and 1833 m, mainly from carbonate outcrops and fracture zones on the southwestern slope of Fanjingshan, and discharges south of Shiqian County. The dominant hydrochemical types are HCO3·SO4-Ca·Mg and HCO3-Ca·Mg. Strontium is primarily derived from carbonate rocks and celestite-bearing evaporites, whereas metasilicic acid mainly originates from quartz dissolution along the upstream groundwater flow path. PHREEQC-based inverse modeling indicates that, during localized thermal mineral water runoff in the middle-lower reaches or discharge areas, calcite dissolves while dolomite and quartz tend to precipitate, reflecting calcite dissolution-dominated water–rock interactions and near-saturation conditions for some minerals at late runoff stages. Full article
Show Figures

Figure 1

13 pages, 2529 KB  
Article
Tuning Nanoscale Conductance in Cyclic Molecules via Molecular Length and Anchoring Groups
by Abdullah Alshehab, Turki Alotaibi and Ali K. Ismael
Nanomaterials 2026, 16(2), 83; https://doi.org/10.3390/nano16020083 - 7 Jan 2026
Viewed by 363
Abstract
This theoretical study investigates the electrical conductance of non-conjugated cyclic molecules featuring three terminal anchoring groups at the single-molecule level. Density Functional Theory (DFT) calculations demonstrate that the conductance of the symmetric and asymmetric cyclic structures C6C6, C6 [...] Read more.
This theoretical study investigates the electrical conductance of non-conjugated cyclic molecules featuring three terminal anchoring groups at the single-molecule level. Density Functional Theory (DFT) calculations demonstrate that the conductance of the symmetric and asymmetric cyclic structures C6C6, C6C8, C6C10, C8C8, C8C10, and C10C10 (where the numbers indicate the lengths of the upper and lower branches) decreases with increasing molecular length, independent of the anchor group chemistry. Distinct trends are observed across molecular series: the 6-unit branch—defined as molecules containing a common six-carbon saturated segment (e.g., C4C6, C6C6, C6C8, C6C10)—exhibits a non-conventional pattern, whereas the 8-unit and 10-unit branches display parabolic and conventional length-dependent behavior, respectively. A key finding is that cyclic molecules with identical total CH2 units exhibit nearly identical conductance values, irrespective of structural symmetry. These theoretical predictions are strongly supported by previously reported scanning tunneling microscopy break-junction measurements, establishing a fundamental structure–property relationship for sigma-conjugated molecular systems. These findings provide critical design principles for developing advanced molecular-scale electronic devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 4155 KB  
Article
Hyaluronan of Different Molecular Weights Exerts Distinct Therapeutic Effects on Bleomycin-Induced Acute Respiratory Distress Syndrome
by Shu-Ting Peng, Chia-Yu Lai, Tsui-Ling Ko, Chun-Hsiang Hsu, I-Yuan Chen, You-Cheng Jiang, Kuo-An Chu and Yu-Show Fu
Int. J. Mol. Sci. 2026, 27(2), 580; https://doi.org/10.3390/ijms27020580 - 6 Jan 2026
Viewed by 137
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal inflammatory lung disorder with few effective treatments. Hyaluronan (HA), a major extracellular matrix component, exhibits diverse biological activities depending on its molecular weight. This study aimed to evaluate the therapeutic potential of HA of various [...] Read more.
Acute respiratory distress syndrome (ARDS) is a fatal inflammatory lung disorder with few effective treatments. Hyaluronan (HA), a major extracellular matrix component, exhibits diverse biological activities depending on its molecular weight. This study aimed to evaluate the therapeutic potential of HA of various molecular weights in a rat model of ARDS. ARDS was induced in rats via the intratracheal instillation of 5 mg of bleomycin. Seven days later, when ARDS symptoms developed, low (LHA), medium (MHA), high (HHA), and mixed (MIX HA) hyaluronan were intratracheally administered seven times from Days 7 to 28. On Day 7, arterial oxygen saturation (SpO2) and the partial pressure of oxygen (PaO2) decreased, carbon dioxide levels increased, the respiratory rate increased, and extensive lung cell infiltration was observed, confirming successful ARDS induction. LHA and MIX HA improved the SpO2 and PaO2, and the latter increased lung and alveolar volume, reduced infiltration, and normalized breathing. All HA types attenuated collagen deposition and M1 macrophage activity, while MIX HA enhanced M2 polarization and upregulated MMP-2, MMP-9, and TLR-4. LHA increased VEGF and EGF expression. These findings demonstrate that different-weight HAs provide partial ARDS protection via distinct mechanisms. MIX HA shows synergistic effects, restoring and improving lung structure and function, respectively, representing a promising ARDS therapy. Full article
Show Figures

