Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = cannabinoid determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 403
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

16 pages, 1501 KiB  
Article
Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle
by Jiajie Wang, Hanfang Zeng, Hantong Weng, Haomiao Chang, Yunfei Zhai, Zhihui Huang, Chenchen Chu, Haihui Wang and Zhaoyu Han
Animals 2025, 15(15), 2167; https://doi.org/10.3390/ani15152167 - 23 Jul 2025
Viewed by 226
Abstract
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to [...] Read more.
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to 9 months old) and body weight (370 ± 10 kg) were randomly divided into two groups, each containing 15 animals. A control group was fed the basal diet, and a treatment group was fed the same basal diet with the addition of 4 g/kg of thermally modified attapulgite. After 75 days of formal experiment, the calves in the two groups were weighed, and blood samples were collected by tail vein blood sampling for determinations of the serum biochemical indices and serum metabolites using liquid chromatography–mass spectrometry (LC-MS) analysis. The results indicated that the addition of thermally modified attapulgite to the diet had no significant effects on the daily weight gain of fattening beef cattle. After feeding with modified attapulgite, the glutathione peroxidase and superoxide dismutase activities in the serum of the experimental group were 55.02% (257.26 U·mL−1 to 165.95 U·mL−1, p < 0.05) and 13.11% (18.98 U·mL−1 to 16.78 U·mL−1, p < 0.05) higher than that in the control group. Compared with the control group, the tumor necrosis factor-alpha content was reduced by 14.50% (31.27 pg·mL−1 to 36.57 pg·mL−1, p < 0.01), and the concentration of interleukin-6 and lipopolysaccharide decreased by 17.00% (34.33 pg·mL−1 to 41.36 pg·mL−1, p < 0.001) and 23.05% (51.34 EU·L−1 to 66.72 EU·L−1, p < 0.001) in the serum of the experimental group. Contrastingly, the thermally modified attapulgite had no significant effects on the levels of serum total protein, albumin, or globulin in Simmental fattening cattle (p > 0.05). Furthermore, the results of serum metabolomic analyses revealed that there were a total of 98 differential metabolites, which were mainly enriched with respect to glycerophospholipid metabolism, Th1 and Th2 cell differentiation, autophagy-other, retrograde endogenous cannabinoid signaling, and the NF-κB signaling pathway. Overall, thermally modified attapulgite was found to effectively increase the activity of antioxidant enzymes, reduce serum inflammatory mediators, may suppress oxidative damage, enhance immunity, and have a positive influence on the health of Simmental fattening beef calves. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 398
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

19 pages, 7023 KiB  
Article
Modulation of Neurexins Alternative Splicing by Cannabinoid Receptors 1 (CB1) Signaling
by Elisa Innocenzi, Giuseppe Sciamanna, Alice Zucchi, Vanessa Medici, Eleonora Cesari, Donatella Farini, David J. Elliott, Claudio Sette and Paola Grimaldi
Cells 2025, 14(13), 972; https://doi.org/10.3390/cells14130972 - 25 Jun 2025
Viewed by 553
Abstract
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding [...] Read more.
Synaptic plasticity is the key mechanism underlying learning and memory. Neurexins are pre-synaptic molecules that play a pivotal role in synaptic plasticity, interacting with many different post-synaptic molecules in the formation of neural circuits. Neurexins are alternatively spliced at different splice sites, yielding thousands of isoforms with different properties of interaction with post-synaptic molecules for a quick adaptation to internal and external inputs. The endocannabinoid system also plays a central role in synaptic plasticity, regulating key retrograde signaling at both excitatory and inhibitory synapses. This study aims at elucidating the crosstalk between alternative splicing of neurexin and the endocannabinoid system in the hippocampus. By employing an ex vivo hippocampal system, we found that pharmacological activation of cannabinoid receptor 1 (CB1) with the specific agonist ACEA led to reduced neurotransmission, associated with increased expression of the Nrxn1–3 spliced isoforms excluding the exon at splice site 4 (SS4−). In contrast, treatment with the CB1 antagonist AM251 increased glutamatergic activity and promoted the expression of the Nrxn variants including the exon (SS4+) Knockout of the involved splicing factor SLM2 determined the suppression of the exon splicing at SS4 and the expression only of the SS4+ variants of Nrxns1–3 transcripts. Interestingly, in SLM2 ko hippocampus, modulation of neurotransmission by AM251 or ACEA was abolished. These findings suggest a direct crosstalk between CB1-dependent signaling, neurotransmission and expression of specific Nrxns splice variants in the hippocampus. We propose that the fine-tuned regulation of Nrxn13 genes alternative splicing may play an important role in the feedback control of neurotransmission by the endocannabinoid system. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

22 pages, 1017 KiB  
Article
Development of a Validated LC-MS Method for the Determination of Cannabinoids and Evaluation of Supercritical CO2 vs. Ultrasound-Assisted Extraction in Cannabis sativa L. (Kompolti cv.)
by Vasileios A. Ioannidis, Varvara Sygouni, Sotirios Giannopoulos, Konstantinos Sotirianos, Theophilos Ioannides, Christakis A. Paraskeva and Fotini N. Lamari
Antioxidants 2025, 14(7), 777; https://doi.org/10.3390/antiox14070777 - 24 Jun 2025
Viewed by 1444
Abstract
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate [...] Read more.
Cannabis (Cannabis sativa L.) contains numerous secondary metabolites with different bioactivities. Extraction methods differ in their efficiency in recovering metabolites from plant material, and thus cannabis extracts vary significantly in their composition and activity. We aimed to develop a repeatable and accurate HPLC-MS method for the determination of nine common cannabinoids and compare two widely used extraction techniques: ultrasound-assisted extraction (UAE) with methanol and supercritical CO2 extraction (SFE). Inflorescences of the Kompolti cultivar were used as the plant material. On a polar C18 column, more than thirty compounds were well separated within 25 min; thirteen cannabinoids were identified and eight of them were quantified, with cannabidiol and its acidic precursor being the most abundant. Additionally, three spectrophotometric assays were employed for extract characterization: the total phenolic content, total flavonoid content, and DPPH radical scavenging capacity. The SFE extract, obtained using ethanol as a co-solvent under low pressure (<100 bar) and temperature (<45 °C), was more enriched than the UAE extract (181.62 ± 2.90 vs. 140.64 ± 13.24 mg quercetin equivalents/g of dry extract) and cannabinoids (446.29 ± 22.66 vs. 379.85 ± 17.16 mg/g of dry extract), especially cannabinoid acids. However, UAE achieved greater recovery from the plant material (cannabinoids: 83.42 ± 5.15 vs. 68.84 ± 3.49 mg/g of plant material) and showed superior antioxidant capacity (DPPH IC50: 2.50 ± 0.18 vs. 3.37 ± 0.07 mg/mL). Notwithstanding the observed partial decarboxylation, the high repeatability (RSD < 15%, n = 11) of the entire analytical workflow involving UAE extraction and LC-MS analysis renders it suitable for routine analyses. This study contributes to the ongoing efforts toward the quality control and valorization of C. sativa. Full article
Show Figures

Figure 1

16 pages, 1266 KiB  
Review
The Role of Jasmonates in Modulating Growth, Trichome Density, and Cannabinoid Accumulation in Cannabis sativa L.
by Jose F. Da Cunha Leme Filho, Spencer Schuchman, Rodrigo De Sarandy Raposo, Andre A. Diatta, Fardad Didaran, Shiksha Sharma, Alan Walters and Karla L. Gage
Int. J. Plant Biol. 2025, 16(2), 68; https://doi.org/10.3390/ijpb16020068 - 17 Jun 2025
Cited by 1 | Viewed by 1506
Abstract
Jasmonates have emerged as a prominent elicitor for enhancing trichome development and cannabinoid production in Cannabis sativa L. (cannabis). These glandular trichomes synthesize and store important cannabinoids, including tetrahydrocannabinol (THC) and cannabidiol (CBD), which determine the yield, potency, and quality of cannabis flowers. [...] Read more.
Jasmonates have emerged as a prominent elicitor for enhancing trichome development and cannabinoid production in Cannabis sativa L. (cannabis). These glandular trichomes synthesize and store important cannabinoids, including tetrahydrocannabinol (THC) and cannabidiol (CBD), which determine the yield, potency, and quality of cannabis flowers. Methyl jasmonate (MeJA) acts through the COI1–JAZ–MYC signaling pathway to upregulate genes associated with trichome initiation and cannabinoid precursor formation. Evidence suggests that moderate MeJA concentrations (typically 50–100 µM) can effectively boost trichome density, elevate hexanoyl-CoA availability, and modestly enhance key biosynthetic enzyme activities, ultimately increasing THC and CBD content. However, higher methyl jasmonate doses can amplify these benefits, yet pose a risk of excessive vegetative stunting, highlighting the crucial trade-off between enhancing cannabinoid potency and maintaining overall biomass yield. Interaction with hormones like gibberellins, salicylic acid, and ethylene further shapes the plant’s stress responses and secondary metabolism. Application in controlled environments, such as greenhouses or vertical farms, shows promise for enhancing resin production while minimizing biomass loss. In outdoor conditions, the application may offer additional defense benefits against pests and pathogens. These responses can vary depending on the cultivar, underscoring the importance of cultivar-specific optimization. As demand for high-cannabinoid cannabis products continues to grow and agrochemical options remain limited, leveraging MeJA treatments offers a practical, non-genetically modified approach to optimize yield, quality, and resilience in cannabis cultivation. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

17 pages, 2030 KiB  
Review
Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives
by S.M. Ahsan, Md. Injamum-Ul-Hoque, Nayan Chandra Howlader, Md. Mezanur Rahman, Md Mahfuzur Rahman, Md Azizul Haque and Hyong Woo Choi
Biology 2025, 14(6), 701; https://doi.org/10.3390/biology14060701 - 15 Jun 2025
Viewed by 978
Abstract
Cannabis sativa L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in C. sativa [...] Read more.
Cannabis sativa L. is a dioecious species known to produce over 1600 chemical constituents, including more than 180 cannabinoids classified into 11 structural groups. These bioactive compounds are predominantly synthesised in the glandular trichomes of female inflorescences. However, sex determination in C. sativa is influenced by both genetic and environmental factors, often leading to the development of male flowers on female plants. This unintended fertilisation reduces cannabinoid yield and increases genetic heterogeneity and challenges in medical cannabis production. Haploid and doubled haploid (DH) technologies offer a promising solution by rapidly generating homozygous lines from gametophytic (e.g., unpollinated ovaries and ovules) or sporophytic tissues (e.g., anthers and microspores) via in vitro culture or chromosome reduction during hybridisation. In land plants, the life cycle alternates between a diploid sporophyte and a haploid gametophyte generation, both capable of mitotic division to form multicellular bodies. A single genome regulates this phase transition and encodes the molecular, genetic, and epigenetic mechanisms that precisely control the developmental processes unique to each generation. While the application of haploid technology in C. sativa remains limited, through recent progress in haploid induction (HI) and CRISPR-based genome editing, the direct modification of haploid gametes or embryos enables the creation of null homozygous lines following chromosome doubling, improving genetic uniformity. Understanding the molecular mechanisms of spontaneous chromosome doubling may further facilitate the development of elite cannabis genotypes. Ultimately, enhancing the efficiency of DH production and optimising genome editing approaches could significantly increase the speed of genetic improvement and cultivar development in Cannabis sativa. Full article
(This article belongs to the Collection Crop Improvement Now and Beyond)
Show Figures

Figure 1

19 pages, 1779 KiB  
Article
Accurate Chemogenetics Determines Electroacupuncture Analgesia Through Increased CB1 to Suppress the TRPV1 Pathway in a Mouse Model of Fibromyalgia
by Huan-Chin Lin, Hi-Joon Park, Hsien-Yin Liao, Kai-Ting Chuang and Yi-Wen Lin
Life 2025, 15(5), 819; https://doi.org/10.3390/life15050819 - 20 May 2025
Viewed by 684
Abstract
Fibromyalgia, one of the most challenging pains to treat, lacks impartial considerations for diagnosis and useful assessment. The core symptoms are persistent extensive pain accompanied by fatigue, psychological disorders, sleep disturbance, and obesity. This study aims to explore the role of cannabinoid receptor [...] Read more.
Fibromyalgia, one of the most challenging pains to treat, lacks impartial considerations for diagnosis and useful assessment. The core symptoms are persistent extensive pain accompanied by fatigue, psychological disorders, sleep disturbance, and obesity. This study aims to explore the role of cannabinoid receptor 1 (CB1) on transient receptor potential V1 (TRPV1) signaling pathways in a mouse model of fibromyalgia. This model was subjected to intermittent cold stress (ICS) to induce fibromyalgia, as measured by the nociceptive behavior determined by von Frey and Hargreaves’ tests. Our results showed a lower mechanical threshold (2.32 ± 0.12 g) and thermal latency (4.14 ± 0.26 s) in ICS-induced fibromyalgia mice. The hyperalgesia could be alleviated by 2 Hz electroacupuncture (EA) or by TRPV1 knockout. We found decreased CB1 receptors, upregulated TRPV1, and related kinases in the dorsal root ganglion, spinal cord, hypothalamus, and periaqueductal gray in fibromyalgia mice. EA reversed these effects associated with fibromyalgia, aligning with observations in Trpv1−/− mice. Peripheral acupoint or the intracerebral ventricle injection of a CB1 agonist significantly attenuated mechanical and thermal hyperalgesia. The EA analgesic effect was reversed by a CB1 antagonist injection, suggesting the involvement of the CB1 signaling pathway. The accurate chemogenetic activation of paraventricular nucleus (PVN), which is a structure of the hypothalamus, initiated fibromyalgia pain. The chemogenetic inhibition of PVN attenuated fibromyalgia pain via the downregulation of TRPV1 pathway. Our discoveries shed light on the involvement of CB1 in the TRPV1 signaling pathway in the effects of EA in fibromyalgia, suggesting its potential as a treatment target. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

25 pages, 4184 KiB  
Article
Determination of Optimal Harvest Time in Cannabis sativa L. Based upon Stigma Color Transition
by Jonathan Tran, Adam M. Dimech, Simone Vassiliadis, Aaron C. Elkins, Noel O. I. Cogan, Erez Naim-Feil and Simone J. Rochfort
Plants 2025, 14(10), 1532; https://doi.org/10.3390/plants14101532 - 20 May 2025
Viewed by 1572
Abstract
Cannabis sativa L. is cultivated for therapeutic and recreational use. Delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are primarily responsible for its psychoactive and medicinal effects. As the global cannabis industry continues to expand, constant review and optimization of horticultural practices are needed to [...] Read more.
Cannabis sativa L. is cultivated for therapeutic and recreational use. Delta-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are primarily responsible for its psychoactive and medicinal effects. As the global cannabis industry continues to expand, constant review and optimization of horticultural practices are needed to ensure a reliable harvest and improved crop quality. There is currently uncertainty about the optimal harvest time of C. sativa, i.e., when cannabinoid concentrations are at their highest during inflorescence maturation. At present, growers observe the color transition of stigmas from white to amber as an indicator of harvest time. This research investigates the relationship between stigma color and cannabinoid concentration using liquid chromatography–mass spectrometry (LCMS) and digital image analysis. Additionally, early screening prediction models have also been developed for six cannabinoids using near-infrared (NIR) spectroscopy and LCMS to assist in early cannabinoid determination. Among the genotypes grown, 22 of 25 showed cannabinoid concentration peaks between the third (mostly amber) and fourth (fully amber) stages; however, some genotypes peaked within the first (no amber) and second (some amber) stages. We have determined that the current ‘rule of thumb’ of harvesting when a cannabis plant is mostly amber is still a useful approximation in most cases; however, studies on individual genotypes should be performed to determine their individual optimal harvest time based on the desired cannabinoid profile or total cannabinoid concentration. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 3919 KiB  
Article
Effects of Cannabidiol Oil on Anesthetic Requirements in Cats: MAC Determination and Serum Profiling via Nanoscale Liquid Chromatography–Tandem Mass Spectrometry
by Panisara Suriyawongpongsa, Sirirat Niyom, Kannika Wanapinit, Monchanok Vijarnsorn, Sittiruk Roytrakul and Sekkarin Ploypetch
Animals 2025, 15(10), 1393; https://doi.org/10.3390/ani15101393 - 12 May 2025
Cited by 1 | Viewed by 951
Abstract
Cannabidiol (CBD), a non-psychotropic cannabinoid derived from Cannabis plants, is increasingly explored for its potential therapeutic applications in veterinary medicine. This study aimed to evaluate the impact of CBD oil on the minimum alveolar concentration of isoflurane (MACiso) in cats. Sixteen [...] Read more.
Cannabidiol (CBD), a non-psychotropic cannabinoid derived from Cannabis plants, is increasingly explored for its potential therapeutic applications in veterinary medicine. This study aimed to evaluate the impact of CBD oil on the minimum alveolar concentration of isoflurane (MACiso) in cats. Sixteen healthy cats underwent isoflurane anesthesia, and the MACiso was determined using the tail-clamping technique both at baseline and 30 min after the administration of CBD oil (2 mg/kg) via a stomach tube. CBD administration resulted in a significant 11% reduction in the MACiso, from 1.77 ± 0.14% to 1.62 ± 0.21% (p < 0.001). Following CBD administration, heart and respiratory rates were elevated at the time of MACiso determination compared to baseline whereas other physiological parameters remained unchanged. Serum biochemical analysis conducted two weeks post administration revealed a significant decrease in blood urea nitrogen (BUN) levels while one cat exhibited a mild increase in alanine aminotransferase (ALT). Proteomic analysis identified 12 CBD-associated proteins in feline serum 30 min post administration, with CBDA and THCA synthases demonstrating significant upregulation. These findings indicate that CBD oil reduces anesthetic requirements in cats without inducing significant physiological disturbances. Further research is warranted to elucidate the underlying mechanisms of CBD’s anesthetic-sparing effects and its implications in veterinary anesthesia. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

18 pages, 1854 KiB  
Article
Water Stress Effects on Biomass Allocation and Secondary Metabolism in CBD-Dominant Cannabis sativa L.
by Maddalena Cappello Fusaro, Irene Lucchetta and Stefano Bona
Plants 2025, 14(8), 1267; https://doi.org/10.3390/plants14081267 - 21 Apr 2025
Cited by 1 | Viewed by 874
Abstract
Water availability is a key factor affecting both morphological development and secondary metabolite production in Cannabis sativa L. This study evaluated the effects of water stress applied during the vegetative and flowering stages on plant performance, cannabinoid concentration, and terpene composition in two [...] Read more.
Water availability is a key factor affecting both morphological development and secondary metabolite production in Cannabis sativa L. This study evaluated the effects of water stress applied during the vegetative and flowering stages on plant performance, cannabinoid concentration, and terpene composition in two Chemotype III (cannabidiol-dominant) varieties. Plants were subjected to moderate and severe water stress, and responses were assessed through biomass measurements, GC-MS analyses, and multivariate statistics. Water stress significantly influenced biomass allocation, with increased dry biomass but reduced harvest index, particularly under flowering-stage stress. Cannabidiol (CBD) content declined with increasing stress, while tetrahydrocannabinol (THC) levels increased under vegetative stress, indicating a stress-induced shift in cannabinoid biosynthesis. Cannabinol (CBN) levels also increased, suggesting enhanced THC degradation. Terpene composition was predominantly genotype-driven. PCA-MANOVA showed significant effects of variety, stress level, and their interaction, yet only minor volatiles were modulated by stress, while the most abundant terpenes remained stable across treatments, preserving the varietal aroma profile. These results underline the importance of genetic background and irrigation timing in determining cannabis yield and quality. Optimized water management is essential to ensure phytochemical consistency and sustainable production, especially in high-value medicinal and aromatic applications. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Surface Plasmon Resonance (SPR) for the Binding Kinetics Analysis of Synthetic Cannabinoids: Advancing CB1 Receptor Interaction Studies
by Xuesong Shi, Lixin Kuai, Deli Xu, Yanling Qiao, Yuanyuan Chen, Bin Di and Peng Xu
Int. J. Mol. Sci. 2025, 26(8), 3692; https://doi.org/10.3390/ijms26083692 - 14 Apr 2025
Viewed by 674
Abstract
Synthetic cannabinoids (SCs), a class of widely abused new psychoactive substances, are characterized by their structural diversity and rapid evolution. Structure–affinity relationships are crucial for predicting pharmacological effects and potential toxicity. Traditional methods for affinity testing are often complex and less applicable to [...] Read more.
Synthetic cannabinoids (SCs), a class of widely abused new psychoactive substances, are characterized by their structural diversity and rapid evolution. Structure–affinity relationships are crucial for predicting pharmacological effects and potential toxicity. Traditional methods for affinity testing are often complex and less applicable to newly modified compounds. In contrast, Surface Plasmon Resonance (SPR) is a sensitive and label-free technology that detects molecular interactions by measuring refractive index changes on a metallic surface with the advantages of high sensitivity, low sample consumption, and high-throughput capability. In this study, we used SPR to determine the receptor affinity constants of 10 SCs, including some first-reported substances, and analyzed their structure–affinity relationships to validate the method’s reliability. The results showed that (1) indazole-based SCs exhibited stronger CB1 receptor affinity compared to their indole counterparts, (2) the head structure of p-fluorophenyl enhanced affinity relative to 5-fluoropentyl, (3) and the affinity rankings obtained from SPR experiments were consistent with those derived from traditional methods. These results collectively demonstrate the reliability and effectiveness of SPR in assessing CB1 receptor affinity and differentiating affinity differences among structurally similar analogs, with promising application prospects in drug research, particularly in the development and screening of therapeutic agents targeting cannabinoid receptors. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

13 pages, 2585 KiB  
Article
Effect of Hormonal Treatments on Cannabinoid Content Levels in Female Hemp (Cannabis sativa L.) Inflorescences
by Juyoung Kim, Dong-Gun Kim, Tae Hyun Ha, Woon Ji Kim, Jaihyunk Ryu, Jin-Baek Kim and Sang Hoon Kim
Int. J. Mol. Sci. 2025, 26(7), 3445; https://doi.org/10.3390/ijms26073445 - 7 Apr 2025
Viewed by 977
Abstract
The diverse hormonal treatments applied to hemp (Cannabis sativa L.) carry significant implications for cultivation, and yield optimization across a range of applications, including fiber, seed, oil production, and the enhancement of medicinal compounds. However, there is no evidence concerning the long-term [...] Read more.
The diverse hormonal treatments applied to hemp (Cannabis sativa L.) carry significant implications for cultivation, and yield optimization across a range of applications, including fiber, seed, oil production, and the enhancement of medicinal compounds. However, there is no evidence concerning the long-term consequences of hormonal treatment. To determine the connection between the effects of hormonal treatment and cannabinoid accumulation, hemp plants were treated with γ-aminobutyric acid (GABA), abscisic acid (ABA), and salicylic acid (SA) to investigate their effects on gene expression and cannabinoid content levels in female inflorescences at 3 days and 4 weeks after treatment. The treatments influenced the transcript levels of five key cannabinoid biosynthesis genes, with 1.0 mM GABA significantly increasing OAC, THCAS, and CBCAS transcripts within 48 to 72 h. Additionally, 1.0 mM GABA led to a significant increase in tetrahydrocannabinol content by day three and significant increases in total cannabidiol and cannabinoid by week four. In addition, both ABA and SA induced transient, dose-dependent increases or decreases in gene expressions, but cannabinoid accumulation at 4 weeks showed no significant changes compared to the control. These results provide valuable insights for hormonal application in cultivation and the development of traits that enhance cannabinoid production in cannabis cultivation, which could significantly contribute to optimizing industrial applications. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 345 KiB  
Review
Is There a Place for Cannabinoids in Asthma Treatment?
by Agata Anna Lewandowska, Cezary Rybacki, Michał Graczyk, Dorota Waśniowska and Małgorzata Kołodziej
Int. J. Mol. Sci. 2025, 26(7), 3328; https://doi.org/10.3390/ijms26073328 - 2 Apr 2025
Viewed by 917
Abstract
The beneficial effects of cannabinoids in the treatment of respiratory diseases have been drawing researchers’ attention for several decades. Asthma is a complex disease entity characterized by a variable course, the treatment of which requires the continuous search for alternative, adjuvant treatment strategies [...] Read more.
The beneficial effects of cannabinoids in the treatment of respiratory diseases have been drawing researchers’ attention for several decades. Asthma is a complex disease entity characterized by a variable course, the treatment of which requires the continuous search for alternative, adjuvant treatment strategies designed for patients refractory to available pharmacotherapies. Cannabinoids exert certain physiological responses in the respiratory system due to their immunomodulatory properties and the strong presence of the endocannabinoid system in the lungs. In animal model studies, THC and CBD seem to counteract bronchoconstriction and inhibit pro-inflammatory mediation, respectively, which highlights their possible future contribution to the treatment of respiratory and allergic diseases, such as asthma. However, there are controversies regarding the health consequences of cannabis usage, the extracts’ proportions, or equally safe and effective routes of administration, especially considering the alarming reports indicating an increased risk of asthma development among recreational cannabis smokers. The purpose of this review is to analyze the available literature on the influence of the endocannabinoid system, phytocannabinoids, and their modes of action on asthma pathogenesis in an attempt to assess their potential clinical relevance and determine future research directions. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
13 pages, 1899 KiB  
Article
Cannabinoid Regulation of Murine Vaginal Secretion
by Natalia Murataeva, Sam Mattox, Kyle Yust and Alex Straiker
Biomolecules 2025, 15(4), 472; https://doi.org/10.3390/biom15040472 - 24 Mar 2025
Viewed by 569
Abstract
Tearing and salivation are wholly dependent on the activity of exocrine (lacrimal and salivary) glands, whereas vaginal moisture and secretion rely on a combination of exudation and exocrine secretion. Exocrine gland disorders impact millions, and women with Sjögren’s Syndrome often experience dry eye [...] Read more.
Tearing and salivation are wholly dependent on the activity of exocrine (lacrimal and salivary) glands, whereas vaginal moisture and secretion rely on a combination of exudation and exocrine secretion. Exocrine gland disorders impact millions, and women with Sjögren’s Syndrome often experience dry eye and mouth as well as vaginal dryness. Cannabis users’ complaints of dry eye and ‘cottonmouth’ are well-known, but some female cannabis users also report vaginal dryness. The regulation of vaginal secretion by the cannabinoid signaling system is essentially unstudied. We recently reported that despite their small size and nocturnal nature, laboratory mice have measurable basal vaginal moisture and pheromone-stimulated secretory responses that are regulated by circadian and estrous factors. We tested the regulation of vaginal moisture by cannabinoid CB1 receptors in this model. We now report that the cannabinoid receptor agonist CP55940 does not alter baseline vaginal moisture but prevents a stimulated secretory response due to a local peri-vaginal effect. Chronic intermittent CP55940 reduces basal vaginal moisture but also unmasks or induces a potentiating effect for CP55940, suggesting multiple sites of action. The acute and chronic effects likely occur via CB1 receptors. Δ9-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, a partial agonist at CB1, has no acute or chronic effects. In summary, strong acute activation of CB1 receptors in a murine model does not reduce vaginal moisture but does prevent a pheromone-stimulated vaginal secretory response. In contrast, chronic intermittent CB1 activation reduces baseline vaginal moisture. The extent to which these findings translate to humans remains to be determined. Full article
(This article belongs to the Special Issue Cannabinoids in Neurobehavioral Modulation)
Show Figures

Figure 1

Back to TopTop