Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = carbon nano-fillers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 246
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 4188 KiB  
Article
Enhanced Mechanical and Electrical Performance of Epoxy Nanocomposites Through Hybrid Reinforcement of Carbon Nanotubes and Graphene Nanoplatelets: A Synergistic Route to Balanced Strength, Stiffness, and Dispersion
by Saba Yaqoob, Zulfiqar Ali, Alberto D’Amore, Alessandro Lo Schiavo, Antonio Petraglia and Mauro Rubino
J. Compos. Sci. 2025, 9(7), 374; https://doi.org/10.3390/jcs9070374 - 17 Jul 2025
Viewed by 344
Abstract
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical [...] Read more.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical properties, substantially improving composite stiffness and tensile strength. In this study, epoxy nanocomposites were fabricated with 0.1 wt.% and 0.3 wt.% of CNTs and GNPs individually, and with 1:1 CNT:GNP hybrid fillers at equivalent total loadings. Scanning electron microscopy of fracture surfaces confirmed that the CNTGNP hybrids dispersed uniformly, forming an interconnected nanostructured network. Notably, the 0.3 wt.% CNTGNP hybrid system exhibited minimal agglomeration and voids, preventing crack initiation and propagation. Mechanical testing revealed that the 0.3 wt.% CNTGNP/Ep composite achieved the highest tensile strength of approximately 84.5 MPa while maintaining a well-balanced stiffness profile (elastic modulus ≈ 4.62 GPa). The hybrid composite outperformed both due to its synergistic reinforcement mechanisms and superior dispersion despite containing only half the concentration of each nanofiller relative to the individual 0.3 wt.% CNT or GNP systems. In addition to mechanical performance, electrical conductivity analysis revealed that the 0.3 wt.% CNTGNP hybrid composite exhibited the highest conductivity of 0.025 S/m, surpassing the 0.3 wt.% CNT-only system (0.022 S/m), owing to forming a well-connected three-dimensional conductive network. The 0.1 wt.% CNT-only composite also showed enhanced conductivity (0.0004 S/m) due to better dispersion at lower filler loadings. These results highlight the dominant role of CNTs in charge transport and the effectiveness of hybrid networks in minimizing agglomeration. These findings demonstrate that CNTGNP hybrid fillers can deliver optimally balanced mechanical enhancement in epoxy matrices, offering a promising route for designing lightweight, high-performance structural composites. Further optimization of nanofiller dispersion and interfacial chemistry may yield even greater improvements. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
Elucidating the Role of Graphene Oxide Surface Architecture and Properties in Loess Soil Remediation Efficacy
by Zirui Wang, Haotian Lu, Zhigang Li, Yuwei Wu and Junping Ren
Nanomaterials 2025, 15(14), 1098; https://doi.org/10.3390/nano15141098 - 15 Jul 2025
Viewed by 271
Abstract
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel [...] Read more.
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel strategy for soil improvement and enhancing the soil’s capacity to sequester carbon, which has been extensively researched. However, the mechanisms underlying the influence of carbon surface structure on the efficacy of loess soil remediation remain unclear. Herein, graphene oxide (GO) with a unique two-dimensional structure and adjustable surface properties was optimized as a model carbon filler to investigate the modification effect on loess. As a result, the addition amount of 0.03% GO significantly reduced the disintegration amount of loess, but, if inhibited for a long time, the disintegration effect would weaken. The highly reduced GO can delay the loess disintegration rate due to its enhanced hydrophobicity, but the inhibitory effect fails over a long period of time. After adjusting the reduce degree with a 50% SA (sodium ascorbate), the water-holding capacity of the modified soil in the high suction range is enhanced. This study reveals the synergistic mechanism of the sheet structure and surface properties of GO on the water stability of loess, providing a reference for the prevention and control of soil erosion and ecological restoration in the Loess Plateau. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

28 pages, 5774 KiB  
Article
Data-Driven Prediction of Polymer Nanocomposite Tensile Strength Through Gaussian Process Regression and Monte Carlo Simulation with Enhanced Model Reliability
by Pavan Hiremath, Subraya Krishna Bhat, Jayashree P. K., P. Krishnananda Rao, Krishnamurthy D. Ambiger, Murthy B. R. N., S. V. Udaya Kumar Shetty and Nithesh Naik
J. Compos. Sci. 2025, 9(7), 364; https://doi.org/10.3390/jcs9070364 - 14 Jul 2025
Viewed by 432
Abstract
This study presents a robust machine learning framework based on Gaussian process regression (GPR) to predict the tensile strength of polymer nanocomposites reinforced with various nanofillers and processed under diverse techniques. A comprehensive dataset comprising 25 polymer matrices, 22 surface functionalization methods, and [...] Read more.
This study presents a robust machine learning framework based on Gaussian process regression (GPR) to predict the tensile strength of polymer nanocomposites reinforced with various nanofillers and processed under diverse techniques. A comprehensive dataset comprising 25 polymer matrices, 22 surface functionalization methods, and 24 processing routes was constructed from the literature. GPR, coupled with Monte Carlo sampling across 2000 randomized iterations, was employed to capture nonlinear dependencies and uncertainty propagation within the dataset. The model achieved a mean coefficient of determination (R2) of 0.96, RMSE of 12.14 MPa, MAE of 7.56 MPa, and MAPE of 31.73% over 2000 Monte Carlo iterations, outperforming conventional models such as support vector machine (SVM), regression tree (RT), and artificial neural network (ANN). Sensitivity analysis revealed the dominant influence of Carbon Nanotubes (CNT) weight fraction, matrix tensile strength, and surface modification methods on predictive accuracy. The findings demonstrate the efficacy of the proposed GPR framework for accurate, reliable prediction of composite mechanical properties under data-scarce conditions, supporting informed material design and optimization. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

17 pages, 3907 KiB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Viewed by 417
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Enhancement of Ethylene-Butene Terpolymer Performance via Carbon Nanotube-Induced Nanodispersion of Montmorillonite Layers
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Yuansi Wei, Pengxiang Bai and Yuqi Wang
Crystals 2025, 15(7), 612; https://doi.org/10.3390/cryst15070612 - 30 Jun 2025
Viewed by 250
Abstract
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed [...] Read more.
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed that SMMT achieved homogeneous nanoscale dispersion after CNT addition, and the size of aggregates was greatly reduced. Four-cycle strain-scanning analysis revealed a 200% increase in rubber–filler (R-F) interaction strength due to CNT incorporation. At the optimal CNT/SMMT ratio of 1:5, the EBT composites exhibited a 40.4% increase in Young’s modulus, 71.4% enhancement in tensile strength, and maintained 250% elongation at break, effectively addressing the strength–toughness trade-off of traditional rigid fillers. Thermogravimetric analysis (TGA) showed near 20 °C elevation in EBT composites’ maximum decomposition temperature, while water contact angle measurements indicated a hydrophobicity increase to 117.5° and water absorption rate below 0.2%. The quantitative improvement in thermal oxidation stability and hydrophobic barrier performance was achieved simultaneously. Full article
Show Figures

Figure 1

22 pages, 4058 KiB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Viewed by 373
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

15 pages, 3993 KiB  
Article
Study on the Electrospinning Fabrication of PCL/CNTs Fiber Membranes and Their Oil–Water Separation Performance
by Desheng Feng, Yanru Li, Yanjun Zheng, Jinlong Chen, Xiaoli Zhang, Kun Li, Junfang Shen and Xiaoqin Guo
Polymers 2025, 17(12), 1705; https://doi.org/10.3390/polym17121705 - 19 Jun 2025
Viewed by 393
Abstract
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. [...] Read more.
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. A highly uniform diameter distribution of the PCL fiber was achieved by using the dichloromethane/dimethylformamide (DCM/DMF) composite solvent with volume ratio of 7:3, as well as a PCL concentration of ca. 17 wt.%. The optimal electrospinning parameters were identified as an applied voltage of 18 kV and a syringe pump flow rate of 1 mL·h−1, which collectively ensured uniform fiber morphology under the specified processing conditions. The critical threshold concentration of CNTs in the composite system was determined to be 1 wt.%, above which the composite fibers exhibit a significant increase in diameter heterogeneity. Both pristine PCL fibrous membranes and PCL/CNTs composite membranes demonstrated excellent and stable oil–water separation performance, with separation efficiencies consistently around 90%. Notably, no significant attenuation in separation efficiency was observed after ten consecutive separation cycles. Furthermore, when incorporating 0.5 wt.% CNTs, the PCL/CNT composite membranes exhibited a 20% increase in separation flux for heavy oils compared to pristine PCL membranes. Additionally, CNTs, as a prototypical class of nanofillers for polymer matrix reinforcement, can potentially enhance the mechanical properties of composite films, thus effectively prolonging their service life. Full article
(This article belongs to the Special Issue Development in Carbon-Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1411
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

33 pages, 10001 KiB  
Article
Epoxy Adhesive Materials as Protective Coatings: Strength Property Analysis Using Machine Learning Algorithms
by Izabela Miturska-Barańska and Katarzyna Antosz
Materials 2025, 18(12), 2803; https://doi.org/10.3390/ma18122803 - 14 Jun 2025
Viewed by 453
Abstract
This study analyzed the mechanical properties of epoxy adhesive materials used as functional coatings, focusing on how physical modifications impact their microstructure and strength. Compositions based on Epidian 5, 53 and 57 resins were cured using TFF, Z-1, or PAC curing agents and [...] Read more.
This study analyzed the mechanical properties of epoxy adhesive materials used as functional coatings, focusing on how physical modifications impact their microstructure and strength. Compositions based on Epidian 5, 53 and 57 resins were cured using TFF, Z-1, or PAC curing agents and modified with various fillers: mineral (CaCO3 calcium carbonate), active (activated carbon filler, CWZ-22), and nanostructured (montmorillonite, ZR-2) fillers. The best results were achieved with calcium carbonate (10–20 wt%) in Epidian 5 or 53 resins cured with TFF or Z-1, yielding tensile strength up to 64 MPa, compressive strength up to 145 MPa, and bending strength up to 123 MPa. Activated carbon and nanofillers showed moderate improvements, particularly in more flexible matrices. To support property prediction, machine learning algorithms were applied and successfully modeled the mechanical behavior based on composition data. The most accurate models reached R2 values of 0.93–0.95 for compression and bending strength. While the models for compression and bending strength demonstrated high accuracy, the tensile strength model yielded lower predictive performance, indicating that further refinement and expanded input features are necessary. Shapley analysis further identified curing agents and fillers as key predictive features. This integrated experimental and data-driven approach offers an effective framework for optimizing epoxy-based coatings in industrial applications. Full article
(This article belongs to the Special Issue Manufacturing, Characterization and Modeling of Advanced Materials)
Show Figures

Figure 1

16 pages, 2699 KiB  
Article
Investigation of the Mechanical and Thermal Properties of MWCNT/SiC-Filled Ethylene–Butene–Terpolymer Rubber
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Pengxiang Bai, Yuqi Wang, Zuohui Liu, Simin Zhu and Dan Qiao
Crystals 2025, 15(6), 539; https://doi.org/10.3390/cryst15060539 - 5 Jun 2025
Cited by 1 | Viewed by 811
Abstract
Rubber is widely used in daily lives, such as in automobile tires, conveyor belts, sealing rings, and gaskets. The performance of rubber determines its service life. Therefore, it is of crucial importance to improve the performance of rubber. Theoretical studies have found that [...] Read more.
Rubber is widely used in daily lives, such as in automobile tires, conveyor belts, sealing rings, and gaskets. The performance of rubber determines its service life. Therefore, it is of crucial importance to improve the performance of rubber. Theoretical studies have found that the inherent properties of nanofillers themselves, the interfacial bonding force between fillers and the matrix, and the uniform dispersibility of nanofillers in the polymer matrix are the most significant factors for enhancing the performance of rubber nanocomposites. This study systematically investigated the synergistic enhancement effect of silicon carbide (SiC) and multi-walled carbon nanotubes (MWCNTs) on the mechanical and thermal properties of ethylene–butene–terpolymer (EBT) composites. By optimizing the addition amount of fillers and improving the interfacial bonding between fillers and the matrix, the influence of filler content on the properties of composites was studied. The results demonstrate that the addition of SiC and MWCNTs significantly improved the storage modulus, tensile strength, hardness, and thermal stability of the composites. In terms of mechanical properties, the tensile strength of the composites increased from 6.68 MPa of pure EBT to 8.46 MPa, and the 100% modulus increased from 2.14 MPa to 3.81 MPa. Moreover, hardness was significantly enhanced under the reinforcement of SiC/CNT fillers. In terms of thermal stability, the composites exhibited excellent resistance to deformation at high temperatures. Through the analysis of the mechanical and thermal properties of the composites, the synergistic enhancement mechanism between SiC and MWCNTs was revealed. The research results provide a theoretical basis for the design and engineering applications of high-performance ethylene–butylene rubber composites. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

16 pages, 19335 KiB  
Article
The Silylation Effect of C/SiC Nanofillers on Mechanical Properties of Cellulose Nanocomposite: Insights from Molecular Dynamics Simulations
by Ahmad Y. Al-Maharma, Bernd Markert and Franz Bamer
J. Compos. Sci. 2025, 9(6), 284; https://doi.org/10.3390/jcs9060284 - 31 May 2025
Viewed by 508
Abstract
Silylation treatment improves the hydrophobicity of cellulose by reducing the number of hydroxyl groups in the cellulose chains that are available to react with moisture in the surrounding environment. Additionally, silylation increases stress transfer from cellulose to synthetic nanofillers by forming covalent bonds [...] Read more.
Silylation treatment improves the hydrophobicity of cellulose by reducing the number of hydroxyl groups in the cellulose chains that are available to react with moisture in the surrounding environment. Additionally, silylation increases stress transfer from cellulose to synthetic nanofillers by forming covalent bonds between the hydroxyl groups of cellulose and the oxidized surface of these nanofillers. This study investigates the impact of silane coupling agents on the tensile properties of cellulose nanocomposites. The cellulose nanocomposites are reinforced with four types of C/SiC-based nanofillers: carbon nanotubes, graphene nanoplatelets, silicon carbide nanotubes, and silicon carbide nanoplatelets. Subsequently, the nanofillers are subjected to surface treatment using the silane coupling agent KH550. The mechanical properties of the cellulose nanocomposites are evaluated by molecular dynamics simulations based on the polymer’s consistent forcefield. The results indicate that the reinforcements of silylated silicon carbide nanotubes and carbon nanotubes increase the tensile modulus of cellulose by 18.03% and 24.58%, respectively, compared to their untreated counterparts. Furthermore, the application of silylation treatment on the surface of C/SiC nanofillers increases the yield strength and ultimate tensile strength of cellulose nanocomposites due to enhanced load transfer between cellulose and these reinforcements. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

16 pages, 8676 KiB  
Article
The Application of Montmorillonite (MMT), Halloysite (HNT), and Carbon Nanotubes (CNT) in Toughened Polyethylene Terephthalate Glycol/Polycarbonate (PETG/PC) Blends: The Critical View on the Use of Nanosized Fillers as Phase Structure Modifiers
by Mateusz Markowski, Adam Piasecki and Jacek Andrzejewski
Polymers 2025, 17(11), 1463; https://doi.org/10.3390/polym17111463 - 25 May 2025
Viewed by 542
Abstract
The subject of the conducted study was primarily focused on the development of a new type of polymer blend modified with the use of nanosized fillers. The research concept involved the use of polycarbonate/polyethylene terephthalate glycol (PETG/PC) blends modified with the EBA-GMA impact [...] Read more.
The subject of the conducted study was primarily focused on the development of a new type of polymer blend modified with the use of nanosized fillers. The research concept involved the use of polycarbonate/polyethylene terephthalate glycol (PETG/PC) blends modified with the EBA-GMA impact modifier (ethylene–butylene–acrylonitrile copolymer) and three different types of nanofillers: montmorillonite (MMT), halloysite (HNT), and carbon nanotubes (CNT) of two types. The combination of PC, PETG, and EBA phases was used in order to achieve enhanced mechanical performance and stable processing properties. The results of the conducted study revealed that for the toughened PETG/PC/EBA blends, the impact resistance was strongly improved from the reference by 1.5 kJ/m2 to 15 kJ/m2. However, the results for the nanocomposites revealed that the MMT and HNT additions were limiting the impact strength. In contrast, the Charpy test results for CNT were again close to 15 kJ/m2. The results of the thermal resistance measurements again revealed more favorable properties for CNT-modified PETG/PC/EBA blends. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Based Nanocomposites, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 6159 KiB  
Article
Laser Sintering of Nano-Graphite-Reinforced Polyamide Composites for Next-Generation Smart Materials: A Preliminary Investigation of Processability and Electromechanical Properties
by Stefano Guarino, Emanuele Mingione, Gennaro Salvatore Ponticelli, Alfio Scuderi, Simone Venettacci and Vittorio Villani
Appl. Sci. 2025, 15(10), 5708; https://doi.org/10.3390/app15105708 - 20 May 2025
Viewed by 612
Abstract
Multifunctional reinforced polymer composites provide an ideal platform for next-generation smart materials applications, enhancing matrix properties like electrical and thermal conductivity. Reinforcements are usually based on functional metal alloys, inorganic compounds, polymers, and carbon nanomaterials. The latter have drawn significant interest in developing [...] Read more.
Multifunctional reinforced polymer composites provide an ideal platform for next-generation smart materials applications, enhancing matrix properties like electrical and thermal conductivity. Reinforcements are usually based on functional metal alloys, inorganic compounds, polymers, and carbon nanomaterials. The latter have drawn significant interest in developing high-performance smart composites due to their exceptional mechanical, electrical, and thermal properties. The increasing demand for highly complex functional structures has led additive manufacturing to become a reference technology for the production of smart material components. In this study, laser sintering technology was adopted to manufacture nano-graphite/nylon-12 composites with a carbon-based particle reinforcement content of up to 10% in weight. The results showed that the addition of the filler led to the fabrication of samples that reached an electrical conductivity of around 4·10−4 S/cm, in contrast to the insulating behavior of a bare polymeric matrix (i.e., lower than 10−10 S/cm), while maintaining a low production cost, though at the expense of mechanical performance under both tensile and bending loads. Full article
Show Figures

Figure 1

24 pages, 8896 KiB  
Article
Morphological and Spectroscopic Characterization of Multifunctional Self-Healing Systems
by Liberata Guadagno, Elisa Calabrese, Raffaele Longo, Francesca Aliberti, Luigi Vertuccio, Michelina Catauro and Marialuigia Raimondo
Polymers 2025, 17(10), 1294; https://doi.org/10.3390/polym17101294 - 8 May 2025
Viewed by 584
Abstract
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing [...] Read more.
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing molecular fillers and electrically conductive carbon nanotubes (CNTs) embedded in the matrix. The selected self-healing molecules can form non-covalent bonds with the hydroxyl (OH) and carbonyl (C=O) groups of the toughened epoxy matrix through their H-bonding donor and acceptor sites. An FT-IR analysis has been conducted to evaluate the interactions that the barbiturate acid derivatives, serving as self-healing fillers, can form with the constituent parts of the toughened epoxy blend. Tunneling Atomic Force Microscopy (TUNA) highlights the morphological characteristics of CNTs, their dispersion within the polymeric matrix, and their affinity for the globular rubber domains. The TUNA technique maps the samples’ electrical conductivity at micro- and nanoscale spatial domains. Detecting electrical currents reveals supramolecular networks, determined by hydrogen bonds, within the samples, showcasing the morphological features of the sample containing an embedded conductive nanofiller in the hosting matrix. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop