Is There a Place for Cannabinoids in Asthma Treatment?
Abstract
1. Introduction
2. Asthma
3. Cannabinoid Receptors
4. Phytocannabinoids
5. Terpenes
6. Recreational Use
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CBD | cannabidiol |
THC | Δ9-tetrahydrocannabinol |
ECS | endocannabinoid system |
CB1 | cannabinoid receptor 1 |
CB2 | cannabinoid receptor 2 |
AEA | Anandamide |
2-AG | 2-arachidonoylglycerol |
FAAH | fatty acid amide hydrolase |
MAGL | monoacylglycerol lipase |
TRPV | transient receptor potential vanilloid channel |
5-HT1A | serotonin 1A |
PPAR | peroxisome proliferator-activated receptor |
GPR | G protein-coupled receptor |
AHR | airway hyperreactivity |
Th2 | T helper 2 |
ILC2 | type 2 innate lymphoid cells |
IgE | immunoglobulin E |
TSLP | thymic stromal lymphopoietin |
TNF-α | tumor necrosis factor-α |
PEF | peak expiratory flow |
FEV1 | forced expiratory volume in 1 s |
GCS | glucocorticosteroids |
BALF | bronchoalveolar-lavage fluid |
IL | interleukin |
Tregs | regulatory T cells |
TGF-β | transforming growth factor β |
COPD | chronic obstructive pulmonary disease |
EVALI | e-cigarette- and vaping-associated lung illness |
References
- Odieka, A.E.; Obuzor, G.U.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Oyedeji, A.O. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022, 27, 1689. [Google Scholar] [CrossRef] [PubMed]
- Brousseau, V.D.; Wu, B.-S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 620021. [Google Scholar] [CrossRef]
- Leinen, Z.J.; Mohan, R.; Premadasa, L.S.; Acharya, A.; Mohan, M.; Byrareddy, S.N. Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications. Biomedicines 2023, 11, 2630. [Google Scholar] [CrossRef]
- Janecki, M.; Graczyk, M.; Lewandowska, A.A.; Pawlak, Ł. Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection. Int. J. Mol. Sci. 2022, 23, 4170. [Google Scholar] [CrossRef]
- El Biali, M.; Broers, B.; Besson, M.; Demeules, J. Cannabinoids and COVID-19. Med. Cannabis Cannabinoids 2020, 3, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, M.; Lewandowska, A.A.; Dzierżanowski, T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021, 26, 4551. [Google Scholar] [CrossRef] [PubMed]
- Fantauzzi, M.F.; Aguiar, J.A.; Tremblay, B.J.-M.; Mansfield, M.J.; Yanagihara, T.; Chandiramohan, A.; Revill, S.; Ryu, M.H.; Carlsten, C.; Ask, K.; et al. Expression of endocannabinoid system components in human airway epithelial cells: Impact of sex and chronic respiratory disease status. ERJ Open Res. 2020, 6, 128–2020. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C. Medicinal cannabis: Challenges of an alternative pharmacotherapeutic. Biocell 2020, 44 (Suppl. S2), 3–4. [Google Scholar]
- Angelina, A.; Pérez-Diego, M.; López-Abente, J.; Palomares, O. The Role of Cannabinoids in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2020. Int. Arch. Allergy Immunol. 2020, 181, 565–584. [Google Scholar] [CrossRef]
- Pertwee, R.G.; Ross, R.A. Cannabinoid receptors and their ligands. Prostaglandins Leukot. Essent. Fat. Acids 2002, 66, 101–121. [Google Scholar] [CrossRef]
- Kicman, A.; Pędzińska-Betiuk, A.; Kozłowska, H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur. J. Pharmacol. 2021, 911, 174560. [Google Scholar] [CrossRef] [PubMed]
- Rieder, S.A.; Chauhan, A.; Singh, U.; Nagarkatti, M.; Nagarkatti, P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 2010, 215, 598–605. [Google Scholar] [CrossRef] [PubMed]
- García-Gutiérrez, M.S.; Navarrete, F.; Gasparyan, A.; Austrich-Olivares, A.; Sala, F.; Manzanares, J. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules 2020, 10, 1575. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, F.; Abreu, S.C.; Michels, M.; Xisto, D.G.; Blanco, N.G.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Reis, C.; Bahl, M.; et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur. J. Pharmacol. 2019, 843, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Silva Sofrás, F.M.; Desimone, M.F. Entourage Effect and Analytical Chemistry: Chromatography as a Tool in the Analysis of the Secondary Metabolism of Cannabis sativa L. Curr. Pharm. Des. 2023, 29, 394–406. [Google Scholar] [CrossRef]
- Christensen, C.; Rose, M.; Cornett, C.; Allesø, M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn’t. Biomedicines 2023, 11, 2323. [Google Scholar] [CrossRef]
- Turcotte, C.; Blanchet, M.R.; Laviolette, M.; Flamand, N. Impact of cannabis, cannabinoids, and endocannabinoids in the lungs. Front. Pharmacol. 2016, 7, 317. [Google Scholar] [CrossRef]
- Graczyk, M.; Lewandowska, A.A.; Melnyczok, P.; Zgliński, A.; Łukowicz, M. Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series. Biomedicines 2022, 10, 1862. [Google Scholar] [CrossRef]
- Bozkurt, T.E. Endocannabinoid system in the airways. Molecules 2019, 24, 4626. [Google Scholar] [CrossRef]
- Ribeiro, L.I.G.; Ind, P.W. Effect of cannabis smoking on lung function and respiratory symptoms: A structured literature review. npj Prim. Care Respir. Med. 2016, 26, 16071. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention; Global Initiative for Asthma: Fontana, WI, USA, 2024. [Google Scholar]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Habib, N.; Pasha, M.A.; Tang, D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11, 2764. [Google Scholar] [CrossRef]
- Bonomo, S.; Marchetti, P.; Fasola, S.; Vesentini, R.; Marcon, A.; Ferrante, G.; Antonicelli, L.; Battaglia, S.; Bono, R.; Squillacioti, G.; et al. Asthma incidence can be influenced by climate change in Italy: Findings from the GEIRD study—A climatological and epidemiological assessment. Sci. Rep. 2023, 13, 19047. [Google Scholar] [CrossRef]
- Ilmarinen, P.; Stridsman, C.; Bashir, M.; Tuomisto, L.E.; Vähätalo, I.; Goksör, E.; Kankaanranta, H.; Backman, H.; Langhammer, A.; Piirilä, P.; et al. Level of education and asthma control in adult-onset asthma. J. Asthma 2022, 59, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The Cytokines of Asthma. Immunity 2019, 50, 975–991. [Google Scholar] [CrossRef]
- Komlósi, Z.I.; van de Veen, W.; Kovács, N.; Szűcs, G.; Sokolowska, M.; O’Mahony, L.; Akdis, M.; Akdis, C.A. Cellular and molecular mechanisms of allergic asthma. Mol. Aspects Med. 2022, 85, 100995. [Google Scholar] [CrossRef] [PubMed]
- Martín-Orozco, E.; Norte-Muñoz, M.; Martínez-García, J. Regulatory T cells in allergy and asthma. Front. Pediatr. 2017, 5, 117. [Google Scholar] [CrossRef]
- Oettgen, H.C.; Geha, R.S. IgE regulation and roles in asthma pathogenesis. J. Allergy Clin. Immunol. 2001, 107, 429–441. [Google Scholar] [CrossRef]
- Froidure, A.; Mouthuy, J.; Durham, S.R.; Chanez, P.; Sibille, Y.; Pilette, C. Asthma phenotypes and IgE responses. Eur. Respir. J. 2016, 47, 304–319. [Google Scholar] [CrossRef]
- Beeh, K.M.; Ksoll, M.; Buhl, R. Elevation of total serum immunoglobulin E is associated with asthma in nonallergic individuals. Eur. Respir. J. 2000, 16, 609–614. [Google Scholar] [CrossRef]
- Ji, T.; Li, H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front. Immunol. 2023, 14, 1149203. [Google Scholar] [CrossRef] [PubMed]
- Durrant, D.M.; Metzger, D.W. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol. Investig. 2010, 39, 526–549. [Google Scholar] [CrossRef]
- Chapman, D.G.; Irvin, C.G. Mechanisms of Airway Hyperresponsiveness in Asthma: The Past, Present and Yet to Come. Clin. Exp. Allergy 2015, 45, 706–719. [Google Scholar] [CrossRef]
- Jackson, D.J.; Wechsler, M.E.; Brusselle, G.; Buhl, R. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy 2024, 79, 2943–2952. [Google Scholar] [CrossRef]
- Velcovsky, H.G.; Discher, T. Effect of histamine on bronchial hyperreactivity in sarcoidosis and other lung diseases. Pneumologie 1990, 44 (Suppl. S1), 569–571. [Google Scholar]
- Cockcroft, D.W.; Davis, B.E. Mechanisms of airway hyperresponsiveness. J. Allergy Clin. Immunol. 2006, 118, 551–559. [Google Scholar] [CrossRef]
- Brusasco, V.; Crimi, E. Methacholine provocation test for diagnosis of allergic respiratory diseases. Allergy 2001, 56, 1114–1120. [Google Scholar] [CrossRef]
- Tsurikisawa, N.; Oshikata, C.; Tsuburai, T.; Saito, H.; Sekiya, K.; Tanimoto, H.; Takeichi, S.; Mitomi, H.; Akiyama, K. Bronchial hyperresponsiveness to histamine correlates with airway remodelling in adults with asthma. Respir. Med. 2010, 104, 1271–1277. [Google Scholar] [CrossRef]
- Ozier, A.; Allard, B.; Bara, I.; Girodet, P.-O.; Trian, T.; Marthan, R.; Berger, P. The Pivotal Role of Airway Smooth Muscle in Asthma Pathophysiology. J. Allergy 2011, 2011, 742710. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021 Executive Summary and Rationale for Key Changes. Am. J. Respir. Crit. Care Med. 2022, 205, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Blasi, F.; Canonica, G.W.; Morandi, L.; Richeldi, L.; Rossi, A. Treatment strategies for asthma: Reshaping the concept of asthma management. Allergy Asthma Clin. Immunol. 2020, 16, 75. [Google Scholar] [CrossRef] [PubMed]
- García, B.M.; Isidoro, O.N.; Peña, A.R.; González-Moro, J.M.R. Asthma Bronchial. Med.-Programa Form. Médica Contin. Acreditado 2022, 13, 3829–3837. [Google Scholar] [CrossRef]
- Yung, S.; Han, D.; Lee, J.K. Cutaneous sarcoidosis in a patient with severe asthma treated with omalizumab. Can. Respir. J. 2015, 22, 315–316. [Google Scholar]
- Aswad, M.; Pechkovsky, A.; Ghanayiem, N.; Hamza, H.; Dotan, Y.; Louria-Hayon, I. High-CBD Extract (CBD-X) in Asthma Management: Reducing Th2-Driven Cytokine Secretion and Neutrophil/Eosinophil Activity. Pharmaceuticals 2024, 17, 1382. [Google Scholar] [CrossRef] [PubMed]
- Palomares, O. Could we co-opt the cannabinoid system for asthma therapy? Expert Rev. Clin. Immunol. 2023, 19, 1183–1186. [Google Scholar] [CrossRef]
- Plichta, J.; Kuna, P.; Panek, M. Biologic drugs in the treatment of chronic inflammatory pulmonary diseases: Recent developments and future perspectives. Front. Immunol. 2023, 14, 1207641. [Google Scholar] [CrossRef]
- Rogers, L.; Jesenak, M.; Bjermer, L.; Hanania, N.A.; Seys, S.F.; Diamant, Z. Biologics in severe asthma: A pragmatic approach for choosing the right treatment for the right patient. Respir. Med. 2023, 218, 107414. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Steenkamp, J.; Singh, S.; Erhardt, W.; Rowell, J.; Rane, P.; Martin, N.; Ackert, J.P.L.; Quinton, A. Tezepelumab compared with other biologics for the treatment of severe asthma: A systematic review and indirect treatment comparison. J. Med. Econ. 2022, 25, 679–690. [Google Scholar] [CrossRef]
- Mavissakalian, M.; Brady, S. The Current State of Biologic Therapies for Treatment of Refractory Asthma. Clin. Rev. Allergy Immunol. 2020, 59, 195–207. [Google Scholar] [CrossRef]
- Carriera, L.; Fantò, M.; Martini, A.; D’Abramo, A.; Puzio, G.; Scaramozzino, M.U.; Coppola, A. Combination of Biological Therapy in Severe Asthma: Where We Are? J. Pers. Med. 2023, 13, 1594. [Google Scholar] [CrossRef]
- Boligan, K.F.; von Gunten, S. Innate lymphoid cells in asthma: Cannabinoids on the balance. Allergy 2017, 72, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Ashton, J.C.; Hancox, R.J. The Case for Cannabinoid CB1 Receptors as a Target for Bronchodilator Therapy for β-agonist Resistant Asthma. Curr. Drug Targets 2018, 19, 1344–1349. [Google Scholar] [CrossRef]
- Makwana, R.; Venkatasamy, R.; Spina, D.; Page, C. The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough. J. Pharmacol. Exp. Ther. 2015, 353, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Calignano, A.; Kátona, I.; Désarnaud, F.; Giuffrida, A.; La Rana, G.; Mackie, K.; Freund, T.F.; Piomelli, D. Bidirectional control of airway responsiveness by endogenous cannabinoids. Nature 2000, 408, 96–101. [Google Scholar] [CrossRef]
- Jarjou’i, A.; Izbicki, G. Medical cannabis in asthmatic patients. Isr. Med. Assoc. J. 2020, 22, 232–235. [Google Scholar] [PubMed]
- Tashkin, D.P.; Shapiro, B.J.; Lee, Y.E.; Harper, C.E. Effects of smoked marijuana in experimentally induced asthma. Am. Rev. Respir. Dis. 1975, 112, 377–386. [Google Scholar]
- Bozkurt, T.E.; Kaya, Y.; Durlu-Kandilci, N.T.; Onder, S.; Sahin-Erdemli, I. The effect of cannabinoids on dinitrofluorobenzene-induced experimental asthma in mice. Respir. Physiol. Neurobiol. 2016, 231, 7–13. [Google Scholar] [CrossRef]
- Abohalaka, R.; Karaman, Y.; Recber, T.; Onder, S.C.; Nemutlu, E.; Bozkurt, T.E. Endocannabinoid metabolism inhibition ameliorates ovalbumin-induced allergic airway inflammation and hyperreactivity in Guinea pigs. Life Sci. 2022, 306, 120808. [Google Scholar] [CrossRef]
- Pfitzer, G. New insights into the mechanisms of anandamide-induced airway dilation placing its degradation enzyme, FAAH center stage. Commentary on: Simon A, von Einem T, Seidinger A, Matthey M, Bindila L, Wenzel D (2022) The endocannabinoid anandamide is an airway relaxant in health and disease. Nat Commun 13:6941. Pflugers Arch. Eur. J. Physiol. 2023, 475, 557–559. [Google Scholar] [CrossRef]
- Frei, R.B.; Luschnig, P.; Parzmair, G.P.; Peinhaupt, M.; Schranz, S.; Fauland, A.; Wheelock, C.E.; Heinemann, A.; Sturm, E.M. Cannabinoid receptor 2 augments eosinophil responsiveness and aggravates allergen-induced pulmonary inflammation in mice. Allergy 2016, 71, 944–956. [Google Scholar] [CrossRef]
- Kwon, E.K.; Choi, Y.; Sim, S.; Ye, Y.M.; Shin, Y.S.; Park, H.S.; Ban, G.Y. Cannabinoid receptor 2 as a regulator of inflammation induced oleoylethanolamide in eosinophilic asthma. J. Allergy Clin. Immunol. 2024, 153, 998–1009.e9. [Google Scholar] [CrossRef]
- Hurrell, B.P.; Helou, D.G.; Shafiei-Jahani, P.; Howard, E.; Painter, J.D.; Quach, C.; Akbari, O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J. Allergy Clin. Immunol. 2022, 149, 1628–1642.e10. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, M.; Hong, S.; Roberts, K.; Jaffar, Z. Cannabinoid CB2 receptors as novel target for inhibiting house dust mite induced allergic airway inflammation (P6023). J. Immunol. 2013, 190 (Suppl. S1), 120.12. [Google Scholar] [CrossRef]
- Wei, C.; Huang, L.; Zheng, Y.; Cai, X. Selective activation of cannabinoid receptor 2 regulates Treg/Th17 balance to ameliorate neutrophilic asthma in mice. Ann. Transl. Med. 2021, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Kearley, J.; Robinson, D.S.; Lloyd, C.M. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J. Allergy Clin. Immunol. 2008, 122, 617–624.e6. [Google Scholar] [CrossRef]
- Presser, K.; Schwinge, D.; Wegmann, M.; Huber, S.; Schmitt, S.; Quaas, A.; Maxeiner, J.H.; Finotto, S.; Lohse, A.W.; Blessing, M.; et al. Coexpression of TGF-β1 and IL-10 Enables Regulatory T Cells to Completely Suppress Airway Hyperreactivity. J. Immunol. 2008, 181, 7751–7758. [Google Scholar] [CrossRef]
- Wang, L.; Wan, H.; Tang, W.; Ni, Y.; Hou, X.; Pan, L.; Song, Y.; Shi, G. Critical roles of adenosine A2A receptor in regulating the balance of Treg/Th17 cells in allergic asthma. Clin. Respir. J. 2018, 12, 149–157. [Google Scholar] [CrossRef]
- Hartl, D.; Koller, B.; Mehlhorn, A.T.; Reinhardt, D.; Nicolai, T.; Schendel, D.J.; Griese, M.; Krauss-Etschmann, S. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J. Allergy Clin. Immunol. 2007, 119, 1258–1266. [Google Scholar] [CrossRef]
- Conrad, L.M.; Barrientos, G.; Cai, X.; Mukherjee, S.; Das, M.; Stephen-Victor, E.; Harb, H. Regulatory T cells and their role in allergic disease. Allergy 2024, 80, 77–93. [Google Scholar] [CrossRef]
- Giannini, L.; Nistri, S.; Mastroianni, R.; Cinci, L.; Vannacci, A.; Mariottini, C.; Passani, M.B.; Mannaioni, P.F.; Bani, D.; Masini, E. Activation of cannabinoid receptors prevents antigen-induced asthma-like reaction in guinea pigs. J. Cell. Mol. Med. 2008, 12, 2381–2394. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, H.Y.; Hur, J.; Kim, K.H.; Kang, J.Y.; Rhee, C.K.; Lee, S.Y. TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol. Res. 2018, 10, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Reyes-García, J.; Carbajal-García, A.; Montaño, L.M. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur. J. Pharmacol. 2022, 915, 174692. [Google Scholar] [CrossRef]
- Muller, C.; Morales, P.; Reggio, P.H. Cannabinoid ligands targeting TRP channels. Front. Mol. Neurosci. 2019, 11, 487. [Google Scholar] [CrossRef]
- Kytikova, O.Y.; Perelman, J.M.; Novgorodtseva, T.P.; Denisenko, Y.K.; Kolosov, V.P.; Antonyuk, M.V.; Gvozdenko, T.A. Peroxisome proliferator-activated receptors as a therapeutic target in asthma. PPAR Res. 2020, 2020, 8906968. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016, 173, 1899–1910. [Google Scholar] [CrossRef]
- Nau, F.; Miller, J.; Saravia, J.; Ahlert, T.; Yu, B.; Happel, K.I.; Cormier, S.A.; Nichols, C.D. Serotonin 5-HT2 receptor activation prevents allergic asthma in a mouse model. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 308, L191–L198. [Google Scholar] [CrossRef]
- Flanagan, T.W.; Sebastian, M.N.; Battaglia, D.M.; Foster, T.P.; Cormier, S.A.; Nichols, C.D. 5-HT2 receptor activation alleviates airway inflammation and structural remodeling in a chronic mouse asthma model. Life Sci. 2019, 236, 116790. [Google Scholar] [CrossRef]
- Sack, C.; Simpson, C.; Pacheco, K. The Emerging Spectrum of Respiratory Diseases in the US. Cannabis Industry. Semin. Respir. Crit. Care Med. 2023, 44, 405–414. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Reiss, S.; Shapiro, B.J.; Calvarese, B.; Olsen, J.L.; Lodge, J.W. Bronchial effects of aerosolized delta 9-tetrahydrocannabinol in healthy and asthmatic subjects. Am. Rev. Respir. Dis. 1977, 115, 57–65. [Google Scholar]
- Williams, S.J.; Hartley, J.P.; Graham, J.D. Bronchodilator effect of delta1-tetrahydrocannabinol administered by aerosol of asthmatic patients. Thorax 1976, 31, 720–723. [Google Scholar]
- Tashkin, D.P.; Shapiro, B.J.; Frank, I.M. Acute effects of smoked marijuana and oral Δ9 tetrahydrocannabinol on specific airway conductance in asthmatic subjects. Am. Rev. Respir. Dis. 1974, 109, 420–428. [Google Scholar] [PubMed]
- Gong, H.; Tashkin, D.P.; Simmons, M.S.; Calvarese, B.; Shapiro, B.J. Acute and subacute bronchial effects of oral cannabinoids. Clin. Pharmacol. Ther. 1984, 35, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Underner, M.; Peiffer, G.; Perriot, J.; Jaafari, N. Asthma and cannabis, cocaine or heroin use. Rev. Mal. Respir. 2020, 37, 572–589. [Google Scholar] [CrossRef]
- Vuolo, F.; Petronilho, F.; Sonai, B.; Ritter, C.; Hallak, J.E.C.; Zuardi, A.W.; Crippa, J.A.; Dal-Pizzol, F. Evaluation of Serum Cytokines Levels and the Role of Cannabidiol Treatment in Animal Model of Asthma. Mediat. Inflamm. 2015, 2015, 538670. [Google Scholar] [CrossRef]
- Pelaia, C.; Heffler, E.; Crimi, C.; Maglio, A.; Vatrella, A.; Pelaia, G.; Canonica, G.W. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front. Pharmacol. 2022, 13, 851940. [Google Scholar] [CrossRef]
- Nair, P.; O’Byrne, P.M. The interleukin-13 paradox in asthma: Effective biology, ineffective biologicals. Eur. Respir. J. 2019, 53, 1802250. [Google Scholar] [CrossRef]
- Tan, K.B.C.; Alexander, D.; Linden, J.; Murray, E.K.; Gibson, D.S. Anti-inflammatory effects of phytocannabinoids and terpenes on inflamed Tregs and Th17 cells in vitro. Exp. Mol. Pathol. 2024, 139, 104924. [Google Scholar]
- Dudášová, A.; Keir, S.D.; Parsons, M.E.; Molleman, A.; Page, C.P. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig. Pulm. Pharmacol. Ther. 2013, 26, 373–379. [Google Scholar] [CrossRef]
- Lowe, H.; Steele, B.; Bryant, J.; Toyang, N.; Ngwa, W. Non-cannabinoid metabolites of cannabis sativa l. With therapeutic potential. Plants 2021, 10, 400. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z. Cannabidiol and terpenes from hemp–ingredients for future foods and processing technologies. J. Futur. Foods 2021, 1, 113–127. [Google Scholar] [CrossRef]
- Sommano, S.R.; Chittasupho, C.; Ruksiriwanich, W.; Jantrawut, P. The Cannabis Terpenes. Molecules 2020, 25, 5792. [Google Scholar] [CrossRef]
- Juergens, U.R.; Stöber, M.; Schmidt-Schilling, L.; Kleuver, T.; Vetter, H. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: Inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur. J. Med. Res. 1998, 3, 407–412. [Google Scholar]
- Del Prado-Audelo, M.L.; Cortés, H.; Caballero-Florán, I.H.; González-Torres, M.; Escutia-Guadarrama, L.; Bernal-Chávez, S.A.; Giraldo-Gomez, D.M.; Magaña, J.J.; Leyva-Gómez, G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front. Pharmacol. 2021, 12, 704197. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef]
- Caimmi, D.; Neukirch, C.; Demoly, P. Essential oils: What is the clinical tolerance in asthmatic patients? J. Asthma 2022, 59, 934–936. [Google Scholar] [CrossRef]
- Donelli, D.; Antonelli, M.; Baraldi, R.; Corli, A.; Finelli, F.; Gardini, F.; Margheritini, G.; Meneguzzo, F.; Neri, L.; Lazzeroni, D.; et al. Exposure to Forest Air Monoterpenes with Pulmonary Function Tests in Adolescents with Asthma: A Cohort Study. Forests 2023, 14, 2012. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Nam, S.Y.; Chung, C.K.; Seo, J.H.; Rah, S.Y.; Kim, H.M.; Jeong, H.J. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int. Immunopharmacol. 2014, 23, 273–282. [Google Scholar] [CrossRef]
- Juergens, U.R.; Sadlon, A.E.; Lamson, D.W. Anti-inflammatory properties of the monoterpene 1.8-cineole: Current evidence for co-medication in inflammatory airway diseases\rImmune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Drug Res. 2014, 64, 638–646. [Google Scholar]
- Bastos, V.P.D.; Gomes, A.S.; Lima, F.J.B.; Brito, T.S.; Soares, P.M.G.; Pinho, J.P.M.; Silva, C.S.; Santos, A.A.; Souza, M.H.L.P.; Magalhães, P.J.C. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged guinea pigs. Basic Clin. Pharmacol. Toxicol. 2011, 108, 34–39. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, D.E.; Song, W.J.; Park, H.W.; Kang, H.R.; Cho, S.H.; Sohn, S.W. Effect of 1.8-Cineole in Dermatophagoides pteronyssinus-stimulated bronchial epithelial cells and mouse model of asthma. Biol. Pharm. Bull. 2016, 39, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Kennedy-Feitosa, E.; Okuro, R.T.; Pinho Ribeiro, V.; Lanzetti, M.; Barroso, M.V.; Zin, W.A.; Porto, L.C.; Brito-Gitirana, L.; Valenca, S.S. Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm. Pharmacol. Ther. 2016, 41, 11–18. [Google Scholar] [CrossRef]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Zhiping, W. Uptake, distribution and elimination of α-pinene in man after exposure by inhalation. Scand. J. Work. Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef]
- Khoj, L.; Zagà, V.; Amram, D.L.; Hosein, K.; Pistone, G.; Bisconti, M.; Serafini, A.; Cammarata, L.M.; Cattaruzza, M.S.; Mura, M. Effects of cannabis smoking on the respiratory system: A state-of-the-art review. Respir. Med. 2024, 221, 107494. [Google Scholar] [CrossRef] [PubMed]
- Chatkin, J.M.; Zani-Silva, L.; Ferreira, I.; Zamel, N. Cannabis-Associated Asthma and Allergies. Clin. Rev. Allergy Immunol. 2019, 56, 196–206. [Google Scholar] [CrossRef]
- Goodwin, R.D.; Wyka, K.; Luo, M.; Weinberger, A.H.; Kattan, M. Cannabis legalization and childhood asthma in the United States: An ecologic analysis. Prev. Med. 2023, 170, 107414. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kanani, A. Occupational Asthma from Cannabis Indica Hybrids: Case Reports. J. Allergy Clin. Immunol. 2022, 149, AB31. [Google Scholar] [CrossRef]
- Winhusen, T.; Theobald, J.; Kaelber, D.C.; Lewis, D. Regular cannabis use, with and without tobacco co-use, is associated with respiratory disease. Drug Alcohol Depend. 2019, 204, 107557. [Google Scholar] [CrossRef]
- Ogeer, I.; Brouilliette, K.; Ohayon, J. Cannabis allergy: From edible to inhalation-case report and challenge. Allergy Asthma Clin. Immunol. 2021, 17 (Suppl. S1), 52. [Google Scholar]
- Preteroti, M.; Wilson, E.T.; Eidelman, D.H.; Baglole, C.J. Modulation of pulmonary immune function by inhaled cannabis products and consequences for lung disease. Respir. Res. 2023, 24, 95. [Google Scholar] [CrossRef]
- Hazekamp, A.; Ruhaak, R.; Zuurman, L.; Van Gerven, J.; Verpoorte, R. Evaluation of a vaporizing device (Volcano®) for the pulmonary administration of tetrahydrocannabinol. J. Pharm. Sci. 2006, 95, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.D.; Arora, A.; Barsky, S.H.; Kleerup, E.C.; Simmons, M.; Tashkin, D.P. Airway Inflammation in Young Marijuana and Tobacco Smokers. Am. J. Respir. Crit. Care Med. 1998, 157 Pt I, 928–937. [Google Scholar] [CrossRef]
- Barbers, R.G.; Gong, H.; Tashkin, D.P.; Oishi, J.; Wallace, J.M. Differential examination of bronchoalveolar lavage cells in tobacco cigarette and marijuana smokers. Am. Rev. Respir. Dis. 1987, 135, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, T.L.; Rans, T.S. Cannabis sativa: The unconventional “weed” allergen. Ann. Allergy Asthma Immunol. 2015, 114, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Tashkin, D.P.; Baldwin, G.C.; Sarafian, T.; Dubinett, S.; Roth, M.D. Respiratory and immunologic consequences of marijuana smoking. J. Clin. Pharmacol. 2002, 42, 71S–81S. [Google Scholar] [CrossRef]
- Malvi, A.; Khatib, M.N.; Balaraman, A.K.; Roopashree, R.; Kaur, M.; Srivastava, M.; Barwal, A.; Prasad, S.; Rajput, P.; Syed, R.; et al. Cannabis consumption and risk of asthma: A systematic review and meta-analysis. BMC Pulm. Med. 2025, 29, 48. [Google Scholar]
- Ghasemiesfe, M.; Ravi, D.; Vali, M.; Korenstein, D.; Arjomandi, M.; Frank, J.; Austin, P.C.; Keyhani, S. Marijuana use, respiratory symptoms, and pulmonary function: A systematic review and meta-analysis. Ann. Intern. Med. 2018, 169, 106–115. [Google Scholar] [CrossRef]
- Jacinto, T.; Malinovchi, A.; Janson, C.; Fonseca, J.; Alving, K. Effect of cigarette smoke exposure on exhaled nitric oxide and its relation to asthma and hay feverin adult NHANES subjects. Eur. Respir. J. 2015, 46 (Suppl. S59), PA4000. [Google Scholar]
- Ribeiro, L.; Ind, P.W. Marijuana and the lung: Hysteria or cause for concern? Breathe 2018, 14, 196–205. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Roth, M.D. Pulmonary effects of inhaled cannabis smoke. Am. J. Drug Alcohol Abuse 2019, 45, 596–609. [Google Scholar] [CrossRef]
- Abdallah, S.J.; Smith, B.M.; Ware, M.A.; Moore, M.; Li, P.Z.; Bourbeau, J.; Jensen, D. Effect of vaporized cannabis on exertional breathlessness and exercise endurance in advanced chronic obstructive pulmonary disease: A randomized controlled trial. Ann. Am. Thorac. Soc. 2018, 15, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, J.S.; Silvers, W.S.; Winders, T.A.; Hart, M.K.; Zeiger, R.S. Cannabis attitudes and patterns of use among followers of the Allergy & Asthma Network. Ann. Allergy Asthma Immunol. 2021, 126, 401–410.e1. [Google Scholar] [CrossRef] [PubMed]
- Weaver, V.M.; Hua, J.T.; Fitzsimmons, K.M.; Laing, J.R.; Farah, W.; Hart, A.; Braegger, T.J.; Reid, M.; Weissman, D.N. Fatal Occupational Asthma in Cannabis Production—Massachusetts, 2022. MMWR. Morb. Mortal. Wkly. Rep. 2023, 72, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.D.; Zhou, C.; Silverman, K.D.; Rastogi, D.; Borrell, L.N. Cannabis use and the prevalence of current asthma among adolescents and adults in the United States. Prev. Med. 2024, 179, 107827. [Google Scholar] [CrossRef]
- Dalbah, R.; Haddaden, M.; Haddadin, B.; Cecchini, A.; Abdelhay, A.; Hoskere, G. V Effects of Cannabis Use on Acute Asthma Exacerbation in Hospitalized Patients. Chest 2023, 164, A58. [Google Scholar] [CrossRef]
- ieringer, D.; St. Laurent, J.; Goodrich, S. Cannabis vaporizer combines efficient delivery of THC with effective suppression of pyrolytic compounds. J. Cannabis Ther. 2004, 4, 7–27. [Google Scholar] [CrossRef]
- Earleywine, M.; Van Dam, N.T. Case studies in cannabis vaporization. Addict. Res. Theory 2010, 18, 243–249. [Google Scholar] [CrossRef]
- Kaplan, A.G. Cannabis and Lung Health: Does the Bad Outweigh the Good? Pulm. Ther. 2021, 7, 395–408. [Google Scholar] [CrossRef]
- Fehr, K.O.; Kalant, H. Analysis of cannabis smoke obtained under different combustion conditions. Can. J. Physiol. Pharmacol. 1972, 50, 761–767. [Google Scholar] [CrossRef]
- Tashkin, D.P. Effects of marijuana smoking on the lung. Ann. Am. Thorac. Soc. 2013, 10, 239–247. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Lo, L.A.; Pistawka, C.A.; Christiansen, A.; Boivin, M. Cannabis vaporisation: Understanding products, devices and risks. Drug Alcohol Rev. 2024, 43, 732–745. [Google Scholar] [CrossRef]
- Aston, E.R.; Farris, S.G.; Metrik, J.; Rosen, R.K. Vaporization of marijuana among recreational users: A qualitative study. J. Stud. Alcohol Drugs 2019, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Aston, E.R.; Scott, B.; Farris, S.G. A qualitative analysis of cannabis vaporization among medical users. Exp. Clin. Psychopharmacol. 2019, 27, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Boakye, E.; Obisesan, O.H.; Uddin, S.M.I.; El-Shahawy, O.; Dzaye, O.; Osei, A.D.; Benjamin, E.J.; Stokes, A.C.; Robertson, R.M.; Bhatnagar, A.; et al. Cannabis vaping among adults in the United States: Prevalence, trends, and association with high-risk behaviors and adverse respiratory conditions. Prev. Med. 2021, 153, 106800. [Google Scholar] [CrossRef] [PubMed]
- Boakye, E.; El Shahawy, O.; Obisesan, O.; Dzaye, O.; Osei, A.D.; Erhabor, J.; Uddin, S.M.I.; Blaha, M.J. The inverse association of state cannabis vaping prevalence with the e-cigarette or vaping product-use associated lung injury. PLoS ONE 2022, 17, e0276187. [Google Scholar] [CrossRef]
- Johnson, D.A.; Funnell, M.P.; Heaney, L.M.; Cable, T.G.; Wheeler, P.C.; Bailey, S.J.; Clifford, T.; James, L.J. Cannabidiol Oil Ingested as Sublingual Drops or Within Gelatin Capsules Shows Similar Pharmacokinetic Profiles in Healthy Males. Cannabis Cannabinoid Res. 2023, 9, e1423–e1432. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Lo, L.A.; Boivin, M. “Is medical cannabis safe for my patients?” A practical review of cannabis safety considerations. Eur. J. Intern. Med. 2021, 89, 10–18. [Google Scholar] [CrossRef]
- Stella, B.; Baratta, F.; Della Pepa, C.; Arpicco, S.; Gastaldi, D.; Dosio, F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs 2021, 81, 1513–1557. [Google Scholar] [CrossRef]
- Metcalf, M.; Rossie, K.; Stokes, K.; Tanner, B. Health Care Professionals’ Clinical Skills to Address Vaping and e-Cigarette Use by Patients: Needs and Interest Questionnaire Study. JMIR Form. Res. 2022, 6, e32242. [Google Scholar] [CrossRef]
- Posis, A.; Bellettiere, J.; Liles, S.; Alcaraz, J.; Nguyen, B.; Berardi, V.; Klepeis, N.E.; Hughes, S.C.; Wu, T.; Hovell, M.F. Indoor cannabis smoke and children’s health. Prev. Med. Rep. 2019, 14, 100853. [Google Scholar] [CrossRef]
- Bramness, J.G.; Von Soest, T. A longitudinal study of cannabis use increasing the use of asthma medication in young Norwegian adults. BMC Pulm. Med. 2019, 19, 52. [Google Scholar] [CrossRef]
- Gieringer, D.H. Cannabis “Vaporization”: A Promising Strategy for Smoke Harm Reduction. In Cannabis Therapeutics in HIV/AIDS; Taylor and Francis: Abingdon, UK, 2012; pp. 153–170. ISBN 9780203049105. [Google Scholar]
- Clobes, T.A.; Palmier, L.A.; Gagnon, M.; Klaiman, C.; Arellano, M. The impact of education on attitudes toward medical cannabis. PEC Innov. 2022, 1, 100009. [Google Scholar] [CrossRef] [PubMed]
Mode of Action | Agent | Result | Clinical Implication | Reference |
---|---|---|---|---|
CB1 antagonism | SR141716 | ↑ Irritant-induced smooth muscle contraction | Exacerbation of bronchoconstriction and cough | [55] |
CB1 agonism | ACEA | ↓ 5-hydroxytryptamine-induced smooth muscle contraction | Prevention of tracheal hyperreactivity | [58] |
FAAH/MAGL inhibition | JZL195 | ↓ Pro-inflammatory cytokine production ↓ Inflammatory cell infiltration | Alleviation of airway hyperreactivity and inflammation in allergic asthma | [59] |
CB2 agonism | JWH133 | ↑ Chemoattractant-induced eosinophil shape change, chemotaxis, and CD11b surface expression ↑ Eosinophil influx in the airways ↑ Production of reactive oxygen species | Aggravation of airway hyperreactivity | [61] |
CB2 antagonism | SR144528 | ↓ Activity of peripheral blood eosinophils and dEol-1 cells ↓ Level of inflammatory and type 2 cytokines | Alleviation of airway hyperreactivity | [62] |
CB2 agonism | JWH133 | ↑ ILC2 proliferation and function ↑ ILC2-driven lung inflammation | Exacerbation of airway hyperreactivity | [63] |
CB2 agonism | P6023 | ↓ Accumulation of CD4+ T cells and eosinophils ↓ Th2 cytokine production | Mitigation of airway hyperreactivity and mucus production | [64] |
CB2 agonism | β-caryophyllene | ↓ Infiltration of inflammatory agents (eosinophils, neutrophils, lymphocytes, IL-6, IL-8, and TNF-α) ↑ CD4+ differentiation into Treg cells ↑ Cytokines secreted by Tregs (TGF-β and IL-10) ↓ Cytokines secreted by Th17 (IL-17A and IL-22) | Amelioration of neutrophilic asthma symptoms | [65] |
CB1/CB2 agonism | CP55, 940 | ↓ Leukocyte and eosinophilic infiltration ↓ Mast cell activation ↓ Free radical-induced DNA injury ↓ Myeloperoxidase activity ↓ TNF-α and prostaglandin D2 levels in BALF ↓ Bronchial lumen restriction and alveolar hyperinflation | Reduction in cough and dyspnea | [71] |
Phytocannabinoid | Result | Clinical Implication | Reference |
---|---|---|---|
THC | ↓ TNF-α-enhanced vagal-induced bronchoconstriction ↓ Citric acid-induced cough response | Decrease in airway hyperreactivity and cough | [54] |
CBD | ↓ Collagen fiber content in airway and alveolar septa ↓ Proinflammatory markers in BALF and lung homogenate | Decrease in airway hyperreactivity and remodeling processes | [14] |
CBD | ↓ Th1 cytokines (TNF-α and IL-6) ↓ Th2 cytokines (IL-4, IL-5 and IL-13) | Potential adjunctive asthma treatment | [85] |
High-concentration CBD extract | ↓ Leukocyte, neutrophil, and eosinophil migration ↓ Differentiation of CD4+ T cells into Th2 cells ↓ Th2-mediated immune response ↓ IgE blood levels ↓ Secretion of type 2 cytokines (IL-4, IL-5, and IL-13) ↓ Secretion of non-type 2 cytokines (IL-8 and IL-6) | Potential adjunctive treatment for both type 2 and non-type 2 asthma | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska, A.A.; Rybacki, C.; Graczyk, M.; Waśniowska, D.; Kołodziej, M. Is There a Place for Cannabinoids in Asthma Treatment? Int. J. Mol. Sci. 2025, 26, 3328. https://doi.org/10.3390/ijms26073328
Lewandowska AA, Rybacki C, Graczyk M, Waśniowska D, Kołodziej M. Is There a Place for Cannabinoids in Asthma Treatment? International Journal of Molecular Sciences. 2025; 26(7):3328. https://doi.org/10.3390/ijms26073328
Chicago/Turabian StyleLewandowska, Agata Anna, Cezary Rybacki, Michał Graczyk, Dorota Waśniowska, and Małgorzata Kołodziej. 2025. "Is There a Place for Cannabinoids in Asthma Treatment?" International Journal of Molecular Sciences 26, no. 7: 3328. https://doi.org/10.3390/ijms26073328
APA StyleLewandowska, A. A., Rybacki, C., Graczyk, M., Waśniowska, D., & Kołodziej, M. (2025). Is There a Place for Cannabinoids in Asthma Treatment? International Journal of Molecular Sciences, 26(7), 3328. https://doi.org/10.3390/ijms26073328