Figure 1

29 pages, 7273 KB  
Article
Experimental Test and Modeling Validation for CO2 Capture with Amine Solvents in a Pilot Plant
by Claudia Bassano, Mattia Micciancio, Paolo Deiana, Gabriele Calì, Enrico Maggio, Leonardo Colelli and Giorgio Vilardi
Clean Technol. 2026, 8(1), 6; https://doi.org/10.3390/cleantechnol8010006 - 5 Jan 2026
Viewed by 328
Abstract
The European Union’s enhanced greenhouse gas (GHG) reduction targets for 2030 make the large-scale deployment of carbon capture and storage (CCS) technologies essential to achieve deep decarbonization goals. Within this context, this study aims to advance CCS research by developing and testing a [...] Read more.
The European Union’s enhanced greenhouse gas (GHG) reduction targets for 2030 make the large-scale deployment of carbon capture and storage (CCS) technologies essential to achieve deep decarbonization goals. Within this context, this study aims to advance CCS research by developing and testing a pilot-scale system that integrates gasification for syngas and power production with CO2 absorption and solvent regeneration. The work focuses on improving and validating the operability of a pilot plant section designed for CO2 capture, capable of processing up to 40 kg CO2 per day through a 6 m absorber and stripper column. Experimental campaigns were carried out using different amine-based absorbents under varied operating conditions and liquid-to-gas (L/G) ratios to evaluate capture efficiency, stability, and regeneration performance. The physical properties of regenerated and CO2-saturated solvents (density, viscosity, pH, and CO2 loading) were analyzed as potential indicators for monitoring solvent absorption capacity. In parallel, a process simulation and optimization study was developed in Aspen Plus, implementing a split-flow configuration to enhance energy efficiency. The combined experimental and modeling results provide insights into the optimization of solvent-based CO2 capture processes at pilot scale, supporting the development of next-generation capture systems for low-carbon energy applications. Full article
(This article belongs to the Special Issue Green Solvents and Materials for CO2 Capture)
Show Figures

Figure 1

21 pages, 3567 KB  
Article
Effects of Montmorillonite on Crude Oil Biodegradation and the Microbial Community in an Oil Production Well Pad Shut Down for 753 Days
by Lei Li, Chunhui Zhang and Yue Zhang
Environments 2026, 13(1), 20; https://doi.org/10.3390/environments13010020 - 31 Dec 2025
Viewed by 342
Abstract
Clay-mediated microbial degradation has been demonstrated as a low-cost, efficient, and eco-friendly strategy for remediating crude oil-contaminated soils. Despite substantial laboratory studies, field tests remain scarce. In this study, montmorillonite treatment was applied to a crude oil production well pad shut down for [...] Read more.
Clay-mediated microbial degradation has been demonstrated as a low-cost, efficient, and eco-friendly strategy for remediating crude oil-contaminated soils. Despite substantial laboratory studies, field tests remain scarce. In this study, montmorillonite treatment was applied to a crude oil production well pad shut down for 753 days. Post-treatment analyses included soil physicochemical parameters (water content, redox potential, pH, elemental analysis, and total organic carbon), crude oil content/composition (gas chromatography–mass spectrometry), microbial biomass (deoxyribonucleic acid concentration), and community structure (high-throughput sequencing), with parallel comparisons to untreated control areas. Results indicated that montmorillonite enhanced the crude oil biodegradation rate (37.27% vs. control 33.00%), increased microbial biomass (83.08% vs. control 35.06%), and enriched biodiversity (7 genera vs. control 0). Specifically, it exhibited the most pronounced promotion effects on saturated hydrocarbon degradation (73.42% vs. control 60.89%) and aromatic hydrocarbon degradation (45.77% vs. control 29.60%). This study not only provides field evidence for clay-mediated microbial remediation but also lays a foundation for developing composite remediation approaches (e.g., nutrient supplements, catalysts, or functional microbial consortia) in future research and practical applications. Full article
Show Figures

Figure 1

17 pages, 1130 KB  
Article
Beyond the Growing Season: Variability of 13C-CO2 Fluxes in Temperate Forests and Peatlands
by Kamila M. Harenda, Marcin Stróżecki and Maciej Górka
Forests 2026, 17(1), 55; https://doi.org/10.3390/f17010055 - 30 Dec 2025
Viewed by 204
Abstract
Winter processes are increasingly recognised as important components of ecosystem carbon cycling, yet 13C-CO2 fluxes from temperate forests and peatlands remain poorly quantified. This study quantified cold-season 13C-CO2 fluxes in a Scots pine forest and a temperate fen in [...] Read more.
Winter processes are increasingly recognised as important components of ecosystem carbon cycling, yet 13C-CO2 fluxes from temperate forests and peatlands remain poorly quantified. This study quantified cold-season 13C-CO2 fluxes in a Scots pine forest and a temperate fen in western Poland using manual closed chambers coupled with a Picarro G2201-i isotope analyser. Measurements were conducted during the cold half of the year and related to soil temperature, air temperature and, at the forest site, soil moisture. Median 13C-CO2 fluxes were about twice as high in the forest (607 µg·m−2·h−1) as in the fen (290 µg·m−2·h−1), indicating stronger winter respiratory activity in the mineral soil than in the water-saturated peat. In the forest, 13C-CO2 fluxes showed a weak, non-significant tendency to increase with temperature, whereas in the fen they were significantly negatively correlated with soil temperature and tended to peak near 0 °C, pointing to an important role of zero-curtain and freeze–thaw conditions. These plot-scale measurements provide rare constraints on winter 13C-CO2 losses from temperate forest–peatland mosaics and highlight the need to represent cold-season isotopic fluxes in carbon–climate assessments. From a biogeochemical perspective, the findings emphasize that 13C losses during the cold season can occur as transient, high-intensity ‘hot moments’. Such episodic fluxes should therefore be explicitly incorporated into winter carbon accounting and isotopically enabled carbon–climate feedback assessments to improve the fidelity of annual net ecosystem exchange projections. Full article
(This article belongs to the Special Issue Climate Change Effects on Forest and Peatland Ecosystems)
Show Figures

