Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = carbon nanomaterials (CNMs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 7355 KB  
Review
Carbon Nanomaterial-Based Electrochemical Biosensors for Alzheimer’s Disease Biomarkers: Progress, Challenges, and Future Perspectives
by Berfin Şak, Helena B. A. Sousa and João A. V. Prior
Biosensors 2025, 15(10), 684; https://doi.org/10.3390/bios15100684 - 9 Oct 2025
Cited by 1 | Viewed by 2575
Abstract
Alzheimer’s disease (AD) requires early and accurate identification of affected brain regions, which can be achieved through the detection of specific biomarkers to enable timely intervention. Carbon nanomaterials (CNMs), including graphene derivatives, carbon nanotubes, graphitic carbon nitride, carbon black, fullerenes, and carbon dots, [...] Read more.
Alzheimer’s disease (AD) requires early and accurate identification of affected brain regions, which can be achieved through the detection of specific biomarkers to enable timely intervention. Carbon nanomaterials (CNMs), including graphene derivatives, carbon nanotubes, graphitic carbon nitride, carbon black, fullerenes, and carbon dots, offer high conductivity, large electroactive surface area, and versatile surface chemistry that enhance biosensor performance. While such properties benefit a wide range of transduction principles (e.g., electrochemical, optical, and plasmonic), this review focuses on their role in electrochemical biosensors. This review summarizes CNM-based electrochemical platforms reported from 2020 to mid-2025, employing aptamers, antibodies, and molecularly imprinted polymers for AD biomarker detection. Covered topics include fabrication strategies, transduction formats, analytical performance in complex matrices, and validation. Reported devices achieve limits of detection from the femtomolar to picogram per milliliter range, with linear ranges typically spanning 2–3 orders of magnitude (e.g., from femtomolar to picomolar, or from picogram to nanogram per milliliter levels). They exhibit high selectivity against common interferents such as BSA, glucose, uric acid, ascorbic acid, dopamine, and non-target peptides, along with growing capabilities for multiplexing and portable operation. Remaining challenges include complex fabrication, limited long-term stability and reproducibility data, scarce clinical cohort testing, and sustainability issues. Opportunities for scalable production and integration into point-of-care workflows are outlined. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

34 pages, 4350 KB  
Review
Carbon-Based Nanomaterials in Water and Wastewater Treatment Processes
by Krzysztof Piaskowski, Renata Świderska-Dąbrowska and Tomasz Dąbrowski
Sustainability 2025, 17(16), 7414; https://doi.org/10.3390/su17167414 - 16 Aug 2025
Cited by 2 | Viewed by 1743
Abstract
The observed increase in the diversity and level of pollutant content in the water environment forces the development of more effective technologies for their removal. Using nanomaterials in water and wastewater treatment offers numerous opportunities to remove organic and inorganic contaminants that are [...] Read more.
The observed increase in the diversity and level of pollutant content in the water environment forces the development of more effective technologies for their removal. Using nanomaterials in water and wastewater treatment offers numerous opportunities to remove organic and inorganic contaminants that are hardly removable in conventional processes. In this group, carbon-based nanomaterials, mainly carbon nanotubes (CNTs), graphene (Gr), and graphene oxide (GO), are very popular. This review aims to present the directions and diversity of applications of carbon-based nanomaterials (CNMs) in water and wastewater technology, as well as the challenges and environmental dangers that new solutions entail. Authors also present the results of the research on the changes in properties of GO produced in the laboratory as water suspension and a freeze-dried product over time. The results confirm the significant influence of the form of graphene oxide and its storage time on the structural properties, hydrophilicity, and stability of GO. Therefore, they should be considered when selecting an adsorbent or reaction catalyst in environmental applications for developing new greener and sustainable methods of treatment and purification, which use fewer reagents and release safer products. Full article
Show Figures

