Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = carbon biomaterial

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3316 KB  
Article
Sustainable Valorization of Mussel Shell Waste: Processing for Calcium Carbonate Recovery and Hydroxyapatite Production
by Adriana Poli Castilho Dugaich, Andressa da Silva Barboza, Marianna Gimenes e Silva, Andressa Baptista Nörnberg, Marcelo Maraschin, Maurício Malheiros Badaró, Daiara Floriano da Silva, Carlos Eduardo Maduro de Campos, Carolina dos Santos Santinoni, Sheila Cristina Stolf, Rafael Guerra Lund and Juliana Silva Ribeiro de Andrade
J. Funct. Biomater. 2026, 17(1), 24; https://doi.org/10.3390/jfb17010024 - 30 Dec 2025
Viewed by 503
Abstract
This study aimed to develop a sustainable route for processing biogenic calcium carbonate from Perna perna mussel shell waste and converting it into hydroxyapatite (HA), as well as to evaluate its potential for bone and dental tissue engineering applications. Mussel shells were decarbonized [...] Read more.
This study aimed to develop a sustainable route for processing biogenic calcium carbonate from Perna perna mussel shell waste and converting it into hydroxyapatite (HA), as well as to evaluate its potential for bone and dental tissue engineering applications. Mussel shells were decarbonized (400 °C), milled, and converted to HA via wet chemical precipitation using a nominal Ca/P molar ratio of 1.67 during synthesis followed by thermal treatment (900 °C). Comprehensive characterization included SEM, FTIR, XRD, Raman spectroscopy, XRF, TGA, and BET analysis. Biological evaluation involved cytotoxicity assays (MTT), antimicrobial testing, and odontogenic differentiation studies (Alizarin Red) using SHEDs. Statistical analysis by one-way ANOVA and Tukey post hoc tests (α = 0.05). SEM revealed a microstructured morphology composed of agglomerates, favorable for biomedical applications. FTIR and XRD confirmed the conversion of CaCO3 to hydroxyapatite, while thermal analysis demonstrated the material’s stability. The HA exhibited secondary minor phase (13%) β-TCP form of calcium phosphate (Ca2.997H0.006(PO4)2), high crystallinity (about 80%), and nanoscale crystallite size (85 nm, 2.5–5.0 m2/g), despite forming larger agglomerates in suspension. The material showed favorable physicochemical properties (neutral pH, −18.5 mV zeta potential), but no inhibition was detected in antimicrobial testing. In vitro assays showed excellent cytocompatibility (viability > 70% at 12.5 µg/mL) and significant osteogenic potential (high mineralization vs. controls, p < 0.05). Mussel shell-derived HA presents a sustainable, clinically relevant biomaterial with ideal properties for bone regeneration. The study establishes a complete waste-to-biomaterial pipeline while addressing key requirements for dental and orthopedic applications. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

16 pages, 1890 KB  
Article
Assessing Banana-Based Activated Carbon as a Biomaterial for the Adsorption of Drug Metabolites in Wastewater: Simulation of an Industrial-Scale Packed Column
by Candelaria Tejada-Tovar, Ángel Villabona-Ortiz, Oscar E. Coronado-Hernández, Esmeralda Haeckermann-Ruiz and Rafael D. Méndez-Anillo
Processes 2026, 14(1), 129; https://doi.org/10.3390/pr14010129 - 30 Dec 2025
Viewed by 248
Abstract
The presence of paracetamol and ciprofloxacin in aquatic ecosystems is a cause for great concern due to their harmful effects on human health. The objectives of this investigation are to simulate an industrial-scale adsorption bed for the competitive removal of these pharmaceutical metabolites [...] Read more.
The presence of paracetamol and ciprofloxacin in aquatic ecosystems is a cause for great concern due to their harmful effects on human health. The objectives of this investigation are to simulate an industrial-scale adsorption bed for the competitive removal of these pharmaceutical metabolites from effluents using banana-based activated carbon as the adsorbent. Aspen Adsorption simulation software (v.1) was used to model an industrial-scale packed-bed column under different conditions. Freundlich and Langmuir isothermal models were used in combination with the linear driving force (LDF) kinetic formulation. Adsorption efficiencies of 89.57% for paracetamol and 89.57% for ciprofloxacin were achieved using the Freundlich-LDF model, while the Langmuir-LDF model presented efficiencies of 89.60% for paracetamol and 89.59% for ciprofloxacin. This study used machine learning algorithms, combined with analyses of multiple statistical indicators (R2, RMSE, and MAE), to evaluate model performance. Coefficient of determination (R2) values of up to 0.99 were observed in validation and testing. The application of these mathematical models yielded high removal efficiencies, demonstrating the potential of this approach for drug-contaminated effluent remediation and for forecasting the performance of packed columns at scaled-up levels. Full article
Show Figures

Figure 1

13 pages, 2655 KB  
Article
Valorization of Grapefruit Juice Extraction Residue Using Pectin Extraction, Cellulose Purification, and Sonication
by Marina Ishida, Alisa Pattarapisitporn, Noriko Ryuda and Seiji Noma
Appl. Sci. 2025, 15(24), 13280; https://doi.org/10.3390/app152413280 - 18 Dec 2025
Viewed by 347
Abstract
The effects of pectin extraction, cellulose purification, and sonication on the juice extraction residue from grapefruit were investigated. Pectin extraction using pressurized carbon dioxide (pCO2) in a sodium oxalate solution (U-OX) lowered the cellulose content and increased the hemicellulose and lignin [...] Read more.
The effects of pectin extraction, cellulose purification, and sonication on the juice extraction residue from grapefruit were investigated. Pectin extraction using pressurized carbon dioxide (pCO2) in a sodium oxalate solution (U-OX) lowered the cellulose content and increased the hemicellulose and lignin contents, whereas pectin extraction in deionized water (U-DW) did not affect these contents. Pectin extraction and cellulose purification induced hydrolysis and removal of non-crystalline cellulose regions. The sonication of the purified cellulose samples formed fiber-like structures with widths of <100 nm on their surfaces. The cellulose purification process increased the surface charge and formed a gel-like structure with increased hardness, adhesiveness, and film structure. These processes enhance the absorption of amphiphilic dyes, although to a lesser extent than that of the untreated juice extraction residue (UJR) after sonication. Before sonication, UJR adsorbed cationic dyes, whereas after, UJR adsorbed both polar and nonpolar dyes. These results suggest that juice residue could be used as a biomaterial with diverse potential applications. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

10 pages, 960 KB  
Proceeding Paper
Evolution and Trends in the Use of Biomaterials for Electrodes in Microbial Fuel Cells: A Bibliometric Approach
by Segundo Jonathan Rojas Flores, De La Cruz-Noriega, Renny Nazario-Naveda, Santiago M. Benites and Daniel Delfin-Narciso
Mater. Proc. 2025, 27(1), 4; https://doi.org/10.3390/materproc2025027004 - 11 Dec 2025
Viewed by 250
Abstract
This bibliometric study analyzes the evolution of biomaterials used for electrodes in microbial fuel cells (MFCs), highlighting a marked increase in publications since 2019. Key materials—including modified cellulose, lignin, and carbon nanocomposites—have improved electrode efficiency and structural stability. The findings indicate that high-impact [...] Read more.
This bibliometric study analyzes the evolution of biomaterials used for electrodes in microbial fuel cells (MFCs), highlighting a marked increase in publications since 2019. Key materials—including modified cellulose, lignin, and carbon nanocomposites—have improved electrode efficiency and structural stability. The findings indicate that high-impact journals, such as the Journal of Microbial Fuel Cell Research and Bioelectrochemistry & Sustainable Energy (with h-indices of 72 and 64, respectively), have played a pivotal role in advancing the field. Prominent researchers, including Yang J and Xie Q, have made significant contributions, as reflected in their high citation counts. Network analysis reveals limited international collaboration, underscoring the need to strengthen strategic partnerships. Ultimately, this study highlights the importance of future research that integrates artificial intelligence and nanotechnology to optimize biomaterial performance in MFCs, thereby enhancing their contribution to sustainable energy solutions. Full article
Show Figures

Figure 1

27 pages, 2192 KB  
Systematic Review
Agricultural Biomass as a Resource for Biomaterials, Biofertilizers, and Bioproducts: A Systematic Review
by Bruna Pereira Almeida, Luiz Felipe Silveira Pavão, Marcelo Silveira de Farias, Nidgia Maria Nicolodi, Mirta Teresinha Petry, Marisa Menezes Leal, Paulo Carteri Coradi, Victória Lumertz de Souza, Mayara de Souza Queirós, Guilherme de Figueiredo Furtado, Marcus Vinicíus Tres and Giovani Leone Zabot
Agrochemicals 2025, 4(4), 23; https://doi.org/10.3390/agrochemicals4040023 - 11 Dec 2025
Viewed by 606
Abstract
This systematic review aimed to examine recent advances (2021–2025) in the conversion of agricultural biomass into biomaterials, biofertilizers, and bioproducts. Studies were included when addressing biomass types, pretreatment methods, conversion technologies, or resulting applications. Non-agricultural biomass, non-original research, and works outside the defined [...] Read more.
This systematic review aimed to examine recent advances (2021–2025) in the conversion of agricultural biomass into biomaterials, biofertilizers, and bioproducts. Studies were included when addressing biomass types, pretreatment methods, conversion technologies, or resulting applications. Non-agricultural biomass, non-original research, and works outside the defined timeframe were excluded. Literature was identified in Scopus and Web of Science, complemented by Espacenet, Google Scholar, and institutional databases (USDA, FAO, IRRI, ABARES, UNICA, and CONAB, among others), totaling 108 documents referenced in this work. Risk of bias was minimized through predefined eligibility criteria and full-text assessment. Results were narratively synthesized, supported by figures and tables highlighting technological trends. Studies involving a wide range of agricultural biomasses (e.g., rice straw, corn stover, wheat straw, and sugarcane bagasse) were evaluated. Main outcomes included the development of bioplastics, biofoams, composites, hydrogels, bioceramics, biochar-based fertilizers, organic acids, enzymes, and green solvents. Evidence consistently indicated that pretreatment strongly influences conversion efficiency and that enzymatic and thermochemical routes show the highest potential for integrated biorefineries. Limitations included heterogeneity in biomass composition, variability in methodological quality, and scarcity of large-scale studies. Overall, findings underscore agricultural biomass as a strategic feedstock for circular bioeconomy models, with implications for sustainable materials, renewable energy, and low-carbon agriculture. Continued innovation, supportive policies, and improved logistics are essential for scaling biomass-based technologies. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

15 pages, 3405 KB  
Article
The Use of Coniferous Tree Cone Biomass as an Energy Source and a Reducing Agent in the Recycling of Metals from Oxide Secondary Raw Materials
by Szymon Ptak, Jerzy Łabaj, Tomasz Matuła, Albert Smalcerz, Leszek Blacha, Adrian Smagór and Róbert Findorák
Energies 2025, 18(23), 6183; https://doi.org/10.3390/en18236183 - 25 Nov 2025
Viewed by 332
Abstract
The challenges faced by the metallurgical industry implicate that actions aimed at reducing negative impacts on the environment are becoming extremely important. This is justified both in the search for economically competitive methods of producing basic construction materials, consistent with the circular economy [...] Read more.
The challenges faced by the metallurgical industry implicate that actions aimed at reducing negative impacts on the environment are becoming extremely important. This is justified both in the search for economically competitive methods of producing basic construction materials, consistent with the circular economy policy, and in improving the efficiency of metal production technology. An essential aspect of biomass use is the introduction of an energy source that naturally reduces the energy supplied to the reactor, thereby reducing the carbon footprint of the metal produced. In this case, the research undertaken aims to determine the possibility of using a bioreductant that will allow for the reduction or elimination of the fossil raw material, which is coal, thus reducing the costs associated with ETS and ETS II (European Union Emissions Trading System). This paper presents the results of research on the reduction process of oxide metal-bearing raw material, the chemical composition of which is similar to slags from the copper industry. The effects of slag reduction time on the degrees of copper and lead removal were examined. The process was carried out at 1300 °C, with the constant addition of a reducing agent, in the form of crushed pine cones. After processing for 1 h, the copper content in the waste slag was 1.30 wt%, whereas extending the process to 5 h reduced the copper content to 0.15 wt%. For lead, at the exact reduction times, the element’s contents in the slag after processing were 1.92 wt% and 0.79 wt%, respectively. The results of the studied process showed that, in the first stage of the slag reduction process, intensive reduction of copper and lead oxides occurs. Research was also conducted to characterize the biomaterial during the high-temperature process. Results show high degrees of removal for basic metals at the following levels: 99% for Cu and 72% for Pb. The waste slag is characterized by low metal content, which allows for safe storage or use in other sectors of the economy. This type of biomaterial is, therefore, recommended for research in large-scale laboratories or on a semi-industrial scale, particularly in relation to the gas phase formed and its possible impacts on the structural elements of industrial installations. It should be noted that there is a lack of data in the literature on the use of forest biomass in the form of pine cones as an alternative to coke as a reducing agent for use in pyrometallurgical processes. Full article
Show Figures

Figure 1

24 pages, 1525 KB  
Review
Microbial Valorization of Agricultural and Agro-Industrial Waste into Bacterial Cellulose: Innovations for Circular Bioeconomy Integration
by Ayaz M. Belkozhayev, Arman Abaildayev, Bekzhan D. Kossalbayev, Kuanysh T. Tastambek, Danara K. Kadirshe and Gaukhar Toleutay
Microorganisms 2025, 13(12), 2686; https://doi.org/10.3390/microorganisms13122686 - 25 Nov 2025
Viewed by 1148
Abstract
Agricultural and agro-industrial waste, produced in vast quantities worldwide, presents both environmental and economic challenges. Microbial valorization offers a sustainable solution, with bacterial cellulose (BC) emerging as a high-value product due to its purity, strength, biocompatibility, and biodegradability. This review highlights recent advances [...] Read more.
Agricultural and agro-industrial waste, produced in vast quantities worldwide, presents both environmental and economic challenges. Microbial valorization offers a sustainable solution, with bacterial cellulose (BC) emerging as a high-value product due to its purity, strength, biocompatibility, and biodegradability. This review highlights recent advances in producing BC from agricultural and agro-industrial residues via optimized fermentation processes, including static and agitated cultivation, co-cultivation, stepwise nutrient feeding, and genetic engineering. Diverse wastes such as fruit peels, sugarcane bagasse, cereal straws, and corn stover serve as cost-effective carbon sources, reducing production costs and aligning with circular bioeconomy principles. Advances in strain engineering, synthetic biology, and omics-guided optimization have significantly improved BC yield and functionalization, enabling applications in food packaging, biomedicine, cosmetics, and advanced biocomposites. Process innovations, including tailored pretreatments, adaptive evolution, and specialized bioreactor designs, further enhance scalability and product quality. The integration of BC production into circular bioeconomy models not only diverts biomass from landfills but also replaces petroleum-based materials, contributing to environmental protection and resource efficiency. This review underscores BC’s potential as a sustainable biomaterial and identifies research directions for overcoming current bottlenecks in industrial-scale implementation. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

28 pages, 2327 KB  
Review
Industrial Hemp as Precursor for Sustainable Bioproducts: Recent Trends and Prospects
by Sodiq Babatunde Yusuf, Nnaemeka Ewurum, Harrison Appiah and Jovale Vincent Tongco
Fibers 2025, 13(11), 155; https://doi.org/10.3390/fib13110155 - 20 Nov 2025
Viewed by 2502
Abstract
The generation of over 150 million tons of hemp waste annually is as much of a sustainability challenge as it is an opportunity for the circular bioeconomy. This review provides a critical analysis of the recent trends in the use of industrial hemp [...] Read more.
The generation of over 150 million tons of hemp waste annually is as much of a sustainability challenge as it is an opportunity for the circular bioeconomy. This review provides a critical analysis of the recent trends in the use of industrial hemp waste as a precursor to producing sustainable bioproducts. The objective is to synthesize the current state of knowledge and to identify the various pathways for valorizing hemp waste beyond the traditional applications. The methodology involved the systematic assessment of the recent literature to identify the applications in textiles, biocomposites, packaging, and, most importantly, advanced areas such as hemp-based carbon materials for storing energy, biomedical materials, and smart biomaterials. Findings showed that hemp waste is a versatile material for creating high-value products, as it shows promise in carbon electrodes for supercapacitors as well as reinforcement for 3D-printed biocomposites. However, there are some limitations in terms of standardization and scalability. The review concludes that future progress depends on multidisciplinary research to optimize conversion and utilization processes, including the development of comprehensive life-cycle assessments and reliable supply chains. Full article
Show Figures

Graphical abstract

21 pages, 1019 KB  
Article
Linking the LCA of Forest Bio-Based Products for Construction, Ecosystem Services, and Sustainable Forest Management
by Teresa Garnica, Soledad Montilla, José Antonio Tenorio Ríos, Ángel Lora, Antonio J. Molina Herrera and Marta Conde
Sustainability 2025, 17(22), 10134; https://doi.org/10.3390/su172210134 - 13 Nov 2025
Viewed by 516
Abstract
The multifunctional role of forests in supplying renewable biomaterials and delivering ecosystem services (ESs) is often overlooked in standard life cycle assessment (LCA) methodologies, despite its relevance for sustainable construction. This study developed the BioCons Impact Compensation Model (ICM), which integrates ES into [...] Read more.
The multifunctional role of forests in supplying renewable biomaterials and delivering ecosystem services (ESs) is often overlooked in standard life cycle assessment (LCA) methodologies, despite its relevance for sustainable construction. This study developed the BioCons Impact Compensation Model (ICM), which integrates ES into life cycle inventory (LCI) databases and quantifies proprietary BioCons Mitigation Indicators, capturing additional environmental information, ensuring transparency, and preventing greenwashing. Using structural Scots pine in Spain as a case study, the GWP-luluc-roots indicator was found to be 226.84 kg CO2-eq/FU, representing 36% of the biogenic carbon (616.45 kg CO2-eq/FU), highlighting the contribution of root-derived carbon to long-term soil carbon storage. The BioCons Mitigation Indicators demonstrate that mitigation generally exceeds environmental impacts, except for HTP-nc-inorganics, with surplus ES available as biocredits to offset emissions in other life cycle stages. Integrating these indicators into environmental product declarations (EPDs) provides a transparent and accurate view of environmental performance. The results validate the hypothesis that forest bio-based construction products (FBCPs) act as carriers of ESs embedded in derived products, supporting more comprehensive and robust sustainability assessments. Full article
Show Figures

Figure 1

21 pages, 4278 KB  
Review
Recent Advances in Multimodal Nanostructured Bioaerogels for Smart Drug Delivery
by Muhanad A. Abdulsamad, Lujin A. Essa, Rabia Alghazeer, Norah Alkhayyal, Rawan Altalhi, Randah Alghamdi and Esam Bashir Yahya
Polymers 2025, 17(22), 3012; https://doi.org/10.3390/polym17223012 - 12 Nov 2025
Viewed by 828
Abstract
The convergence of nanotechnology and bioaerogels has paved the way for the development of multimodal nanostructured bioaerogels with remarkable potential in smart drug delivery systems. These advanced biomaterials integrate multiple functionalities, including sensing, targeting, and therapeutic actions, to enhance drug efficacy, minimize systemic [...] Read more.
The convergence of nanotechnology and bioaerogels has paved the way for the development of multimodal nanostructured bioaerogels with remarkable potential in smart drug delivery systems. These advanced biomaterials integrate multiple functionalities, including sensing, targeting, and therapeutic actions, to enhance drug efficacy, minimize systemic side effects, and enable real-time monitoring of therapeutic responses. This review provides a comprehensive analysis of the structural design, physicochemical properties, and fabrication strategies of multimodal bioaerogels. It further explores their role in responsive drug delivery, emphasizing stimuli-responsive mechanisms such as pH, temperature, and enzymatic triggers. The incorporation of nanomaterials, including metallic nanoparticles, carbon-based nanostructures, and polymeric nanocarriers, has endowed bioaerogels with tunable porosity, controlled drug release, and bioactive functionalities. Additionally, their application in precision medicine, particularly for cancer therapy, antimicrobial treatments, and tissue engineering, is critically examined. Challenges related to scalability, biocompatibility, and regulatory compliance are also discussed, alongside future perspectives on advancing these bioaerogels toward clinical translation. By integrating interdisciplinary insights, this review underscores the transformative potential of multimodal nanostructured bioaerogels in the next generation of intelligent drug delivery systems. Full article
(This article belongs to the Special Issue Polymers for Drug/Gene Delivery and Controlled Release)
Show Figures

Figure 1

20 pages, 2408 KB  
Article
Hydrothermal and Organosolv Treatments for Hydroxycinnamate Release from Corn Stover: Strong versus Mild Alkaline Catalysis
by Evangelia Brimo-Alevra, Marina Koutli, Elli Marielou, Theodoros Chatzimitakos and Dimitris P. Makris
Molecules 2025, 30(21), 4297; https://doi.org/10.3390/molecules30214297 - 5 Nov 2025
Viewed by 463
Abstract
Corn stover (CS) is an abundant biomaterial, which is regularly rejected during corn harvesting. This biowaste is a typical lignocellulosic source rich in hydroxycinnamates, which are mainly represented by p-coumaric acid and ferulic acid. These polyphenols are largely bound onto the lignocellulosic [...] Read more.
Corn stover (CS) is an abundant biomaterial, which is regularly rejected during corn harvesting. This biowaste is a typical lignocellulosic source rich in hydroxycinnamates, which are mainly represented by p-coumaric acid and ferulic acid. These polyphenols are largely bound onto the lignocellulosic complex and can be effectively liberated using alkaline catalysis. On this basis, the work described herein targeted at developing a high-performance process for producing hydroxycinnamate-enriched extracts, by deploying alkali-catalyzed hydrothermal and organosolv treatments. For this purpose, sodium carbonate was tested as a benign, natural alkali catalyst, along with the well-studied sodium hydroxide. The kinetic study demonstrated that both the alkali catalyst and the organic solvent (ethanol) may significantly affect polyphenol recovery, a fact further investigated by carrying out response surface optimization. The hydrothermal treatment was shown to be more efficacious than the organosolv one, with regard to total polyphenol recovery, while the sodium carbonate catalysis was less efficient compared to the sodium hydroxide one. Under optimized conditions, the hydrothermal treatment afforded 74.4 ± 3.6 mg gallic acid equivalents per g of dry CS mass. On the other hand, a more thorough investigation of the polyphenolic profile of the extracts obtained clearly demonstrated that the sodium hydroxide-catalyzed organosolv treatment provided almost 76 and 98% higher yields for p-coumaric and ferulic acid, respectively, compared to the hydrothermal treatment. Extract composition impacted the antioxidant activity, and it was revealed that the higher the p-coumaric acid/ferulic acid ratio, the stronger the antioxidant effect. It is proposed that the sodium hydroxide-catalyzed ethanol organosolv treatment of CS may be a particularly promising technique in a lignocellulose biorefinery frame, although improvements might be necessary to further increase treatment performance. Such a process might contribute to fully valorizing agricultural biowastes for the production of high value-added chemicals, in line with the “lignin first’ philosophy. Full article
Show Figures

Graphical abstract

17 pages, 4070 KB  
Article
Application of Amino Acid-Based Carbon Dots for the Treatment of Oral Bacteria and Oral Cancer Cells In Vitro Using a Dental Light-Curing Unit via ROS-Mediated Therapy
by So-Young Park, Wooil Kim, Unchul Shin, Yong Hoon Kwon, Franklin Garcia-Godoy and Hye-Ock Jang
Nanomaterials 2025, 15(21), 1677; https://doi.org/10.3390/nano15211677 - 5 Nov 2025
Viewed by 543
Abstract
In systemic diseases, controlling oral bacteria and cancer is an important issue. As biomaterials, recently, carbon dots (DSs) are the focus of a variety of studies owing to their extensive applicability in life sciences. In this study, the effectiveness of carbon dots (CDs) [...] Read more.
In systemic diseases, controlling oral bacteria and cancer is an important issue. As biomaterials, recently, carbon dots (DSs) are the focus of a variety of studies owing to their extensive applicability in life sciences. In this study, the effectiveness of carbon dots (CDs) for the elimination of both oral bacteria and oral cancer in vitro was assessed using a dental light-curing unit (LCU) as a light source. CDs were synthesized using an amino acid. The absorbance of CDs and the emission spectrum of the LCU were measured. The production of reactive oxygen species (ROS) was evaluated spectroscopically. Changes in glutathione (GSH) content were evaluated. Using oral bacteria and cancer cells, in vitro antibacterial and antitumor capabilities of CDs were evaluated under light irradiation. Confocal microscopy was used to observe live/dead cells and intracellular lipid peroxidation (LPO). The emission spectrum of the LCU fully matched the absorbance of CDs. After CD treatment, the initial peak absorbances of the p-nitrosodimethylaniline-imidazole (for singlet oxygen assay) and nitroblue tetrazolium (for superoxide oxide assay) solutions changed under light irradiation. The initial peak absorbance of the GSH assay solution decreased during and after light irradiation. Both CD-treated oral bacteria and oral cancer cells were near totally eliminated at 50 and 200 μg/mL concentrations, respectively, after light irradiation. In the live/dead cell and C11-BODIPY581/591 dye assays, red and green fluorescent spots were, respectively, observed in the CD-treated and light-irradiated cells. Accordingly, CDs effectively eliminated both oral bacteria and cancer cells in vitro in conjunction with dental LCU with less damage to normal cells through ROS-induced or ROS-initiated GSH depletion-induced intracellular LPO. Dental LCU plays a crucial role in ROS production through CD photoexcitation. Dental LUC has the potential to be used as a light source in dentistry for the treatment of oral bacteria and cancer cells. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

13 pages, 3789 KB  
Article
Enhanced Mechanical Durability of Polymeric Nanowires via Carbyne-Enriched Plasma Coatings for Bactericidal Action
by Dimitrios Nioras, Dionysia Kefallinou, Dimosthenis Ioannou, Luis Antonio Panes-Ruiz, Bergoi Ibarlucea, Gianaurelio Cuniberti, Tianshu Lan, Angeliki Tserepi and Evangelos Gogolides
Coatings 2025, 15(11), 1247; https://doi.org/10.3390/coatings15111247 - 27 Oct 2025
Cited by 2 | Viewed by 4012
Abstract
Carbon-based materials have emerged as promising biomaterials due to their biocompatibility and inherent antibacterial properties. Carbyne, a unique allotrope of carbon, characterized by sp-hybridized carbons forming alternating single and triple bonds, exhibits exceptional toughness. Herein, we explore the potential of carbyne-enriched plasma coatings [...] Read more.
Carbon-based materials have emerged as promising biomaterials due to their biocompatibility and inherent antibacterial properties. Carbyne, a unique allotrope of carbon, characterized by sp-hybridized carbons forming alternating single and triple bonds, exhibits exceptional toughness. Herein, we explore the potential of carbyne-enriched plasma coatings for antibacterial applications in conjunction with micro- and nano-textured polymeric surfaces. We investigate and characterize carbyne-enriched plasma coatings onto superhydrophilic or superhydrophobic poly (methyl methacrylate) (PMMA) plasma micro-nanotextured surfaces. Our analysis evaluates the wetting properties and durability of these surfaces, particularly in liquid immersion conditions. The integration of carbyne-enriched plasma coatings serves a dual purpose: it enhances the chemical bactericidal action and protects surface micro-nanostructures from deformation due to capillary forces thanks to the material’s innate toughness. The results show that the micro-nanotextured and carbyne-enriched coated PMMA surfaces exhibit a significant bactericidal activity as expressed by a bactericidal index of approximately 50%, owing to the combined effect of both the surface topography and the plasma-deposited carbyne coating. Full article
(This article belongs to the Special Issue Emerging Trends in Plasma Coating and Interface Technologies)
Show Figures

Figure 1

23 pages, 4201 KB  
Article
Biowaste Valorisation: Conversion of Crab Shell-Derived Mg-Calcite into Calcium Phosphate Minerals Controlled by Raman Spectroscopy
by Geza Lazar, Tudor Tămaş, Lucian Barbu-Tudoran, Monica Mihaela Venter, Ilirjana Bajama and Simona Cintă Pinzaru
Processes 2025, 13(11), 3413; https://doi.org/10.3390/pr13113413 - 24 Oct 2025
Cited by 2 | Viewed by 603
Abstract
The sustainable conversion of biogenic waste into high-value materials presents a promising approach for addressing environmental and industrial challenges. This work reports an advancement into antioxidant-enriched phosphate minerals derived from green conversion of biogenic calcium carbonates of crustaceans. We demonstrate the effectiveness of [...] Read more.
The sustainable conversion of biogenic waste into high-value materials presents a promising approach for addressing environmental and industrial challenges. This work reports an advancement into antioxidant-enriched phosphate minerals derived from green conversion of biogenic calcium carbonates of crustaceans. We demonstrate the effectiveness of Raman technology in controlling conversion using phosphoric acid treatment. The effects of reaction parameters—including acid stoichiometry, granular size distribution, and thermal treatment at 700 °C and 1200 °C—were systematically evaluated. Raman spectroscopy results validated by X-ray diffraction (XRD) and SEM-EDX analyses revealed mixed-phase minerals monetite, brushite, whitlockite or hydroxylapatite, respectively. Notably, reducing particle size enhanced conversion efficiency by increasing the reactive surface area, while the use of excess phosphoric acid facilitated conversion to monocalcium phosphate and promoted the degradation of the organic matrix. Thermal treatment further altered the product composition: heating at 700 °C produced a whitlockite-rich phase, whereas treatment at 1200 °C shifted the balance toward hydroxylapatite. The synthesized calcium phosphate compounds, including hydroxylapatite, monocalcium phosphate, whitlockite, and brushite, hold significant practical utility in biomedical applications (such as bone grafts and dental implants), agriculture, and industrial processing. Moreover, we have proven that by controlling the reaction parameters the final product composition can be tailored according to the specific needs. A greener approach yields brushite, monetite, or monocalcium phosphate, while a more energy-demanding process, including heating to 1200 °C, yields a high-purity hydroxylapatite. This research offers a sustainable analytical route for producing high-purity calcium phosphate materials from wasted biomaterials, contributing to both the bioeconomy as well as scientific innovation. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

38 pages, 6969 KB  
Review
Nanotechnology for Biomedical Applications: Synthesis and Properties of Ti-Based Nanocomposites
by Maciej Tulinski, Mieczyslawa U. Jurczyk, Katarzyna Arkusz, Marek Nowak and Mieczyslaw Jurczyk
Nanomaterials 2025, 15(18), 1417; https://doi.org/10.3390/nano15181417 - 15 Sep 2025
Cited by 1 | Viewed by 1523
Abstract
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to [...] Read more.
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to revolutionize tissue engineering and bone implant applications because of their enhanced corrosion resistance, mechanical properties, biocompatibility, and antimicrobial activity. Titanium-based nanocomposites are gaining attention in biomedical applications due to their exceptional biocompatibility, corrosion resistance, and mechanical properties. These composites typically consist of a titanium or titanium alloy matrix that is embedded with nanoscale bioactive phases, such as hydroxyapatite, bioactive glass, polymers, or carbon-based nanomaterials. Common methods for synthesizing Ti-based nanobiocomposites and their parts, including bottom-up and top-down approaches, are presented and discussed. The synthesis conditions and appropriate functionalization influence the final properties of nanobiomaterials. By modifying the surface roughness at the nanoscale level, composite implants can be enhanced to improve tissue integration, leading to increased cell adhesion and protein adsorption. The objective of this review is to illustrate the most recent research on the synthesis and properties of Ti-based biocomposites and their scaffolds. Full article
(This article belongs to the Special Issue Nanobiocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

Back to TopTop