Figure 1

32 pages, 2823 KB  
Review
Structural Materials in Constructed Wetlands: Perspectives on Reinforced Concrete, Masonry, and Emerging Options
by Joaquín Sangabriel-Lomelí, Sergio Aurelio Zamora-Castro, Humberto Raymundo González-Moreno, Oscar Moreno-Vázquez, Efrén Meza-Ruiz, Jaime Romualdo Ramírez-Vargas, Brenda Suemy Trujillo-García and Pablo Julián López-González
Eng 2026, 7(1), 11; https://doi.org/10.3390/eng7010011 - 30 Dec 2025
Viewed by 340
Abstract
Constructed wetlands (CWs), increasingly adopted as nature-based solutions (NBS) for wastewater treatment, require a rigorous assessment of the durability and structural performance of the materials used in their supporting systems. In contrast to the extensive literature addressing hydraulic efficiency and contaminant removal, the [...] Read more.
Constructed wetlands (CWs), increasingly adopted as nature-based solutions (NBS) for wastewater treatment, require a rigorous assessment of the durability and structural performance of the materials used in their supporting systems. In contrast to the extensive literature addressing hydraulic efficiency and contaminant removal, the structural behavior of CWs has been scarcely examined, with existing studies offering only general references to reinforced concrete and masonry and lacking explicit design criteria or deterioration analyses. This study integrates evidence from real-world CW installations with a systematic review of 31 studies on the degradation of cementitious materials in analogous environmental conditions, following PRISMA 2020 guidelines, with inclusion criteria based on quantified wastewater-related exposure conditions (e.g., chemical aggressiveness, persistent saturation, and biogenic activity). Results indicate that reinforced concrete, despite its structural capacity, is susceptible to biogenic corrosion, accelerated carbonation, and sulfate–chloride attack under conditions of persistent moisture, with reported degradation rates in analogous wastewater infrastructures on the order of millimeters per year for concrete loss and tens of micrometers per year for reinforcement corrosion. Masonry structures, similarly, exhibit performance constraints when exposed to mechanical overloads and repeated wetting–drying cycles. In contrast, emerging alternatives—such as nanomodified matrices and concretes incorporating supplementary cementitious additives—demonstrate potential to enhance durability while contributing to a reduced carbon footprint, without compromising mechanical strength. These findings reinforce the need for explicit structural design criteria tailored to CW applications to improve sustainability, durability, and long-term performance. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

19 pages, 15306 KB  
Article
Regulating Bleeding and Surface Homogeneity of Cement Pastes: Comparative Mechanisms of Organic and Inorganic Thickeners
by Jingbin Yang, Shuang Zou, An Guo and Zhenping Sun
Processes 2026, 14(1), 96; https://doi.org/10.3390/pr14010096 - 26 Dec 2025
Viewed by 248
Abstract
This study compares the mechanisms of organic (Hydroxypropyl Methyl Cellulose, HPMC) and inorganic (bentonite) thickeners in regulating the bleeding behavior and surface homogeneity of cement pastes. In situ low-field nuclear magnetic resonance (LF-NMR) was employed to monitor water migration, while X-ray diffraction (XRD), [...] Read more.
This study compares the mechanisms of organic (Hydroxypropyl Methyl Cellulose, HPMC) and inorganic (bentonite) thickeners in regulating the bleeding behavior and surface homogeneity of cement pastes. In situ low-field nuclear magnetic resonance (LF-NMR) was employed to monitor water migration, while X-ray diffraction (XRD), scanning electron microscopy (SEM), and carbonation tests were conducted to evaluate the property disparities between the top surface and bottom layers. Results indicate fundamentally different working modes: HPMC reduces bleeding by swelling to block capillary channels, exhibiting a saturation threshold at 0.2% dosage. Beyond this point, as the primary transport channels are effectively sealed, additional HPMC merely densifies the polymer “plugs” without further suppressing the bleeding rate. XRD and SEM analyses reveal that despite the reduction in total bleeding, HPMC-modified pastes still exhibit significant stratification; the top layer retains a loose, granular morphology with higher carbonation susceptibility compared to the dense bottom layer. In contrast, bentonite mitigates bleeding through a volume-filling mechanism and thixotropic structuring, demonstrating a continuous, dosage-dependent efficacy up to 1.2%. At a 0.6% dosage, bentonite effectively eliminates microstructural disparities, yielding a top surface with a dense matrix and hydration product distribution nearly identical to the bottom layer. These findings demonstrate that the specific inorganic thickener (bentonite) utilized in this work is more effective in restoring surface homogeneity and enhancing carbonation resistance than the evaluated organic polymer (HPMC). Full article
Show Figures

Figure 1

Back to TopTop