Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = cannabinoid receptor type 2 ligand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2267 KiB  
Article
The Effects of Indirect and Direct Modulation of Endocannabinoid System Function on Anxiety-Related Behavior in Mice Assessed in the Elevated Plus Maze Test
by Marta Kruk-Slomka, Agnieszka Dzik and Grazyna Biala
Molecules 2025, 30(4), 867; https://doi.org/10.3390/molecules30040867 - 13 Feb 2025
Cited by 1 | Viewed by 1062
Abstract
Background: The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the [...] Read more.
Background: The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the brain (fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)), plays a key role in the regulation of mood and anxiety. However, the effects of cannabinoid compounds on anxiety-related responses are complex and yield mixed results depending on the type of pharmacological manipulation (direct or indirect) of functions of the ECS, as well as the kinds of cannabinoids, dosage and procedure. Methods: The aim of this study was to determine and compare the influence of the direct (via CB receptors ligands) and indirect (via inhibition of enzymes degrading endocannabinoids in the brain) pharmacological modulation of ECS function on anxiety-like responses in mice in the elevated plus maze (EPM) test. For this purpose, in the first step of the experiments, we used selected ligands of CB1, CB1/CB2 and CB2 receptors to assess which types of CB receptors are involved in anxiety-related responses in mice. Next, we used inhibitors of FAAH (which breaks down AEA) or MAGL (which breaks down 2-AG) to assess which endocannabinoid is more responsible for anxiety-related behavior in mice. Results: The results of our presented research showed that an acute administration of CB1 receptor agonist oleamide (5–20 mg/kg) had no influence on anxiety-related responses and CB1 receptor antagonist AM 251 (0.25–3 mg/kg) had anxiogenic effects in the EPM test in mice. In turn, an acute administration of mixed CB1/CB2 receptor agonist WIN55,212-2 used at a dose of 1 mg/kg had an anxiolytic effect observed in mice in the EPM test. What is of interest is that both the acute administration of a CB2 receptor agonist (JWH 133 at the doses of 1 and 2 mg/kg) and antagonist (AM 630 at the doses of 0.5–2 mg/kg) had anxiogenic effects in this procedure. Moreover, we revealed that an acute administration of only FAAH inhibitor URB 597 (0.3 mg/kg) had an anxiolytic effect, while MAGL inhibitor JZL 184 (at any used doses (2–40 mg/kg)) after an acute injection had no influence on anxiety behavior in mice, as observed in the EPM test. Conclusions: In our experiments, we confirmed the clearly significant involvement of the ECS in anxiety-related responses. In particular, the pharmacological indirect manipulation of ECS functions is able to elicit promising anxiolytic effects. Therefore, the ECS could be a potential target for novel anxiolytic drugs; however, further studies are needed. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 1575 KiB  
Review
CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies
by Sagar A. More, Rucha S. Deore, Harshal D. Pawar, Charu Sharma, Kartik T. Nakhate, Sumit S. Rathod, Shreesh Ojha and Sameer N. Goyal
Int. J. Mol. Sci. 2024, 25(3), 1683; https://doi.org/10.3390/ijms25031683 - 30 Jan 2024
Cited by 10 | Viewed by 4724
Abstract
The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed [...] Read more.
The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-β/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 2698 KiB  
Review
Rational Design, Synthesis, and Evaluation of Fluorescent CB2 Receptor Ligands for Live-Cell Imaging: A Comprehensive Review
by Pinaki Bhattacharjee and Malliga R. Iyer
Pharmaceuticals 2023, 16(9), 1235; https://doi.org/10.3390/ph16091235 - 31 Aug 2023
Cited by 3 | Viewed by 2991
Abstract
The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of [...] Read more.
The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor (CB2R) have gained prominence. Particular attention has been given to selective agonists targeting the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors. The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as inflammatory disorders and immunological conditions, as well as pain management and cancer treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for investigating the interactions between ligands and proteins at an exceptional level of spatial and temporal precision. In this review, we aim to examine the progress made in the development of fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful clinical translation of CB2R-based therapies. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabinoids and Their Receptors)
Show Figures

