Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = carbon nitride interfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6173 KB  
Article
Strain-Engineered Thermal Transport at One- to Two-Dimensional Junctions in 3D Nanostructures
by Moath Al Hayek, Aayush Patel, Joshua Ellison and Jungkyu Park
C 2026, 12(1), 1; https://doi.org/10.3390/c12010001 - 19 Dec 2025
Viewed by 243
Abstract
In the present study, molecular dynamics simulations with three interatomic potentials (Polymer Consistent Force Field, Adaptive Intermolecular Reactive Empirical Bond Order, and Tersoff) are employed to investigate strain-dependent interfacial thermal resistance across one-dimensional to two-dimensional junctions. Carbon nanotube–graphene junctions exhibit exceptionally low interfacial [...] Read more.
In the present study, molecular dynamics simulations with three interatomic potentials (Polymer Consistent Force Field, Adaptive Intermolecular Reactive Empirical Bond Order, and Tersoff) are employed to investigate strain-dependent interfacial thermal resistance across one-dimensional to two-dimensional junctions. Carbon nanotube–graphene junctions exhibit exceptionally low interfacial resistances (1.69–2.37 × 10−10 K·m2/W at 300 K)—two to three orders of magnitude lower than conventional metal–dielectric interfaces. Strain-dependent behavior is highly potential-dependent, with different potentials showing inverse, positive, or minimal strain sensitivity. Local phonon density of states analysis with Tersoff reveals that strain-induced spectral redistribution in graphene toward lower frequencies enhances phonon coupling with carbon nanotube modes. Temperature significantly affects resistance, with 37–59% increases at 10 K compared to 300 K due to long-wavelength phonon scattering. Boron nitride nanotube–hexagonal boron nitride nanosheet junctions exhibit 60% higher resistance (3.2 × 10−10 K·m2/W) with temperature-dependent strain behavior and spacing-insensitive performance. Interfacial resistance is independent of pillar height, confirming junction-dominated transport. The discovery of exceptionally low interfacial resistances and material-specific strain responses enables the engineering of thermally switchable devices and mechanically robust thermal pathways. These findings directly address critical challenges in next-generation flexible electronics where devices must simultaneously manage high heat fluxes while maintaining thermal performance under repeated mechanical deformation. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Graphical abstract

13 pages, 3069 KB  
Article
Boosting Charge Separation in NiS/C3N4 Type-II Heterojunction for Efficient Photoelectrocatalytic Water Reduction
by Xiaobo Liang, Lingdan Dong, Yanning Chen, Chunhai Qi, Chunyi Xu, Wenhao Zhang, Lingling Bi and Liang Zhao
Crystals 2025, 15(12), 1004; https://doi.org/10.3390/cryst15121004 - 21 Nov 2025
Viewed by 264
Abstract
To tackle the intrinsic limitations of fast charge recombination and sluggish reaction kinetics in carbon nitride (C3N4) for photoelectrocatalytic (PEC) water reduction reaction, we constructed a NiS/C3N4 heterojunction photoelectrode via a sequential approach combining chemical vapor [...] Read more.
To tackle the intrinsic limitations of fast charge recombination and sluggish reaction kinetics in carbon nitride (C3N4) for photoelectrocatalytic (PEC) water reduction reaction, we constructed a NiS/C3N4 heterojunction photoelectrode via a sequential approach combining chemical vapor deposition and hydrothermal treatment. Compared with pristine C3N4, the introduction of NiS significantly reduced interfacial charge transfer resistance and effectively suppressed the photogenerated carrier recombination. Among all compositions investigated, the NiS-0.2 photoelectrode demonstrated a maximum photocurrent density of −13.44 mA cm−2 at −0.8 V vs. RHE, representing a more than 6.7-fold enhancement in comparison to bare C3N4 (−2.00 mA cm−2). This remarkable improvement is attributed to the construction of an efficient type-II heterojunction between C3N4 and NiS. Under the driving force of the internal electric field at the interface, photoinduced electrons migrate from the conduction band of C3N4 to NiS, whereas holes move from the valence band of NiS to C3N4. This spatial separation mechanism, coupled with the role of NiS as an efficient active site for the water reduction reaction, synergistically enhances the overall PEC performance. This work offers a rational and feasible approach for designing efficient, stable, and cost-effective C3N4-based photoelectrodes. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 7938 KB  
Article
A Numerical Study on Heat Transfer Enhancement Mechanism of Composite Materials Based on Oriented Multi-Dimensional Fillers
by Hongjie Luo, Bin Liu, Wenbin Dou, Xinzhan Zhou, Xiao Jia and Lin Chen
Electron. Mater. 2025, 6(4), 19; https://doi.org/10.3390/electronicmat6040019 - 17 Nov 2025
Viewed by 523
Abstract
The rapid development of electronic devices has led to increasing requirements for higher-performance thermal interface materials (TIMs). Based on the finite element method, this study investigates the heat transfer enhancement mechanism of polymer-based TIMs reinforced by carbon fiber and boron nitride fillers. An [...] Read more.
The rapid development of electronic devices has led to increasing requirements for higher-performance thermal interface materials (TIMs). Based on the finite element method, this study investigates the heat transfer enhancement mechanism of polymer-based TIMs reinforced by carbon fiber and boron nitride fillers. An ordered aggregation algorithm and a collision detection algorithm were developed to construct representative volume element models, enabling filler volume fractions exceeding 50 vol% in the simulation. A predictive thermal resistance model was developed and validated, demonstrating good agreement with experimental results. Then, the effects of filler ratio, orientation angle, and size on thermal conductivity were systematically analyzed. Results demonstrate that a high CF/BN ratio can construct more efficient thermal conduction pathways and the optimal ratio is 4 (13.72 W/m∙K). The thermal conductivity exhibits extreme sensitivity to filler orientation, showing an increase of 17.68 times when the angle decreases from 45° to 0°. Meanwhile, the BN particle diameters have less impact on heat transfer; thermal conductivity only increased by 19.9% when DBN rose from 10 μm to 45 μm. The predictive model based on thermal resistance theory was developed, and the average prediction error was only 5.18%. These findings provide quantitative design principles for developing high-efficiency thermal interface materials through rational filler selection and structural optimization. Full article
Show Figures

Figure 1

28 pages, 9180 KB  
Article
Optimized Synthesis Strategy of Mxene-Loaded Graphitic Carbon Nitride (g-C3N4) for Enhanced Photocatalytic Degradation of Rhodamine B
by Bayazid Bustami, Parvej Rahman Alif, Md Mahfuzur Rahman, Mohaiminul Islam and Alam S. M. Nur
ChemEngineering 2025, 9(6), 127; https://doi.org/10.3390/chemengineering9060127 - 10 Nov 2025
Viewed by 1282
Abstract
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by [...] Read more.
Developing efficient photocatalysts is essential for sustainable wastewater treatment and tackling global water pollution. Graphitic carbon nitride (g-C3N4) is a promising material because it is active under visible light and chemically stable. However, its practical application is limited by fast recombination of charge carriers and a low surface area. In this study, we report a simple hydrothermal method to synthesize exfoliated porous g-C3N4 (E-PGCN) combined with Ti3C2 MXene to form a heterojunction composite that addresses these issues. Various characterization techniques (FTIR, XRD, XPS, SEM, BET) confirmed that adding MXene improves light absorption, increases surface area (53.7 m2/g for the composite versus 21.4 m2/g for bulk g-C3N4 (BGCN)), and enhances charge separation at the interface. Under UV-visible light irradiation with Rhodamine B (RhB) as the model pollutant, the E-PGCN/Ti3C2 MXene composite containing 3 wt% MXene demonstrated an impressive degradation efficiency of 93.2%. This performance is superior to BGCN (66.6%), E-PGCN (82.5%), and E-PGCN/Ti3C2 MXene-5 wt% composites (81%). This is due to the excess Mxene which caused agglomeration and reduced activity. Scavenger studies identified electron radicals as the dominant reactive species, with optimal activity at pH ~4.5. This enhanced performance, 1.4 times greater than BGCN and 1.13 times higher than E-PGCN, is ascribed to the synergistic interplay between the excellent electrical conductivity of MXene and the porous structural features of E-PGCN. This work highlights the importance of morphological engineering and heterojunction design for advancing metal-free photocatalysts, offering a scalable strategy for sustainable water purification. Full article
Show Figures

Figure 1

27 pages, 4068 KB  
Article
Microscopic Phase-Field Modeling with Accurate Interface Thickness Representation: Applied to Ceramic Matrix Composites
by Tong Wang, Xiaofei Hu, Zhi Sun and Weian Yao
Materials 2025, 18(19), 4496; https://doi.org/10.3390/ma18194496 - 27 Sep 2025
Viewed by 656
Abstract
Ceramic matrix composites (CMCs) are promising candidates for high-temperature structural applications. However, their fracture toughness remains low due to strong chemical bonding between fibers and the matrix. To improve toughness, engineered interfaces such as pyrolytic carbon (PyC) and hexagonal boron nitride (h-BN) are [...] Read more.
Ceramic matrix composites (CMCs) are promising candidates for high-temperature structural applications. However, their fracture toughness remains low due to strong chemical bonding between fibers and the matrix. To improve toughness, engineered interfaces such as pyrolytic carbon (PyC) and hexagonal boron nitride (h-BN) are commonly introduced. These interfaces promote crack deflection and fiber bridging, leading to improved damage tolerance and pseudo-ductile behavior. To investigate the influence of interface thickness on mechanical performance and to identify optimal thickness ranges, we propose a microscopic phase-field model that accurately resolves interface thickness and material contrast. This model overcomes the limitations of conventional smeared interface approaches, particularly in systems with variable interface thickness and closely packed fibers. We apply the model to simulate the fracture behavior of unidirectional SiC fiber reinforced SiC matrix (SiCf/SiCm) composites with PyC and h-BN interfaces of varying thickness. The numerical results show strong agreement with experimental findings from the literature and reveal optimal interface thicknesses that maximize toughening effects. These results demonstrate the model’s predictive capabilities and its potential as a tool for interface design in brittle composite systems. Full article
Show Figures

Graphical abstract

14 pages, 10136 KB  
Article
The Influence of Plasma-Carburizing Temperature on the Microstructure and Properties of DLC/Carbonitride Wear-Resistant and Friction-Reducing Functional Layer
by Jiawei Yao, Yiming Ma, Peiwu Cong, Fuyao Yan, Wenlin Lu, Yanxiang Zhang, Mufu Yan and Jingbo Ma
Coatings 2025, 15(8), 966; https://doi.org/10.3390/coatings15080966 - 19 Aug 2025
Viewed by 651
Abstract
M50 steel is widely used in the manufacturing of high-end bearing components for aero-engine shafts, where an excellent surface performance is required to withstand harsh service conditions. In this study, plasma carburizing at different temperatures varying from 410 to 570 °C was performed [...] Read more.
M50 steel is widely used in the manufacturing of high-end bearing components for aero-engine shafts, where an excellent surface performance is required to withstand harsh service conditions. In this study, plasma carburizing at different temperatures varying from 410 to 570 °C was performed on pre-nitrided M50 steel to investigate the influence of the temperature on the structural evolution and mechanical behavior of the self-lubricating functional layer. The microstructure, phase composition, hardness, and wear resistance of the carburized samples were fully characterized using scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, a nano-indenter, and other analytical techniques. The carbon-rich film with nano-domains contains a significant amount of sp3 bonds at low carburizing temperatures, exhibiting a Diamond-like carbon (DLC) film character. With the rise in the carburizing temperature, the initially distinct interface between the carbon-rich film and the compound layer gradually disappears as the nitrides are progressively replaced by carbides; the sp3 bond of the film is decreased, which reduces the hardness and wear resistance. Samples carburized at 490 °C with a homogeneous surface layer consisting of DLC film and a compound layer showed a low friction coefficient (about 0.22) and a 60% reduction in the wear rate compared with the nitrided specimen. The formation of a surface carbon-enriched layer also plays a role in avoiding oxidative wear. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Cited by 2 | Viewed by 4411
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 2806 KB  
Article
Ni-MOF/g-C3N4 S-Scheme Heterojunction for Efficient Photocatalytic CO2 Reduction
by Muhammad Sabir, Mahmoud Sayed, Iram Riaz, Guogen Qiu, Muhammad Tahir, Khuloud A. Alibrahim and Wang Wang
Materials 2025, 18(14), 3419; https://doi.org/10.3390/ma18143419 - 21 Jul 2025
Cited by 5 | Viewed by 1924
Abstract
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) [...] Read more.
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) to achieve enhanced charge separation. The establishment of an S-scheme charge transfer configuration at the interface of the Ni-MOF/g-C3N4 heterostructure plays a pivotal role in enabling efficient charge carrier separation, and hence, high CO2 photoreduction efficiency with a CO evolution rate of 1014.6 µmol g−1 h−1 and selectivity of 95% under simulated solar illumination. CO evolution represents an approximately 3.7-fold enhancement compared to pristine Ni-MOF. Density functional theory (DFT) calculations, supported by in situ irradiated X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experimental results, confirmed the establishment of a well-defined and strongly bonded interface, which improves the charge transfer and separation following the S-scheme mechanism. This study sheds light on MOF-based S-scheme heterojunctions as fruitful and selective alternatives for practical CO2 photoreduction. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

16 pages, 8045 KB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 832
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

18 pages, 6926 KB  
Article
Effect of Cerium Nitrate Content on the Performance of Ce(III)/CF/BN/EPN Heat Exchanger Coatings
by Yongbo Yan, Jirong Wu, Mingxing Liu, Qinghua Meng, Jing Zhou, Danyang Feng, Yi Li, Zhijie Xie, Jinyang Li, Xinhui Jiang, Jun Tang, Xuezhi Shi and Jianfeng Zhang
Coatings 2025, 15(7), 818; https://doi.org/10.3390/coatings15070818 - 13 Jul 2025
Viewed by 601
Abstract
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of [...] Read more.
This study investigates the influence of cerium nitrate (Ce(NO3)3·6H2O) content on the performance of Ce(III)/CF/BN/EPN coatings intended for heat exchangers. A series of Ce(III)/carbon fibre (CF)/boron nitride (BN)/epoxy phenolic (EPN) coatings are fabricated with varying concentrations of Ce(NO3)3·6H2O. The results of SEM and EDS show that the dissolution of cerium nitrate in acetone due to the particulate form causes it to be distributed in a diffuse state in the coating. This diffuse distribution does not significantly alter the porosity or structural morphology of the coating. With the increase in cerium nitrate content, both the EIS test results and mechanical damage tests indicate a progressive improvement in the corrosion resistance and self-healing properties of the coatings, while the thermal conductivity (TC) remains largely unaffected. The Ce in the coating reacts with the water molecules penetrating into the coating to generate Ce2O3 and CeO2 with protective properties to fill the permeable pores inside the coating or to form a passivation film at the damaged metal–coating interface, which enhances the anticorrosive and self-repairing properties of the coating. However, the incorporation of Ce(NO3)3·6H2O does not change the distribution structure of the filler inside the coating. As a result, the phonon propagation path, rate, and distance remain unchanged, leading to negligible variation in the thermal conductivity. Therefore, at a cerium nitrate content of 2.5 wt%, the coating exhibits the best overall performance, characterised by a |Z|0.1Hz value of 6.08 × 109 Ω·cm2 and a thermal conductivity of approximately 1.4 W/(m·K). Full article
Show Figures

Figure 1

18 pages, 4672 KB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Cited by 1 | Viewed by 1197
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 808
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

38 pages, 6778 KB  
Review
Challenges and Opportunities for g-C3N4-Based Heterostructures in the Photodegradation of Environmental Pollutants
by Eduardo Estrada-Movilla, Jhonathan Castillo-Saenz, Benjamín Valdez-Salas, Álvaro Ortiz-Pérez, Ernesto Beltrán-Partida, Jorge Salvador-Carlos and Esneyder Puello-Polo
Catalysts 2025, 15(7), 653; https://doi.org/10.3390/catal15070653 - 4 Jul 2025
Cited by 2 | Viewed by 2323
Abstract
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it [...] Read more.
Graphitic carbon nitride (g-C3N4) is emerging as one of the most promising non-metallic semiconductors for the degradation of pollutants in water by photocatalytic processes. Its exceptional reduction–oxidation (redox) potentials and adequate band gap of approximately 2.7 eV give it the ability to absorb in the visible light range. However, the characteristic sensitivity to light absorption is limited, leading to rapid recombination of electron–hole pairs. Therefore, different strategies have been explored to optimize this charge separation, among which the formation of heterostructures based on g-C3N4 is highlighted. This review addresses recent advances in photocatalysis mediated by g-C3N4 heterostructures, considering the synthesis methods enabling the optimization of the morphology and active interface of these materials. Next, the mechanisms of charge transfer are discussed in detail, with special emphasis on type II, type S, and type Z classifications and their influence on the efficiency of photodegradation. Subsequently, the progress in the application of these photocatalysts for the degradation of water pollutants, such as toxic organic dyes, pharmaceutical pollutants, pesticides, and per- and polyfluoroalkyl substances (PFAS), are analyzed, highlighting both experimental advances and remaining challenges. Finally, future perspectives oriented towards the optimization of heterostructures, the efficiency of synthesis methods, and the practical application of these in photocatalytic processes for environmental remediation. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanostructured Catalysts, 3rd Edition)
Show Figures

Figure 1

15 pages, 4917 KB  
Article
Synergistic Integration of g-C3N4 with SnS: Unlocking Enhanced Photocatalytic Efficiency and Electrochemical Stability for Dual-Functional Applications
by Aya Ahmed, Farid M. Abdel-Rahim, Fatemah H. Alkallas, Amira Ben Gouider Trabelsi, Shoroog Alraddadi and Abdelaziz M. Aboraia
Catalysts 2025, 15(7), 629; https://doi.org/10.3390/catal15070629 - 27 Jun 2025
Viewed by 910
Abstract
The synthesis of graphitic carbon nitride (g-C3N4) coupled with tin sulfide (SnS) has been identified as an effective method for improving the photocatalytic and electrochemical performance of SnS, a promising material for environmental and energy-related applications. In this study, [...] Read more.
The synthesis of graphitic carbon nitride (g-C3N4) coupled with tin sulfide (SnS) has been identified as an effective method for improving the photocatalytic and electrochemical performance of SnS, a promising material for environmental and energy-related applications. In this study, we focused on how g-C3N4 influences the structural, optical, electrochemical, and functional properties of SnS. XRD and FTIR confirmed the formation of SnS/g-C3N4 heterostructure, while surface morphology analysis by SEM showed proper dispersion of SnS particles over g-C3N4 with a good interface contact. The SnS/g-C3N4 composite itself demonstrated improved photocatalytic performance, with the degradation rate of methylene blue reaching approximately 94% under visible light irradiation compared to the moderate activity of SnS. This enhancement can be credited to the successful charge carrier separation enabled by the type II heterojunction created between SnS and g-C3N4. Moreover, the composite presented improved electrochemical activity with a specific capacitance of 1340 F·g−1 at a scan rate of 10 A·g−1 and good cycling stability, where the capacitance was 92% after 5000 cycles. As such, these SnS/g-C3N4 composites suggest the specific application of this class of material in photocatalytic degradation as well as energy storage, putting forward new effective resolutions to environmental and energy issues. Full article
Show Figures

Graphical abstract

14 pages, 938 KB  
Article
Gun–Bullet Model-Based Noncovalent Interactions Boosting Visible Light Photocatalytic Hydrogen Production in Poly Thieno[3,2-b]Thiophene/Graphitic Carbon Nitride Heterojunctions
by Yong Li, Jialu Tong, Zihao Chai, Yuanyuan Wu, Dongting Wang and Hongbin Li
Polymers 2025, 17(10), 1417; https://doi.org/10.3390/polym17101417 - 21 May 2025
Cited by 2 | Viewed by 596
Abstract
Linear conjugated polymer photocatalysts are still hampered by challenges involving low charge separation efficiency and poor water dispersibility, which are crucial factors during the photocatalytic water splitting process. Herein, we synthesized Poly thieno[3,2-b]thiophene (PTT) nanoparticles with excellent visible light response characteristic. Subsequently, we [...] Read more.
Linear conjugated polymer photocatalysts are still hampered by challenges involving low charge separation efficiency and poor water dispersibility, which are crucial factors during the photocatalytic water splitting process. Herein, we synthesized Poly thieno[3,2-b]thiophene (PTT) nanoparticles with excellent visible light response characteristic. Subsequently, we constructed the gun–bullet model PTT/graphitic carbon nitride (PTT/g-C3N4) heterojunctions for photocatalytic hydrogen production, where PTT with good visible light response characteristic serves as the bullets and g-C3N4 with good water dispersibility serves as the guns. The as-prepared PTT/g-C3N4 heterojunctions show greatly accelerated charge separation and excellent photocatalytic hydrogen production performance. Specifically, 10PTT/g-C3N4 demonstrates extraordinary hydrogen production performance, reaching 6.56 mmol g−1 h−1 (2 wt% Pt loading, 0.1 M AA as sacrificial agent, λ > 420 nm), calculated to be 15.3 and 22.6 times those of PTT and g-C3N4, respectively. Mechanistic studies reveal that the significantly improved performance of PTT/g-C3N4 heterojunctions is ascribed to the accelerated charge transfer, which originates from the C…S/N…S noncovalent interactions among PTT and g-C3N4. The C…S/N…S noncovalent interactions act as an efficient interface charge transmission channel (ICTC), accelerating the steady stream of excited electron transfer from the lowest unoccupied molecular orbital (LUMO) of PTT to that of g-C3N4. The gun–bullet model heterojunctions proposed here provide a practical strategy for achieving exceptional visible light photocatalytic hydrogen production by combining charge separation with water dispersibility in polymer/polymer heterojunctions via noncovalent interactions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop