Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = cannabinoid receptor type 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2064 KB  
Article
Hydrogen-Rich Water Potentiates Cannabinoid- and Gabapentinoid-Induced Analgesia in Neuropathic Pain
by Nuria Andrea Tort, Sylmara Esther Negrini-Ferrari and Olga Pol
Int. J. Mol. Sci. 2025, 26(24), 12155; https://doi.org/10.3390/ijms262412155 - 18 Dec 2025
Viewed by 604
Abstract
Neuropathic pain (NP) is a complex and disabling condition that often requires long-term treatment with high doses of pharmacological agents, frequently resulting in significant adverse side effects. Therefore, safer and more effective therapeutic approaches are urgently needed. Molecular hydrogen, recognized for its antioxidant [...] Read more.
Neuropathic pain (NP) is a complex and disabling condition that often requires long-term treatment with high doses of pharmacological agents, frequently resulting in significant adverse side effects. Therefore, safer and more effective therapeutic approaches are urgently needed. Molecular hydrogen, recognized for its antioxidant and anti-inflammatory actions, may act as a valuable adjunct to conventional analgesics. This study examined whether hydrogen-rich water (HRW) could potentiate the analgesic effects of JWH-133, a selective cannabinoid receptor type 2 agonist, and pregabalin, a gabapentinoid, in male C57BL/6 mice with NP induced by chronic constriction of the sciatic nerve. Mechanical allodynia, thermal hyperalgesia, and cold allodynia were assessed following separate or combined administration of HRW with JWH-133 or pregabalin. Western blot analyses of dorsal root ganglia measured markers of oxidative stress (4-HNE), inflammation (NLRP3), synaptic plasticity (p-ERK), and nociceptive signaling (p-AKT). Each treatment reduced pain-like behaviors in a dose-dependent manner, while co-administration of HRW with JWH-133 or pregabalin produced greater analgesic effects. Combined treatments also diminished oxidative stress, inflammation, maladaptive neural changes and nociceptive pathways activated by peripheral nerve injury. These findings suggest HRW as a promising adjuvant to cannabinoid and gabapentinoid therapies, potentially improving efficacy and reducing high-dose drug-related adverse effects. Full article
Show Figures

Figure 1

23 pages, 1525 KB  
Review
The CB2 Receptor in Immune Regulation and Disease: Genetic Architecture, Epigenetic Control, and Emerging Therapeutic Strategies
by Hilal Kalkan and Nicolas Flamand
DNA 2025, 5(4), 59; https://doi.org/10.3390/dna5040059 - 11 Dec 2025
Viewed by 1010
Abstract
The cannabinoid receptor type 2 (CB2) is increasingly recognized as a crucial regulator of neuroimmune balance in the brain. In addition to its well-established role in immunity, the CB2 receptor has been identified in specific populations of neurons and glial [...] Read more.
The cannabinoid receptor type 2 (CB2) is increasingly recognized as a crucial regulator of neuroimmune balance in the brain. In addition to its well-established role in immunity, the CB2 receptor has been identified in specific populations of neurons and glial cells throughout various brain regions, and its expression is dynamically increased during inflammatory and neuropathological conditions, positioning it as a potential non-psychoactive target for modifying neurological diseases. The expression of the CB2 gene (CNR2) is finely tuned by epigenetic processes, including promoter CpG methylation, histone modifications, and non-coding RNAs, which regulate receptor availability and signaling preferences in response to stress, inflammation, and environmental factors. CB2 signaling interacts with TRP channels (such as TRPV1), nuclear receptors (PPARγ), and orphan G Protein-Coupled Receptors (GPCRs, including GPR55 and GPR18) within the endocannabinoidome (eCBome), influencing microglial characteristics, cytokine production, and synaptic activity. We review how these interconnected mechanisms affect neurodegenerative and neuropsychiatric disorders, underscore the species- and cell-type-specificities that pose challenges for translation, and explore emerging strategies, including selective agonists, positive allosteric modulators, and biased ligands, that leverage the signaling adaptability of the CB2 receptor while reducing central effects mediated by the CB1 receptor. This focus on the neuro-centric perspective repositions the CB2 receptor as an epigenetically informed, context-dependent hub within the eCBome, making it a promising candidate for precision therapies in conditions featuring neuroinflammation. Full article
Show Figures