Figure 1

20 pages, 7883 KiB  
Article
Motifs in Natural Products as Useful Scaffolds to Obtain Novel Benzo[d]imidazole-Based Cannabinoid Type 2 (CB2) Receptor Agonists
by Analia Young Hwa Cho, Hery Chung, Javier Romero-Parra, Poulami Kumar, Marco Allarà, Alessia Ligresti, Carlos Gallardo-Garrido, Hernán Pessoa-Mahana, Mario Faúndez and Carlos David Pessoa-Mahana
Int. J. Mol. Sci. 2023, 24(13), 10918; https://doi.org/10.3390/ijms241310918 - 30 Jun 2023
Cited by 3 | Viewed by 2233
Abstract
The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development [...] Read more.
The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30–38 µM). Full article
(This article belongs to the Special Issue Molecular Biology of the Endocannabinoid System)
Show Figures

Figure 1

29 pages, 14955 KiB  
Article
Systematic Modification of the Substitution Pattern of the 7-Hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide Scaffold Enabled the Discovery of New Ligands with High Affinity and Selectivity for the Cannabinoid Type 2 Receptor
by Claudia Mugnaini, Magdalena Kostrzewa, Marta Casini, Poulami Kumar, Valeria Catallo, Marco Allarà, Laura Guastaferro, Antonella Brizzi, Marco Paolino, Andrea Tafi, Christelos Kapatais, Gianluca Giorgi, Federica Vacondio, Marco Mor, Federico Corelli and Alessia Ligresti
Molecules 2023, 28(13), 4958; https://doi.org/10.3390/molecules28134958 - 24 Jun 2023
Cited by 1 | Viewed by 2986
Abstract
Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in [...] Read more.
Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands. In addition to these compounds, seven other analogs that had been previously synthesized were included in this study to better define the structure–activity relationship (SAR). Ten of the new compounds studied were found to be potent and selective ligands of the CB2 receptor, with Ki values ranging from 48.46 to 0.45 nM and CB1/CB2 selectivity indices (SI) ranging from >206 to >4739. In particular, compounds 54 and 55 were found to be high-affinity CB2 inverse agonists that were not active at all at the CB1 receptor, whereas 57 acted as an agonist. The functional activity profile of the compounds within this structural class depends mainly on the substitution pattern of the pyrazole ring. Full article
(This article belongs to the Special Issue Cannabinoid-Related Compounds for Medical Use)
Show Figures

Figure 1

14 pages, 2268 KiB  
Article
New Insights into Bitopic Orthosteric/Allosteric Ligands of Cannabinoid Receptor Type 2
by Rebecca Ferrisi, Beatrice Polini, Caterina Ricardi, Francesca Gado, Kawthar A. Mohamed, Giovanna Baron, Salvatore Faiella, Giulio Poli, Simona Rapposelli, Giuseppe Saccomanni, Giancarlo Aldini, Grazia Chiellini, Robert B. Laprairie, Clementina Manera and Gabriella Ortore
Int. J. Mol. Sci. 2023, 24(3), 2135; https://doi.org/10.3390/ijms24032135 - 21 Jan 2023
Cited by 7 | Viewed by 2978
Abstract
Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62 [...] Read more.
Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model. Full article
(This article belongs to the Special Issue Endocannabinoid Receptors in Human Health and Disease)
Show Figures