Figure 1

28 pages, 4302 KB  
Review
Integration of Coke and CNMs with Bitumen: Synthesis, Methods, and Characterization
by Muhammad Hashami, Yerdos Ongarbayev, Yerbol Tileuberdi, Yerzhan Imanbayev, Ainur Zhambolova, Aliya Kenzhegaliyeva and Zulkhair Mansurov
Nanomaterials 2025, 15(11), 842; https://doi.org/10.3390/nano15110842 - 31 May 2025
Cited by 1 | Viewed by 2939
Abstract
Carbon-based nanomaterials have emerged as a promising strategy for bitumen modification to enhance the mechanical and thermal performance of pavements. This review evaluates the present advancements in the inclusion of coke and carbon nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene into [...] Read more.
Carbon-based nanomaterials have emerged as a promising strategy for bitumen modification to enhance the mechanical and thermal performance of pavements. This review evaluates the present advancements in the inclusion of coke and carbon nanomaterials (CNMs) such as carbon nanotubes (CNTs) and graphene into bituminous systems. The findings and limitations of recent experiments in synthesis procedures along with dispersion methods are deeply explored to determine their impact on the rheological properties of bitumen as well as aging resistance and durability characteristics. Petroleum coke enhances bitumen softening points by 10–15 °C and causes up to 30% improvement in rutting resistance while simultaneously prolonging material fatigue life and aging resistance. Bitumen modification through petroleum coke faces challenges in addition to mixing difficulties due to its high viscosity. Moreover, the incorporation of CNTs and graphene as CNMs shows significant enhancements in rutting resistance with improved tensile strength, lower additive requirements, and enhanced dispersion. Both the superior mechanical properties of carbon nanomaterials and processing advancements in nano-enhanced bitumen have the capability to solve technical issues including material costs and specialized mixing processes. Combining coke with CNMs to enhance performance is a future research direction, which could result in economic and scalability considerations. This review comprehensively explores insights into physicochemical interactions, performance outcomes, and processing techniques, crucial for the development of sustainable, high-performance bitumen composites tailored for next-generation infrastructure applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

49 pages, 3785 KB  
Review
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
by Silvana Alfei and Guendalina Zuccari
J. Xenobiot. 2025, 15(3), 76; https://doi.org/10.3390/jox15030076 - 21 May 2025
Cited by 6 | Viewed by 4151
Abstract
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, [...] Read more.
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, groundwater and industrial waste are continually explored. Carbon-based nanomaterials (CNMs), including quantum dots, nanotubes, fullerenes and graphene, have displayed outstanding effectiveness in the decontamination of the environment by several processes. Carbon nanotubes (CNTs), due to their nonpareil characteristics and architecture, when included in absorbents, filter membranes, gas sensors, etc., have significantly improved the efficiency of these technologies in detecting and/or removing inorganic, organic and gaseous xenobiotics and pathogens from air, soil and aqueous matrices. Moreover, CNT-based membranes have displayed significant potential for efficient, fast and low-energy water desalination. However, despite CNTs serving as very potent instruments for environmental detoxification, their extensive utilization could, paradoxically, be highly noxious to the environment and, therefore, humans, due to their toxicity. The functionalization of CNTs (F-CNTs), in addition to further enhancing their absorption capacity and selectivity, has increased their hydrophilicity, thus minimizing their toxicity and carcinogenic effects. In this scenario, this review aims to provide evidence of both the enormous potential of CNTs in sustainable environmental remediation and the concerning hazards to the environment and living organisms that could derive from their extensive and uncontrolled utilization. To this end, an introduction to CNTs, including their eco-friendly production from biomass, is first reported. Several literature reports on CNTs’ possible utilization for environmental remediation, their potential toxicity due to environmental accumulation and the challenges of their regeneration are provided using several reader-friendly tools, to better capture readers’ attention and make reading easier. Full article
Show Figures

Graphical abstract

18 pages, 3645 KB  
Article
Effects of Graphene Derivatives and Near-Infrared Laser Irradiation on E. coli Biofilms and Stress Response Gene Expression
by Yuliya Maksimova, Ekaterina Pyankova, Larisa Nesterova and Aleksandr Maksimov
Int. J. Mol. Sci. 2025, 26(10), 4728; https://doi.org/10.3390/ijms26104728 - 15 May 2025
Cited by 3 | Viewed by 1116
Abstract
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial [...] Read more.
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial effect. This investigation is devoted to the determination of the expression level of bacterial stress response genes (soxS and rpoS) under graphene oxide (GO), reduced graphene oxide (rGO), and NIR laser irradiation (1270 nm). GO, rGO and NIR laser irradiation separately and irradiation in the presence of graphene derivatives cause an increase in the expression level of rpoS associated with the general stress response of bacteria. GO and rGO do not change the expression level of soxS associated with the cell response to oxidative stress, and decrease it in the presence of a strong oxidizing agent paraquat (PQ). The expression of soxS increases under laser irradiation, but decreases under NIR laser irradiation in combination with graphene derivatives. The effect of GO, rGO, and NIR laser irradiation on the formation and eradication of E. coli biofilms was studied. NIR laser with GO and rGO suppresses the metabolic rate and decreases the intracellular ATP content by 94 and 99.6%, respectively. CNMs are shown to reduce biofilm biomass and the content of extracellular polymeric substances (EPSs), both exopolysaccharides and protein in the biofilm matrix. Graphene derivatives in combination with NIR laser irradiation may be an effective means of combating emerging and mature biofilms of Gram-negative bacteria. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 5791 KB  
Article
Mechanical, Electrical and Fractural Characteristics of Carbon Nanomaterial-Added Cement Composites
by Manan Bhandari, Jianguang Yue and Il-Woo Nam
Appl. Sci. 2025, 15(9), 4673; https://doi.org/10.3390/app15094673 - 23 Apr 2025
Cited by 2 | Viewed by 1045
Abstract
This study investigates the effects of different carbon nanomaterials (CNMs), namely, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and graphite nanoplatelets (GNP) on the mechanical, electrical, and fractural characteristics of cement composites. The electrical conductivity results indicated that CNT- and CNF-added composites exhibited [...] Read more.
This study investigates the effects of different carbon nanomaterials (CNMs), namely, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and graphite nanoplatelets (GNP) on the mechanical, electrical, and fractural characteristics of cement composites. The electrical conductivity results indicated that CNT- and CNF-added composites exhibited percolation threshold ranges of 0.1% to 0.3% and 0.3% to 1.0%, respectively. Regarding the mechanical properties tests, the composite with a 1.0% CNF showed the best results. Furthermore, fractural characteristics results indicated that even additions of the smallest dosage, i.e., 0.1% of CNM, exhibited positive results. Overall, the study highlighted the potential of CNM-added cement composites. Full article
Show Figures

Figure 1

55 pages, 12018 KB  
Review
Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues
by Silvana Alfei and Gian Carlo Schito
Nanomaterials 2025, 15(8), 633; https://doi.org/10.3390/nano15080633 - 21 Apr 2025
Cited by 9 | Viewed by 1531
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of [...] Read more.
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included. Full article
Show Figures

Graphical abstract

37 pages, 19268 KB  
Review
From Waste to Worth: Upcycling Plastic into High-Value Carbon-Based Nanomaterials
by Ahmed M. Abdelfatah, Mohamed Hosny, Ahmed S. Elbay, Nourhan El-Maghrabi and Manal Fawzy
Polymers 2025, 17(1), 63; https://doi.org/10.3390/polym17010063 - 30 Dec 2024
Cited by 19 | Viewed by 8444
Abstract
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most [...] Read more.
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060. This study explores innovative approaches to convert PW into high-value carbon nanomaterials (CNMs) such as graphene, carbon nanotubes (CNTs), and other advanced carbon structures. Various methods including pyrolysis, arc discharge, catalytic degradation, and laser ablation have been investigated in transforming PW into CNMs. However, four primary methodologies are discussed herein: thermal decomposition, chemical vapor deposition (CVD), flash joule heating (FJH), and stepwise conversion. The scalability of the pathways discussed for industrial applications varies significantly. Thermal decomposition, particularly pyrolysis, is highly scalable due to its straightforward setup and cost-effective operation, making it suitable for large-scale waste processing plants. It also produces fuel byproducts that can be used as an alternative energy source, promoting the concept of energy recovery and circular economy. CVD, while producing high-quality carbon materials, is less scalable due to the high cost and required complex equipment, catalyst, high temperature, and pressure, which limits its use to specialized applications. FJH offers rapid synthesis of high-quality graphene using an economically viable technique that can also generate valuable products such as green hydrogen, carbon oligomers, and light hydrocarbons. However, it still requires optimization for industrial throughput. Stepwise conversion, involving multiple stages, can be challenging to scale due to higher operational complexity and cost, but it offers precise control over material properties for niche applications. This research demonstrates the growing potential of upcycling PW into valuable materials that align with global sustainability goals including industry, innovation, and infrastructure (Goal 9), sustainable cities and communities (Goal 11), and responsible consumption and production (Goal 12). The findings underscore the need for enhanced recycling infrastructure and policy frameworks to support the shift toward a circular economy and mitigate the global plastic crisis. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

31 pages, 11954 KB  
Review
Exploring Spin-Crossover Cobalt(II) Single-Ion Magnets as Multifunctional and Multiresponsive Magnetic Devices: Advancements and Prospects in Molecular Spintronics and Quantum Computing Technologies
by Renato Rabelo, Luminita M. Toma, Abdeslem Bentama, Salah-Eddine Stiriba, Rafael Ruiz-García and Joan Cano
Magnetochemistry 2024, 10(12), 107; https://doi.org/10.3390/magnetochemistry10120107 - 17 Dec 2024
Cited by 9 | Viewed by 6325
Abstract
Spin-crossover (SCO) and single-ion magnets (SIMs), or their mixed SCO-SIM derivatives, are a convenient solution in the evolution from molecular magnetism toward molecular spintronics and quantum computing. Herein, we report on the current trends and future directions on the use of mononuclear six-coordinate [...] Read more.
Spin-crossover (SCO) and single-ion magnets (SIMs), or their mixed SCO-SIM derivatives, are a convenient solution in the evolution from molecular magnetism toward molecular spintronics and quantum computing. Herein, we report on the current trends and future directions on the use of mononuclear six-coordinate CoII SCO-SIM complexes with potential opto-, electro-, or chemo-active 2,6-pyridinediimine (PDI)- and 2,2′:6′,2′-terpyridine (TERPY)-type ligands as archetypical examples of multifunctional and multiresponsive magnetic devices for applications in molecular spintronics and quantum computing technologies. This unique class of spin-crossover cobalt(II) molecular nanomagnets is particularly well suited for addressing and scaling on different supports, like metal molecular junctions or carbon nanomaterials (CNMs) and metal–organic frameworks (MOFs) or metal-covalent organic frameworks (MCOFs), in order to measure the single-molecule electron transport and quantum coherence properties, which are two major challenges in single-molecule spintronics (SMS) and quantum information processing (QIP). Full article
Show Figures

Graphical abstract

24 pages, 5015 KB  
Review
Modeling Carbon-Based Nanomaterials (CNMs) and Derived Composites and Devices
by Agustίn Chiminelli, Ivan Radović, Matteo Fasano, Alessandro Fantoni, Manuel Laspalas, Ana Kalinić, Marina Provenzano and Miguel Fernandes
Sensors 2024, 24(23), 7665; https://doi.org/10.3390/s24237665 - 30 Nov 2024
Cited by 4 | Viewed by 2181
Abstract
A review of different modeling techniques, specifically in the framework of carbon-based nanomaterials (CNMs, including nanoparticles such as graphene and carbon nanotubes—CNTs) and the composites and devices that can be derived from them, is presented. The article emphasizes that the overall performance of [...] Read more.
A review of different modeling techniques, specifically in the framework of carbon-based nanomaterials (CNMs, including nanoparticles such as graphene and carbon nanotubes—CNTs) and the composites and devices that can be derived from them, is presented. The article emphasizes that the overall performance of these materials depends on mechanisms that operate across different time and spatial scales, requiring tailored approaches based on the material type, size, internal structure/configuration, and the specific properties of interest. Far from attempting to cover the entire spectrum of models, this review examines a wide range of analysis and simulation techniques, highlighting their potential use, some of their weaknesses and strengths, and presenting the latest developments and some application examples. In this way, it is shown how modeling can provide key information for tailoring or designing new materials for specific components or systems or to obtain certain functionalities. At the same time, it is revealed to be an area constantly undergoing development and improvement, as evidenced by the progress made by various of these techniques and the new modeling approaches that have emerged in recent years. Full article
(This article belongs to the Special Issue Novel 2D Material-Based Sensors for Optoelectronic Devices)
Show Figures

Figure 1

25 pages, 7077 KB  
Review
Joint Toxicity and Interaction of Carbon-Based Nanomaterials with Co-Existing Pollutants in Aquatic Environments: A Review
by Konstantin Pikula, Seyed Ali Johari, Ralph Santos-Oliveira and Kirill Golokhvast
Int. J. Mol. Sci. 2024, 25(21), 11798; https://doi.org/10.3390/ijms252111798 - 2 Nov 2024
Cited by 3 | Viewed by 2240
Abstract
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed [...] Read more.
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed toxic effects. The study involved a systematic literature review to gather information on the joint toxicity and interaction between CNMs and various co-contaminants in aquatic settings. A total of 53 publications were chosen and analyzed, categorizing the studies based on the tested CNMs, types of co-contaminants, and the used species. Common test models included fish and microalgae, with zebrafish being the most studied species. The review underscores the necessity of conducting mixture toxicity testing to assess whether the combined effects of CNMs and co-existing pollutants are additive, synergistic, or antagonistic. The development of in silico models based on the solid foundation of research data represents the best opportunity for joint toxicity prediction, eliminating the need for a great quantity of experimental studies. Full article
Show Figures

Figure 1

12 pages, 3820 KB  
Review
The Role of Fullerenes in Neurodegenerative Disorders
by Daisy L. Wilson, Jyoti Ahlawat and Mahesh Narayan
J. Nanotheranostics 2024, 5(1), 1-12; https://doi.org/10.3390/jnt5010001 - 16 Jan 2024
Cited by 6 | Viewed by 4205
Abstract
The use of carbon nanomaterials including fullerenes, carbon nanotubes, carbon nano-onions, carbon dots and carbon quantum dots for environmental applications has increased substantially. These nanoparticles are now used in the development of sensors and switches, in agriculture as smart fertilizers and in the [...] Read more.
The use of carbon nanomaterials including fullerenes, carbon nanotubes, carbon nano-onions, carbon dots and carbon quantum dots for environmental applications has increased substantially. These nanoparticles are now used in the development of sensors and switches, in agriculture as smart fertilizers and in the biomedical realm for cancer therapy intervention, as antioxidants, in gene delivery and as theranostics. Here, we review the role of fullerenes as neuroprotectants. Their sp2 hybridized architectures and ability to intervene in the soluble-to-toxic transformation of amyloidogenic trajectories is highlighted here, along with other physico–chemical properties that impact interventional efficacy. Also highlighted are drawbacks that need to be overcome and future prospects. Full article
(This article belongs to the Special Issue Advances and Innovations in Theranostic Nanobiomaterials)
Show Figures

Figure 1

18 pages, 14205 KB  
Article
A Carbon Nanocomposite Material Used in the Physical Modelling of the Overburden Subsidence Process
by Jianlin Xie, Shan Ning, Qingdong Qu, Weibing Zhu, Bozhi Zhao and Jialin Xu
Nanomaterials 2023, 13(22), 2962; https://doi.org/10.3390/nano13222962 - 16 Nov 2023
Cited by 1 | Viewed by 1481
Abstract
Carbon nanomaterial is widely used in structural health monitoring due to the advantage of sensitivity and good mechanical properties. This study presents a novel approach employing carbon nanocomposite materials (CNMs) to characterize deformation and damage evolution in physical modelling. As the primary measurement [...] Read more.
Carbon nanomaterial is widely used in structural health monitoring due to the advantage of sensitivity and good mechanical properties. This study presents a novel approach employing carbon nanocomposite materials (CNMs) to characterize deformation and damage evolution in physical modelling. As the primary measurement method, the CNM is used to investigate the deformation characteristics of a 200–400 m thick sandstone bed at a 1 km deep longwall mine. The sandstone unit is identified as an ultra-thick key stratum (UTKS), with its thicknesses varying across different mining panels of the UTKS. The results of CNM monitoring show that the UTKS remains stable even after a consecutive excavation of 900 m in width. This stability impedes the upward propagation of overlying strata failure, leading to minimal surface subsidence. The study demonstrates the huge potential of CNM in the mining area, which can be useful for investigating material damage in physical modelling studies. The findings suggest that the cumulative extraction width in individual mining areas of the mine should be controlled to avoid a sudden collapse of the UTKS, and that special attention should be paid to where the UTKS’s thickness changes substantially. The substantial variation in UTKS thickness significantly impacts the pattern of overburden subsidence. Full article
Show Figures

Figure 1

20 pages, 3379 KB  
Article
Toxicity and Biotransformation of Carbon-Based Nanomaterials in Marine Microalgae Heterosigma akashiwo
by Konstantin Pikula, Seyed Ali Johari, Ralph Santos-Oliveira and Kirill Golokhvast
Int. J. Mol. Sci. 2023, 24(12), 10020; https://doi.org/10.3390/ijms241210020 - 12 Jun 2023
Cited by 11 | Viewed by 2619
Abstract
This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60 [...] Read more.
This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO). The toxicity was evaluated as growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species generation changes. The measurement was performed with flow cytometry after 3, 24, 96 h, and 7 days. The biotransformation of nanomaterials was evaluated after 7 days of microalgae cultivation with CNMs by FTIR and Raman spectroscopy. The calculated toxic level (EC50 in mg/L, 96 h) of used CNMs reduced in the following order: CNTs (18.98) > GrO (76.77) > Gr (159.40) > C60 (414.0). Oxidative stress and membrane depolarization were the main toxic action of CNTs and GrO. At the same time, Gr and C60 decreased the toxic action with time and had no negative impact on microalgae after 7 days of exposure even at the concentration of 125 mg/L. Moreover, C60 and Gr after 7 days of contact with microalgae cells obtained structural deformations. Full article
Show Figures

Figure 1

19 pages, 5947 KB  
Article
Pd-Ceria/CNMs Composites as Catalysts for CO and CH4 Oxidation
by Olga Stonkus, Lidiya Kibis, Elena Slavinskaya, Andrey Zadesenets, Ilia Garkul, Tatyana Kardash, Andrey Stadnichenko, Sergey Korenev, Olga Podyacheva and Andrei Boronin
Materials 2023, 16(12), 4257; https://doi.org/10.3390/ma16124257 - 8 Jun 2023
Cited by 3 | Viewed by 1919
Abstract
The application of composite materials as catalysts for the oxidation of CO and other toxic compounds is a promising approach for air purification. In this work, the composites comprising palladium and ceria components supported on multiwall carbon nanotubes, carbon nanofibers and Sibunit were [...] Read more.
The application of composite materials as catalysts for the oxidation of CO and other toxic compounds is a promising approach for air purification. In this work, the composites comprising palladium and ceria components supported on multiwall carbon nanotubes, carbon nanofibers and Sibunit were studied in the reactions of CO and CH4 oxidation. The instrumental methods showed that the defective sites of carbon nanomaterials (CNMs) successfully stabilize the deposited components in a highly-dispersed state: PdO and CeO2 nanoparticles, subnanosized PdOx and PdxCe1−xO2−δ clusters with an amorphous structure, as well as single Pd and Ce atoms, are formed. It was shown that the reactant activation process occurs on palladium species with the participation of oxygen from the ceria lattice. The presence of interblock contacts between PdO and CeO2 nanoparticles has an important effect on oxygen transfer, which consequently affects the catalytic activity. The morphological features of the CNMs, as well as the defect structure, have a strong influence on the particle size and mutual stabilization of the deposited PdO and CeO2 components. The optimal combination of highly dispersed PdOx and PdxCe1−xO2−δ species, as well as PdO nanoparticles in the CNTs-based catalyst, makes it highly effective in both studied oxidation reactions. Full article
Show Figures

Graphical abstract

Back to TopTop