Figure 1

23 pages, 1776 KB  
Article
Cannabinoid Receptor Type 2 Agonist JWH-133 Stimulates Antiviral Factors and Decreases Proviral, Inflammatory, and Neurotoxic Proteins in HIV-Infected Macrophage Secretome
by Lester J. Rosario-Rodríguez, Yadira M. Cantres-Rosario, Ana E. Rodríguez De Jesús, Alana M. Mera-Pérez, Eduardo L. Tosado-Rodríguez, Abiel Roche Lima and Loyda M. Meléndez
Int. J. Mol. Sci. 2025, 26(21), 10596; https://doi.org/10.3390/ijms262110596 - 30 Oct 2025
Cited by 1 | Viewed by 908
Abstract
Although antiviral therapy has improved quality of life, around 50% of people with HIV (PWH) experience neurodegeneration and cognitive decline. This is prompted in part by the migration of HIV-infected monocyte-derived macrophages (MDMs) to the brain, leading to neuronal death. Previous studies in [...] Read more.
Although antiviral therapy has improved quality of life, around 50% of people with HIV (PWH) experience neurodegeneration and cognitive decline. This is prompted in part by the migration of HIV-infected monocyte-derived macrophages (MDMs) to the brain, leading to neuronal death. Previous studies in our lab have shown that HIV-infected MDMs secrete cathepsin B (CATB), which is a pro-inflammatory neurotoxic enzyme that is reduced by the addition of cannabinoid receptor-2 (CB2R) agonist JWH-133 to cell cultures. In this study, we aimed to identify the proteins secreted (secretome) by HIV-infected macrophages exposed to JWH-133 and quantify them using tandem mass tag (TMT) mass spectrometry. Frozen 13-day MDM supernatants from (1) an MDM negative control; (2) HIV+MDM, and (3) HIV+MDM-JWH-133 were compared in triplicate by mass spectrometry (LC/MS/MS) and analyzed for protein identification. Subsequently, the same samples were labeled by TMT labeling and quantified by LC/MS/MS. After a database search, 528 proteins were identified from all groups. Thereafter, proteins with more than three unique peptides and more than 10% coverage were selected for protein identification. Venn diagrams revealed one unique protein secreted by MDM-HIV, 10 unique proteins in HIV+MDM-JWH-133, and 15 common proteins in the three groups. CATB was unique to HIV+MDM. HIV+MDM exposed to JWH-133 showed proteins related to metabolism, cell organization, antiviral activity, and stress response. TMT analysis revealed 1454 proteins with abundance for statistical analysis based on FC ≥ |1.5| and p-value ≤ 0.05, of which Ruvb-like 1 and Hornerin decreased significantly with JWH-133 treatment. Both proteins stimulate HIV replication. In addition, HIV infection upregulated proteins associated with pathways of viral latency that were inhibited by JWH-133. In conclusion, JWH-133 treatment in HIV-infected macrophages leads to the secretion of antiviral host factors and decreases the secretion of proviral, inflammatory, and neurotoxic host factors. Full article
Show Figures

Figure 1

33 pages, 1907 KB  
Review
Topical β-Caryophyllene for Dermatologic Disorders: Mechanisms, Human Evidence, and Clinical Translation
by Amina M. Bagher
Pharmaceuticals 2025, 18(11), 1605; https://doi.org/10.3390/ph18111605 - 23 Oct 2025
Cited by 1 | Viewed by 2285
Abstract
Background: Chronic inflammatory skin disorders, including atopic dermatitis, psoriasis, acne, and chronic wounds, affect nearly two billion people worldwide, impose substantial morbidity and economic burden, and remain only partially controlled by existing therapies. The cutaneous endocannabinoid system (ECS), comprising cannabinoid receptors, endocannabinoids, and [...] Read more.
Background: Chronic inflammatory skin disorders, including atopic dermatitis, psoriasis, acne, and chronic wounds, affect nearly two billion people worldwide, impose substantial morbidity and economic burden, and remain only partially controlled by existing therapies. The cutaneous endocannabinoid system (ECS), comprising cannabinoid receptors, endocannabinoids, and their metabolic enzymes, regulates inflammation, pruritus, barrier integrity, and tissue repair; cannabinoid receptor type 2 (CB2) has emerged as a particularly relevant target. β-Caryophyllene (BCP), a dietary sesquiterpene and highly selective CB2 agonist with favorable safety and pharmacokinetic attributes, has attracted attention as a promising topical candidate. Methods: We systematically searched PubMed, Embase, and Web of Science (inception–30 July 2025) for studies on “β-caryophyllene” and dermatological outcomes, prioritizing purified BCP and analytically characterized BCP-rich fractions. Quantitative parameters, including tested concentration ranges (0.5 µM–10%) and principal mechanistic outcomes, were extracted to provide a translational context. Results: BCP penetrates the stratum corneum, suppresses NF-κB/MAPK and IL-4/TSLP pathways, enhances Nrf2-driven antioxidant defenses, and accelerates re-epithelialization and collagen remodeling. Across in vitro, in vivo, and formulation studies, BCP produced consistent anti-inflammatory and barrier-restorative effects within this concentration range. CB2 antagonism attenuated these responses, confirming receptor specificity. BCP’s volatility and autoxidation to β-caryophyllene oxide (BCPO) necessitate stability-by-design strategies using antioxidants, low-oxygen processing, and protective packaging. Human evidence, limited to BCP-rich botanicals such as Copaifera oleoresins, suggests benefits for scars, wounds, and acne but lacks compound-specific validation. Conclusions: BCP exhibits coherent CB2-mediated anti-inflammatory, antipruritic, antioxidant, and reparative actions with a favorable safety profile. Dose-defined, oxidation-controlled clinical trials of purified BCP are warranted to establish its potential as a steroid-sparing topical therapy. Full article
Show Figures

Graphical abstract

28 pages, 4904 KB  
Article
Synthesis of Novel Chloro-Benzo [d]imidazole Regioisomers as Selective CB2 Receptor Agonists: Indirect Functional Evaluation and Molecular Insights
by Valeria Zuñiga Salazar, Renato Burgos Ravanal, Jonathan Soto-Flores, Gianfranco Sabadini, José Vicente González, Jaime Mella and Javier Romero-Parra
Pharmaceuticals 2025, 18(11), 1599; https://doi.org/10.3390/ph18111599 - 22 Oct 2025
Cited by 1 | Viewed by 762
Abstract
Background/Objectives: The cannabinoid type 2 receptor (CB2 receptor) has been extensively studied in recent years due to the benefits associated with its modulation, including the regulation of the inflammatory response, neuroimmunomodulatory properties, and antitumor effects, all with the advantage of lacking significant [...] Read more.
Background/Objectives: The cannabinoid type 2 receptor (CB2 receptor) has been extensively studied in recent years due to the benefits associated with its modulation, including the regulation of the inflammatory response, neuroimmunomodulatory properties, and antitumor effects, all with the advantage of lacking significant psychoactive effects. Herein, we report the design, synthesis, characterization, biological assays, and molecular modelling analyses of novel (5/6-chloro-2-aryl-1H-benzo [d]imidazol-1-yl)(4-methoxyphenyl)methanone and 5/6-chloro-1-(4-methoxybenzyl)-2-aryl-1H-benzo [d]imidazole regioisomers as potential cannabinoid type 2 receptor ligands. Methods: The compounds were evaluated for their presumed CB2 agonist activity using an indirect receptor-dependent apoptotic cell death assay exerted by cannabinoids, using the cell lines HEK293 (low CB1/CB2 expression), U-87 MG (high CB1 expression), and HL-60 (exclusive CB2 expression), and including the known cannabinoid ligands WIN-55,212-2 and AM630 as reference ligands. Flow cytometry was performed to assess apoptosis. Molecular docking and molecular dynamics simulations were used to explore ligand-receptor interactions at the CB2 active site. Results: Compounds 3a, 3b’, 3c, and 4b selectively reduced HL-60 cell viability, similar to WIN-55,212-2, while showing no toxicity toward HEK293 or U-87 MG cells. Flow cytometry indicated that compounds 3a and 3c induced apoptosis in HL-60 cells comparable to WIN-55,212-2. Computational studies suggested that both compounds bind within the CB2 receptor active site predominantly through π–π and hydrophobic interactions involving their benzo [d]imidazole cores, 2-aryl moieties, and 4-methoxybenzoyl scaffolds, resembling the binding patterns of established CB2 ligands. Conclusions: Compounds 3a and 3c exert selective cytotoxicity against HL-60 cells, likely via a CB2 agonist-mediated apoptotic mechanism. The applied combined experimental and computational approach provides a rapid, informative strategy for preliminary evaluation of CB2 ligands and guides subsequent detailed pharmacological studies. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 3497 KB  
Article
Cannabigerol Modulates Cannabinoid Receptor Type 2 Expression in the Spinal Dorsal Horn and Attenuates Neuropathic Pain Models
by Bismarck Rezende, Gabriel Gripp Fernandes, Vitória Macario de Simas Gonçalves, Gabriela Guedes Nascimento, Kethely Lima Marques, Barbara Conceição Costa Azeredo de Oliveira, Yure Bazilio dos Santos, Maria Eduarda Barros de Andrade, Karine Simões Calumbi, Eduardo Perdigão Maia, Luisa Menezes Trefilio, Fernanda Antunes, Fabrícia Lima Fontes-Dantas and Guilherme Carneiro Montes
Pharmaceuticals 2025, 18(10), 1508; https://doi.org/10.3390/ph18101508 - 8 Oct 2025
Viewed by 3768
Abstract
Background/Objectives: The expanding focus on novel therapeutic pathways for long-term pain relief has directed interest toward compounds obtained from Cannabis sativa. This study evaluated the antinociceptive potential of cannabigerol-enriched extract (CBG) in models of acute and chronic hypernociception, along with morphological outcomes. Methods: [...] Read more.
Background/Objectives: The expanding focus on novel therapeutic pathways for long-term pain relief has directed interest toward compounds obtained from Cannabis sativa. This study evaluated the antinociceptive potential of cannabigerol-enriched extract (CBG) in models of acute and chronic hypernociception, along with morphological outcomes. Methods: Formalin and hot plate tests were used on male Swiss mice to assess acute oral antinociception. To the chronic pain model, 8-week-old male Wistar rats underwent spinal nerve ligation (SNL), and CBG was administered orally by gavage once daily for 14 days. Results: CBG reduced nociceptive responses in the formalin test and hot plate tests, mainly at a dose of 30 mg/kg, showing antinociceptive activity. CBG attenuated SNL-induced thermal and mechanical hypersensitivity, accompanied by reduced microglial density and spinal morphological changes. Importantly, cannabinoid receptor type 2 (CB2R) signaling contributed to the antinociceptive effects of orally administered CBG, whereas cannabinoid receptor type 1 (CB1R), Brain-Derived Neurotrophic Factor (BDNF), and Tumor Necrosis Factor (TNF) did not appear to play major roles under our experimental conditions. Conclusions: Collectively, these findings support CBG as a promising alternative for chronic pain management. Full article
(This article belongs to the Topic Research on Natural Products of Medical Plants)
Show Figures

Graphical abstract

35 pages, 1690 KB  
Review
The Endocannabinoid System in the Development and Treatment of Obesity: Searching for New Ideas
by Anna Serefko, Joanna Lachowicz-Radulska, Monika Elżbieta Jach, Katarzyna Świąder and Aleksandra Szopa
Int. J. Mol. Sci. 2025, 26(19), 9549; https://doi.org/10.3390/ijms26199549 - 30 Sep 2025
Cited by 2 | Viewed by 3208
Abstract
Obesity is a complex, multifactorial disease and a growing global health challenge associated with type 2 diabetes, cardiovascular disorders, cancer, and reduced quality of life. The existing pharmacological therapies are characterized by their limited number and efficacy, and safety concerns further restrict their [...] Read more.
Obesity is a complex, multifactorial disease and a growing global health challenge associated with type 2 diabetes, cardiovascular disorders, cancer, and reduced quality of life. The existing pharmacological therapies are characterized by their limited number and efficacy, and safety concerns further restrict their utilization. This review synthesizes extensive knowledge regarding the role of the endocannabinoid system (ECS) in the pathogenesis of obesity, as well as its potential as a therapeutic target. A thorough evaluation of preclinical and clinical data concerning endocannabinoid ligands, cannabinoid receptors (CB1, CB2), their genetic variants, and pharmacological interventions targeting the ECS was conducted. Literature data suggests that the overactivation of the ECS may play a role in the pathophysiology of excessive food intake, dysregulated energy balance, adiposity, and metabolic disturbances. The pharmacological modulation of ECS components, by means of CB1 receptor antagonists/inverse agonists, CB2 receptor agonists, enzyme inhibitors, and hybrid or allosteric ligands, has demonstrated promising anti-obesity effects in animal models. However, the translation of these findings into clinical practice remains challenging due to safety concerns, particularly neuropsychiatric adverse events. The development of novel strategies, including peripherally restricted compounds, hybrid dual-target agents, dietary modulation of endocannabinoid tone, and non-pharmacological interventions, promises to advance the field of obesity management. Full article
(This article belongs to the Special Issue Molecular Research and Insight into Endocannabinoid System)
Show Figures

Figure 1

5 pages, 190 KB  
Editorial
Therapeutic Potential of Cannabinoid Receptors Type 1 and 2—Novel Insights for Enhancing the Chance of Clinical Success
by Uwe Grether
Pharmaceuticals 2025, 18(9), 1324; https://doi.org/10.3390/ph18091324 - 4 Sep 2025
Viewed by 1289
Abstract
This Special Issue of Pharmaceuticals presents eight original articles and three reviews, underscoring the ongoing robust interest in research on cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) more than 30 years after their discovery [...] Full article
23 pages, 5430 KB  
Article
β-Caryophyllene Ameliorates Thioacetamide-Induced Liver Fibrosis in Rats: A Preventative Approach
by Lujain Bader Eddin, Amar Mahgoub, Saeeda Almarzooqi, Ernest Adeghate, Sandeep B. Subramanya and Shreesh Ojha
Int. J. Mol. Sci. 2025, 26(17), 8493; https://doi.org/10.3390/ijms26178493 - 1 Sep 2025
Cited by 1 | Viewed by 1745
Abstract
Liver fibrosis is associated with increased rates of morbidity and mortality. At present, there are no specific treatments that can directly reverse hepatic fibrosis. The endocannabinoid system has been found to play a significant role in regulating the development and progression of liver [...] Read more.
Liver fibrosis is associated with increased rates of morbidity and mortality. At present, there are no specific treatments that can directly reverse hepatic fibrosis. The endocannabinoid system has been found to play a significant role in regulating the development and progression of liver diseases, in addition to having protective effects. In this study, we investigate the protective potential of β-Caryophyllene (BCP) against Thioacetamide (TAA)-induced liver fibrosis. Wistar rats were injected with TAA (200 mg/kg) three times per week for 8 weeks to induce liver fibrosis. They also received oral BCP before the TAA injections. AM630 (1 mg/kg) was administered to confirm the CB2 receptor-dependent effect of BCP. The BCP treatment (50 mg/kg) protected against cell injury and potentiated antioxidant defense by replenishing hepatic GSH, improving catalase activity, and inhibiting the formation of MDA. The co-administration of BCP mitigated the TAA-induced inflammatory response by decreasing the release of proinflammatory cytokines. Histological examination showed preserved cellular integrity, decreased collagen deposits with other extracellular matrix proteins, and low levels of myofibroblast activation. In addition, the BCP-treated rats demonstrated upregulated sirtuin 1 (SIRT1) expression, which had a direct inhibitory effect on hypoxia inducible factor (HIF-1α). AM630 pre-treatment inhibited all the aforementioned protective mechanisms of BCP. Based on our findings, BCP exerts protective effects in liver fibrosis, which can be attributed to its agonist action on CB2 receptors. This study provides preclinical evidence of the potential preventative benefits of BCP in liver fibrosis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

18 pages, 2316 KB  
Article
Cannabinoid Receptors in the Horse Lateral Nucleus of the Amygdala: A Potential Target for Ameliorating Pain Perception, Stress and Anxiety in Horses
by Cristiano Bombardi, Giulia Salamanca, Claudio Tagliavia, Annamaria Grandis, Rodrigo Zamith Cunha, Alessandro Gramenzi, Margherita De Silva, Augusta Zannoni and Roberto Chiocchetti
Int. J. Mol. Sci. 2025, 26(15), 7613; https://doi.org/10.3390/ijms26157613 - 6 Aug 2025
Cited by 2 | Viewed by 1499
Abstract
The amygdala is composed of several nuclei, including the lateral nucleus which is the main receiving area for the input from cortical and subcortical brain regions. It mediates fear, anxiety, stress, and pain across species. Evidence suggests that the endocannabinoid system may be [...] Read more.
The amygdala is composed of several nuclei, including the lateral nucleus which is the main receiving area for the input from cortical and subcortical brain regions. It mediates fear, anxiety, stress, and pain across species. Evidence suggests that the endocannabinoid system may be a promising target for modulating these processes. Cannabinoid and cannabinoid-related receptors have been identified in the amygdala of rodents, carnivores, and humans, but not in horses. This study aimed to investigate the gene expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R), transient receptor potential vanilloid 1 (TRPV1), and peroxisome proliferator-activated receptor gamma (PPARγ) within the lateral nucleus of six equine amygdalae collected post mortem from an abattoir using quantitative real-time PCR, cellular distribution, and immunofluorescence. mRNA expression of CB1R and CB2R, but not TRPV1 or PPARγ, was detected. The percentage of immunoreactivity (IR) was calculated using ImageJ software. Cannabinoid receptor 1 immunoreactivity was absent in the somata but was strongly detected in the surrounding neuropil and varicosities and CB2R-IR was observed in the varicosities; TRPV1-IR showed moderate expression in the cytoplasm of somata and processes, while PPARγ-IR was weak-to-moderate in the neuronal nuclei. These findings demonstrate endocannabinoid system components in the equine amygdala and may support future studies on Cannabis spp. molecules acting on these receptors. Full article
Show Figures

Figure 1

29 pages, 1550 KB  
Review
Phytochemical Modulators of Nociception: A Review of Cannabis Terpenes in Chronic Pain Syndromes
by Aniello Alfieri, Sveva Di Franco, Vincenzo Maffei, Pasquale Sansone, Maria Caterina Pace, Maria Beatrice Passavanti and Marco Fiore
Pharmaceuticals 2025, 18(8), 1100; https://doi.org/10.3390/ph18081100 - 24 Jul 2025
Cited by 4 | Viewed by 8318
Abstract
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for [...] Read more.
Cannabis sativa L. is a phytochemically rich plant with therapeutic potential across various clinical domains, including pain, inflammation, and neurological disorders. Among its constituents, terpenes are gaining recognition for their capacity to modulate the pathophysiological processes underlying chronic pain syndromes. Traditionally valued for their aromatic qualities, terpenes such as myrcene, β-caryophyllene (BCP), limonene, pinene, linalool, and humulene have demonstrated a broad spectrum of biological activities. Beyond their observable analgesic, anti-inflammatory, and anxiolytic outcomes, these compounds exert their actions through distinct molecular mechanisms. These include the activation of cannabinoid receptor type 2 (CB2), the modulation of transient receptor potential (TRP) and adenosine receptors, and the inhibition of pro-inflammatory signalling pathways such as Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Cyclooxygenase-2 (COX-2). This narrative review synthesizes the current preclinical and emerging clinical data on terpene-mediated analgesia, highlighting both monoterpenes and sesquiterpenes, and discusses their potential for synergistic interaction with cannabinoids, the so-called entourage effect. Although preclinical findings are promising, clinical translation is limited by methodological variability, the lack of standardized formulations, and insufficient pharmacokinetic characterization. Further human studies are essential to clarify their therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

39 pages, 2934 KB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Cited by 2 | Viewed by 2206
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

24 pages, 5287 KB  
Article
A Tourette Syndrome/ADHD-like Phenotype Results from Postnatal Disruption of CB1 and CB2 Receptor Signalling
by Victoria Gorberg, Tamar Harpaz, Emilya Natali Shamir, Orit Diana Karminsky, Ester Fride, Roger G. Pertwee, Iain R. Greig, Peter McCaffery and Sharon Anavi-Goffer
Int. J. Mol. Sci. 2025, 26(13), 6052; https://doi.org/10.3390/ijms26136052 - 24 Jun 2025
Cited by 2 | Viewed by 1587
Abstract
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have [...] Read more.
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have Tourette syndrome (TS). However, it remains unclear if insufficient CB1 receptor signalling may promote ADHD/TS-like behaviours. Here, ADHD/TS-like behaviours were studied from postnatal to adulthood by exposing postnatal wild-type CB1 and Cannabinoid receptor 2 (CB2) knockout mouse pups to SR141716A (rimonabant), a CB1 receptor antagonist/inverse agonist. Postnatal disruption of the cannabinoid system by SR141716A induced vocal-like tics and learning deficits in male mice, accompanied by excessive vocalisation, hyperactivity, motor-like tics and/or high-risk behaviour in adults. In CB1 knockouts, rearing and risky behaviours increased in females. In CB2 knockouts, vocal-like tics did not develop, and males were hyperactive with learning deficits. Importantly, females were hyperactive but showed no vocal-like tics. The appearance of vocal-like tics depends on disrupted CB1 receptor signalling and on functional CB2 receptors after birth. Inhibition of CB1 receptor signalling together with CB2 receptor stimulation underlie ADHD/TS-like behaviours in males. This study suggests that the ADHD/TS phenotype may be a single clinical entity resulting from incorrect cannabinoid signalling after birth. Full article
Show Figures

Figure 1

17 pages, 3318 KB  
Article
Intraplantar β-Caryophyllene Alleviates Pain and Inflammation in STZ-Induced Diabetic Peripheral Neuropathy via CB2 Receptor Activation
by Amina M. Bagher
Int. J. Mol. Sci. 2025, 26(9), 4430; https://doi.org/10.3390/ijms26094430 - 7 May 2025
Cited by 2 | Viewed by 4230
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes, characterized by mechanical allodynia, neuroinflammation, and oxidative stress. Current treatments offer limited efficacy and are often associated with systemic side effects. Emerging evidence suggests that activation of cannabinoid receptor type 2 (CB2 [...] Read more.
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes, characterized by mechanical allodynia, neuroinflammation, and oxidative stress. Current treatments offer limited efficacy and are often associated with systemic side effects. Emerging evidence suggests that activation of cannabinoid receptor type 2 (CB2) may represent a promising target for managing neuropathic pain and inflammation. This study investigates the therapeutic potential of intraplantar β-Caryophyllene (BCP), a selective CB2 receptor agonist, administered as a topical intervention in a streptozotocin (STZ)-induced DPN mouse model. Hyperglycemia was induced by STZ injections, and diabetic mice received intraplantar BCP (9, 18, or 27 µg) daily for 21 days. Mechanical allodynia was assessed using von Frey filaments, and levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and oxidative stress markers (MDA, SOD, CAT) were quantified in hind paw tissues. BCP dose-dependently alleviated STZ-induced mechanical allodynia, with the 27 µg dose producing the most pronounced effect (p < 0.001). The anti-allodynic effects of BCP were mediated through CB2 receptor activation, confirmed by reversal with the CB2 antagonist AM630 (p < 0.001), while the CB1 antagonist AM251 had no significant impact. In addition, BCP significantly reduced pro-inflammatory cytokines (p < 0.01) and oxidative stress markers (p < 0.001) while restoring antioxidant enzyme activities (p < 0.05). A control group treated with a clinically available topical analgesic cream containing capsaicin 0.075% exhibited limited efficacy. These findings position topical BCP administration as a novel therapeutic strategy for DPN, offering sustained pain relief and modulation of neuroinflammatory and oxidative pathways with minimal systemic exposure. Further clinical studies are warranted to validate its potential for translation into therapeutic practice. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

17 pages, 2125 KB  
Article
Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Inflammatory Bowel Disease
by Mara Creoli, Alessandra Di Paola, Antonietta Tarallo, Sohail Aziz, Erasmo Miele, Massimo Martinelli, Marianna Casertano, Antonio Colucci, Sabrina Cenni, Maria Maddalena Marrapodi, Annamaria Staiano, Francesca Rossi and Caterina Strisciuglio
Int. J. Mol. Sci. 2025, 26(8), 3720; https://doi.org/10.3390/ijms26083720 - 15 Apr 2025
Cited by 4 | Viewed by 1740
Abstract
Macrophages play a crucial role in maintaining intestinal homeostasis and can exhibit either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. The cannabinoid receptor type 2 (CB2) is involved in immune regulation and may represent a therapeutic target in inflammatory bowel disease (IBD). Our study [...] Read more.
Macrophages play a crucial role in maintaining intestinal homeostasis and can exhibit either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. The cannabinoid receptor type 2 (CB2) is involved in immune regulation and may represent a therapeutic target in inflammatory bowel disease (IBD). Our study investigates the phenotype of circulating macrophages and CB2 expression in children with IBD, assessing the role of CB2 stimulation in macrophage polarization, iron metabolism, and intestinal barrier function. Macrophages were isolated from 17 children with ulcerative colitis (UC), 21 with Crohn’s disease (CD), and 12 healthy controls (CTR). Cells were treated with a CB2 agonist (JWH-133) and an inverse agonist (AM630). CB2 expression and macrophage polarization were assessed by Western blot. Iron metabolism was evaluated through IL-6, hepcidin levels, FPN-1 expression, and iron concentration. Inflammation was assessed by cytokine release. An in vitro “immunocompetent gut” model was used to study the effects of CB2 stimulation on macrophage polarization and intestinal barrier function. CB2 expression was reduced in IBD macrophages. Compared to controls, IBD patients showed increased M1 markers and pro-inflammatory cytokines, with a reduction in M2 markers and IL-13. Altered iron metabolism was observed, with increased [Fe3+], hepcidin release, and DMT1 expression, and reduced FPN-1. CB2 stimulation restored iron metabolism, induced M2 polarization, and improved intestinal barrier function. CB2 could represent a novel therapeutic target for IBD by modulating macrophage function, iron metabolism, and mucosal barrier restoration. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

Back to TopTop