Figure 1

25 pages, 5425 KiB  
Article
N-[1,3-Dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulphonamides as Novel Selective Human Cannabinoid Type 2 Receptor (hCB2R) Ligands; Insights into the Mechanism of Receptor Activation/Deactivation
by Eleonora Gianquinto, Federica Sodano, Barbara Rolando, Magdalena Kostrzewa, Marco Allarà, Ali Mokhtar Mahmoud, Poulami Kumar, Francesca Spyrakis, Alessia Ligresti and Konstantin Chegaev
Molecules 2022, 27(23), 8152; https://doi.org/10.3390/molecules27238152 - 23 Nov 2022
Cited by 4 | Viewed by 2321
Abstract
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed [...] Read more.
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure–activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands. Full article
(This article belongs to the Special Issue Cannabinoid-Related Compounds for Medical Use)
Show Figures

Figure 1

10 pages, 2521 KiB  
Article
Pharmacology of Minor Cannabinoids at the Cannabinoid CB1 Receptor: Isomer- and Ligand-Dependent Antagonism by Tetrahydrocannabivarin
by Kenneth B. Walsh and Andrea E. Holmes
Receptors 2022, 1(1), 3-12; https://doi.org/10.3390/receptors1010002 - 2 Aug 2022
Cited by 7 | Viewed by 5113
Abstract
(1) Background: In addition to the major phytocannabinoids, trans9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the cannabis plant (Cannabis sativa L.) synthesizes over 120 additional cannabinoids that are known as minor cannabinoids. These minor cannabinoids have been proposed to [...] Read more.
(1) Background: In addition to the major phytocannabinoids, trans9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the cannabis plant (Cannabis sativa L.) synthesizes over 120 additional cannabinoids that are known as minor cannabinoids. These minor cannabinoids have been proposed to act as agonists and antagonists at numerous targets including cannabinoid type 1 (CB1) and type 2 (CB2) receptors, transient receptor potential (TRP) channels and others. The goal of the present study was to determine the agonist effects of the minor cannabinoids: cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabitriol (CBT) and cannabidivarin (CBDV) at the CB1 receptor. In addition, the CB1 receptor antagonist effects of Δ9-tetrahydrocannabivarin (Δ9-THCV) were compared with its isomer Δ8-tetrahydrocannabivarin (Δ8-THCV). (2) Methods: CB1 receptor activity was monitored by measuring cannabinoid activation of G protein-gated inward rectifier K+ (GIRK) channels in AtT20 pituitary cells using a membrane potential-sensitive fluorescent dye assay. (3) Results: When compared to the CB1 receptor full agonist WIN 55,212-2 and the partial agonist Δ9-THC, none of the minor cannabinoids caused a significant activation of Gi/GIRK channel signaling. However, Δ9-THCV and Δ8-THCV antagonized the effect of WIN 55,212-2 with half-maximal inhibitory concentrations (IC50s) of 434 nM and 757 nM, respectively. Δ9-THCV antagonism of the CB1 receptor was “ligand-dependent”; Δ9-THCV was more potent in inhibiting WIN 55,212-2 and 2-arachidonoylglycerol (2-AG) than Δ9-THC. (4) Conclusions: While none of the minor cannabinoids caused Gi/GIRK channel activation, Δ9-THCV antagonized the CB1 receptor in an isomer- and ligand-dependent manner. Full article
Show Figures

Figure 1

18 pages, 6293 KiB  
Article
In Silico Prediction and Validation of CB2 Allosteric Binding Sites to Aid the Design of Allosteric Modulators
by Jiayi Yuan, Chen Jiang, Junmei Wang, Chih-Jung Chen, Yixuan Hao, Guangyi Zhao, Zhiwei Feng and Xiang-Qun Xie
Molecules 2022, 27(2), 453; https://doi.org/10.3390/molecules27020453 - 11 Jan 2022
Cited by 18 | Viewed by 4020
Abstract
Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present [...] Read more.
Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-β-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future. Full article
Show Figures

Figure 1

24 pages, 1144 KiB  
Review
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity?
by Piotr Schulz, Szymon Hryhorowicz, Anna Maria Rychter, Agnieszka Zawada, Ryszard Słomski, Agnieszka Dobrowolska and Iwona Krela-Kaźmierczak
Nutrients 2021, 13(2), 373; https://doi.org/10.3390/nu13020373 - 26 Jan 2021
Cited by 35 | Viewed by 8444
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is [...] Read more.
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance. Full article
(This article belongs to the Special Issue Food Craving, Appetite and Weight Gain)
Show Figures

Figure 1

12 pages, 1397 KiB  
Article
Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity
by Evelyn Gaffal, Andrea M. Kemter, Stefanie Scheu, Rafael Leite Dantas, Jens Vogt, Bernhard Baune, Thomas Tüting, Andreas Zimmer and Judith Alferink
Int. J. Mol. Sci. 2020, 21(2), 475; https://doi.org/10.3390/ijms21020475 - 11 Jan 2020
Cited by 11 | Viewed by 4149
Abstract
Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate [...] Read more.
Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate DC functions and inflammatory skin responses, but their influence on the capacity of haptenized DCs to induce CHS is still unknown. We found lower CHS responses to 2,4-dinitro-1-fluorobenzene (DNFB) in wild type (WT) mice after adoptive transfer of haptenized Cnr2−/− and Cnr1−/−/Cnr2−/− bone marrow (BM) DCs as compared to transfer of WT DCs. In contrast, induction of CHS was not affected in WT recipients after transfer of Cnr1−/− DCs. In vitro stimulated Cnr2−/− DCs showed lower CCR7 and CXCR4 expression when compared to WT cells, while in vitro migration towards the chemokine ligands was not affected by CB2. Upregulation of MHC class II and co-stimulatory molecules was also reduced in Cnr2−/− DCs. This study demonstrates that CB2 modulates the maturation phenotype of DCs but not their chemotactic capacities in vitro. These findings and the fact that CHS responses mediated by Cnr2−/− DCs are reduced suggest that CB2 is a promising target for the treatment of inflammatory skin conditions. Full article
(This article belongs to the Special Issue Role of Dendritic Cells in Inflammation)
Show Figures

Figure 1

23 pages, 6699 KiB  
Article
Interference with the Cannabinoid Receptor CB1R Results in Miswiring of GnRH3 and AgRP1 Axons in Zebrafish Embryos
by Giulia Zuccarini, Ilaria D’Atri, Erika Cottone, Ken Mackie, Inbal Shainer, Yoav Gothilf, Paolo Provero, Patrizia Bovolin and Giorgio Roberto Merlo
Int. J. Mol. Sci. 2020, 21(1), 168; https://doi.org/10.3390/ijms21010168 - 25 Dec 2019
Cited by 14 | Viewed by 5094
Abstract
The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of [...] Read more.
The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of GnRH and AgRP neurons, forebrain neurons that control respectively reproduction and appetite. We pharmacologically and genetically interfered with CB1R in zebrafish strains with fluorescently labeled GnRH3 and the AgRP1 neurons. By applying CB1R antagonists we observed a reduced number of GnRH3 neurons, fiber misrouting and altered fasciculation. Similar phenotypes were observed by CB1R knockdown. Interfering with CB1R also resulted in a reduced number, misrouting and poor fasciculation of the AgRP1 neuron’s axonal projections. Using a bioinformatic approach followed by qPCR validation, we have attempted to link CB1R functions with known guidance and fasciculation proteins. The search identified stathmin-2, a protein controlling microtubule dynamics, previously demonstrated to be coexpressed with CB1R and now shown to be downregulated upon interference with CB1R in zebrafish. Together, these results raise the likely possibility that embryonic exposure to low doses of CB1R-interfering compounds could impact on the development of the neuroendocrine systems controlling sexual maturation, reproduction and food intake. Full article
Show Figures

Figure 1

15 pages, 1090 KiB  
Review
The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases
by Maura Argenziano, Chiara Tortora, Giulia Bellini, Alessandra Di Paola, Francesca Punzo and Francesca Rossi
Int. J. Mol. Sci. 2019, 20(23), 5875; https://doi.org/10.3390/ijms20235875 - 23 Nov 2019
Cited by 37 | Viewed by 7720 | Correction
Abstract
Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune [...] Read more.
Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target. Full article
Show Figures

Graphical abstract

20 pages, 2471 KiB  
Article
Selective Cannabinoid 2 Receptor Agonists as Potential Therapeutic Drugs for the Treatment of Endotoxin-Induced Uveitis
by Richard Frederick Porter, Anna-Maria Szczesniak, James Thomas Toguri, Simon Gebremeskel, Brent Johnston, Christian Lehmann, Jürgen Fingerle, Benno Rothenhäusler, Camille Perret, Mark Rogers-Evans, Atsushi Kimbara, Matthias Nettekoven, Wolfgang Guba, Uwe Grether, Christoph Ullmer and Melanie E. M. Kelly
Molecules 2019, 24(18), 3338; https://doi.org/10.3390/molecules24183338 - 13 Sep 2019
Cited by 23 | Viewed by 6239
Abstract
(1) Background: The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective [...] Read more.
(1) Background: The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective CB2R ligands: CB2R agonists, RO6871304, and RO6871085, as well as a CB2R inverse agonist, RO6851228. In silico molecular modelling and in vitro cell-based receptor assays were used to verify CB2R interactions, binding, cell signaling (ß-arrestin and cAMP) and early absorption, distribution, metabolism, excretion, and toxicology (ADMET) profiling of these receptor ligands. All ligands were evaluated for their efficacy to modulate leukocyte-neutrophil activity, in comparison to the reported CB2R ligand, HU910, using an in vivo mouse model of endotoxin-induced uveitis (EIU) in wild-type (WT) and CB2R-/- mice. The actions of RO6871304 on neutrophil migration and adhesion were examined in vitro using isolated neutrophils from WT and CB2R-/- mice, and in vivo in WT mice with EIU using adoptive transfer of WT and CB2R-/- neutrophils, respectively. (3) Results: Molecular docking studies indicated that RO6871304 and RO6871085 bind to the orthosteric site of CB2R. Binding studies and cell signaling assays for RO6871304 and RO6871085 confirmed high-affinity binding to CB2R and selectivity for CB2R > CB1R, with both ligands acting as full agonists in cAMP and ß-arrestin assays (EC50s in low nM range). When tested in EIU, topical application of RO6871304 and RO6871085 decreased leukocyte-endothelial adhesion and this effect was antagonized by the inverse agonist, RO6851228. The CB2R agonist, RO6871304, decreased in vitro neutrophil migration of WT neutrophils but not neutrophils from CB2R-/-, and attenuated adhesion of adoptively-transferred leukocytes in EIU. (4) Conclusions: These unique ligands are potent and selective for CB2R and have good immunomodulating actions in the eye. RO6871304 and RO6871085, as well as HU910, decreased leukocyte adhesion in EIU through inhibition of resident ocular immune cells. The data generated with these three structurally-diverse and highly-selective CB2R agonists support selective targeting of CB2R for treating ocular inflammatory diseases. Full article
Show Figures

Figure 1

8 pages, 527 KiB  
Communication
Synthesis and Preliminary Biological Evaluation of Indol-3-yl-oxoacetamides as Potent Cannabinoid Receptor Type 2 Ligands
by Rareş-Petru Moldovan, Winnie Deuther-Conrad, Andrew G. Horti and Peter Brust
Molecules 2017, 22(1), 77; https://doi.org/10.3390/molecules22010077 - 4 Jan 2017
Cited by 4 | Viewed by 4916
Abstract
A small series of indol-3-yl-oxoacetamides was synthesized starting from the literature known N-(adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide (5) by substituting the 1-pentyl-1H-indole subunit. Our preliminary biological evaluation showed that the fluorinated derivative 8 is a potent and selective CB2 ligand with Ki = 6.2 nM. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop