Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = cambial age

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 11778 KiB  
Article
Enhanced Climate-Sensitive Crop Planning Models for Multiple Criteria Decision-Making When Managing Jack Pine and Red Pine Forest Types
by Peter F. Newton
Forests 2025, 16(4), 610; https://doi.org/10.3390/f16040610 - 30 Mar 2025
Cited by 1 | Viewed by 297
Abstract
For jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Aiton) forest types, the goal of this study was to develop and demonstrate enhanced climate-smart crop planning models that are capable of simultaneously addressing both conventional and evolving forest management [...] Read more.
For jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Aiton) forest types, the goal of this study was to develop and demonstrate enhanced climate-smart crop planning models that are capable of simultaneously addressing both conventional and evolving forest management objectives, i.e., volumetric yield, wood quality, carbon storage-based harvestable wood product (HWP) production, and biodiversity-driven deadwood accumulation objectives. Procedurally, this involved the following: (1) development and integration of species-specific cambial age prediction equations and associated integration of whole-stem fibre attribute prediction equation suites, previously developed for wood density (Wd), microfibril angle (Ma), modulus of elasticity (Me), fibre coarseness (Co), tracheid wall thickness (Wt), tracheid radial (Dr) and tangential (Dt) diameters, and specific surface area (Sa), into climate-sensitive structural stand density management models (SSDMMs); (2) modification of the computational pathway of the SSDMMs to enable the estimation of abiotic stem volume production; and (3) given (1) and (2), exemplifying the potential utility of the enhanced SSDMMs in operational crop planning. Analytically, to generate whole-stem attribute predictions and derive HWP estimates, species-specific hierarchical mixed-effects cambial age models were specified, parameterized, and statistically validated. The previously developed attribute equation suites along with the new cambial age models were then integrated within the species-specific SSDMMs. In order to facilitate the calculation of accumulated deadwood production arising from density-dependent (self-thinning) and density-independent (non-self-thinning) mortality, the computational pathways of the SSDMMs were augmented and modified. The utility of the resultant enhanced SSDMMs was then exemplified by generating and contrasting rotational volumetric yield, wood quality attribute property maps, quantity and quality (grade) of solid wood and non-solid wood HWPs, and deadwood production forecasts, for species–locale–RCP-specific crop plan sets. These analytical model-based innovations, along with the crop planning exemplifications, confirmed the adaptability and potential utility of the enhanced SSDMMs in mitigating the complexities of multiple criteria decision-making when managing jack pine and red pine forest types under climate change. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 2746 KiB  
Article
Cambial Age Influences PCD Gene Expression during Xylem Development and Heartwood Formation
by Yulia L. Moshchenskaya, Natalia A. Galibina, Tatiana V. Tarelkina, Ksenia M. Nikerova, Maksim A. Korzhenevsky and Ludmila I. Semenova
Plants 2023, 12(23), 4072; https://doi.org/10.3390/plants12234072 - 4 Dec 2023
Cited by 4 | Viewed by 1805
Abstract
Heartwood formation is an important ontogenetic stage in Scots pine (Pinus sylvestris L.). The amount of heartwood determines the proportion of functionally active sapwood in the total trunk biomass as well as the quality of wood. The key criterion for heartwood formation [...] Read more.
Heartwood formation is an important ontogenetic stage in Scots pine (Pinus sylvestris L.). The amount of heartwood determines the proportion of functionally active sapwood in the total trunk biomass as well as the quality of wood. The key criterion for heartwood formation is the death of xylem ray parenchyma cells. Previously, models that described the patterns of heartwood formation, depending on the cambial age, were derived from Scots pine trees of different ages. The cambial age is the number of annual xylem layers at the core sampling site at a certain trunk height. We studied the features of the occurrence of programmed cell death (PCD) processes during the xylem differentiation and heartwood formation of 80-year-old Scots pine trees, depending on the cambial age, under the lingonberry pine forest conditions in the transition area of the northern taiga subzone and tundra. We have shown that the distance from the cambial zone to the heartwood boundary does not change significantly with stem height. As the cambial age increases, the lifespan of the formed xylem ray parenchyma cells increases and the activity of PCD genes decreases during the formation of both (1) xylem (in the outer layers of sapwood) and (2) heartwood (in the inner layers of sapwood and transition zone). We hypothesized that the decisive factor in the PCD initiation during heartwood formation is the distance of the xylem ray parenchyma cells from the cambial zone. The younger cambium forms wider annual increments, and therefore the xylem ray parenchyma cells in these parts of the trunk reach the distance from the cambial zone earlier, which is necessary for PCD initiation. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

15 pages, 6586 KiB  
Article
Dendrochronological Analysis of One-Seeded and Intermediate Hawthorn Response to Climate in Poland
by Anna Cedro and Bernard Cedro
Forests 2023, 14(11), 2264; https://doi.org/10.3390/f14112264 - 17 Nov 2023
Viewed by 1317
Abstract
Although the hawthorn is not a forest-forming species, and it has no high economic significance, it is a very valuable component of forests, mid-field woodlots or roadside avenues. The literature, however, lacks information on the growth rate, growth phases, or growth–climate–habitat relationship for [...] Read more.
Although the hawthorn is not a forest-forming species, and it has no high economic significance, it is a very valuable component of forests, mid-field woodlots or roadside avenues. The literature, however, lacks information on the growth rate, growth phases, or growth–climate–habitat relationship for trees of this genus. This work aimed to establish the rate of growth of Craraegus monogyna and C. xmedia Bechst growing in various parts of Poland, in various habitats; analyze the growth–climate relationship; and distinguish dendrochronological regions for these species. Samples were taken using a Pressler borer from nine populations growing in different parts of Poland, from a total of 192 trees (359 samples). The tree-ring width was measured down to 0.01 mm. The average tree-ring width in the studied hawthorn populations ranged from 1.42 to 3.25 mm/year. Using well-established cross-dating methods, nine local chronologies were compiled with tree ages between 45 and 72 years. Dendroclimatic analyses (pointer year analysis, correlation and response function analysis) were performed for a 33-year period from 1988 to 2020, for which all local chronologies displayed EPS > 0.85. The tree-ring width in the hawthorn populations depended mostly on temperature and rainfall through the May–August period. High rainfall and the lack of heat waves through these months cause an increase in cambial activity and the formation of wide tree rings. Conversely, rainfall shortages through this period, in conjunction with high air temperatures, caused growth depressions. Cluster analysis enabled the identification of two dendrochronological regions among the hawthorn in Poland: a western and eastern region, and a single site (CI), whose separation was most likely caused by contrasting habitat and genetic conditions. The obtained results highlight the need for further study of these species in Poland and other countries. Full article
(This article belongs to the Special Issue Tree Growth in Relation to Climate Change)
Show Figures

Figure 1

46 pages, 13081 KiB  
Article
Development of Spatiotemporal Whole-Stem Models for Estimating End-Product-Based Fibre Attribute Determinates for Jack Pine and Red Pine
by Peter F. Newton
Forests 2023, 14(11), 2211; https://doi.org/10.3390/f14112211 - 8 Nov 2023
Cited by 3 | Viewed by 1467
Abstract
The objective of this study was to develop spatiotemporal whole-stem wood quality prediction models for a suite of end-product-based fibre attribute determinates for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Aiton): specifically, for wood density (Wd [...] Read more.
The objective of this study was to develop spatiotemporal whole-stem wood quality prediction models for a suite of end-product-based fibre attribute determinates for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Aiton): specifically, for wood density (Wd), microfibril angle (Ma), modulus of elasticity (Me), fibre coarseness (Co), tracheid wall thickness (Wt), tracheid radial diameter (Dr), tracheid tangential diameter (Dt), and specific surface area (Sa). Procedurally, these attributes were determined for each annual ring within pith-to-bark xylem sequences extracted from 610 jack pine and 223 red pine cross-sectional disks positioned throughout the main stem of 61 jack pine and 54 red pine sample trees growing within even-aged monospecific stands in central Canada. Deploying a block cross-validation-like approach in order to reduce serial data dependency and enable predictive performance assessments, species-specific calibration and validation data subsets consisting of cumulative moving average values were systematically generated from the 27,820 jack pine and 11,291 red pine attribute-specific annual ring values. Graphical, correlation, regression and validation analyses were used to specify, parameterize and assess the predictive performance of tertiary-level (ring-disk-tree) hierarchical mixed-effects whole-stem equations for each attribute by species. As a result, the jack pine equations explained 46, 66, 74, 63, 59, 72, 42 and 48% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively. The red pine equations explained slightly higher levels of variation except for Me: 50, 71, 31, 83, 72, 78, 56 and 71% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively. Graphical assessments and statistical metrics related to attribute and species-specific residual error patterns and goodness-of-fit, lack-of-fit and predictive error metrics, revealed an absence of systematic bias, misspecification or aberrant predictive performance. Consequently, the resultant parameterized models were acknowledged as acceptable functional descriptors of the intrinsic spatiotemporal cumulative developmental patterns of the studied end-product fibre attribute determinates, for these two pine species. Although predicted development patterns were similar between the species with the greatest degree of nonlinearity occurring before a cambial age of approximately 30 years, irrespective of attribute, jack pine exhibited a greater degree of nonlinearity in the Wd and Dt developmental trajectories, whereas red pine exhibited a greater degree of nonlinearity in the Ma, Me, Co, Wt, Dr and Sa developmental trajectories. Potential biomechanical linkages underlying the observed attribute distribution patterns, as well as the potential utility of the models in forest management, are also discussed. Full article
Show Figures

Figure 1

21 pages, 4066 KiB  
Article
Identification and Expression Profile of CLE41/44-PXY-WOX Genes in Adult Trees Pinus sylvestris L. Trunk Tissues during Cambial Activity
by Natalia A. Galibina, Yulia L. Moshchenskaya, Tatiana V. Tarelkina, Kseniya M. Nikerova, Maxim A. Korzhenevskii, Aleksandra A. Serkova, Nikita V. Afoshin, Ludmila I. Semenova, Diana S. Ivanova, Elena N. Guljaeva and Olga V. Chirva
Plants 2023, 12(4), 835; https://doi.org/10.3390/plants12040835 - 13 Feb 2023
Cited by 9 | Viewed by 3067
Abstract
WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cells in the cambium, the lateral meristem that forms all the wood structural elements. Most studies have examined the function of these genes in angiosperms, [...] Read more.
WUSCHEL (WUS)-related homeobox (WOX) protein family members play important roles in the maintenance and proliferation of the stem cells in the cambium, the lateral meristem that forms all the wood structural elements. Most studies have examined the function of these genes in angiosperms, and very little was known about coniferous trees. Pine is one of the most critical forest-forming conifers globally, and in this research, we studied the distribution of WOX4, WOX13, and WOXG genes expression in Pinus sylvestris L. trunk tissues. Further, we considered the role of TDIF(CLE41/44)/TDR(PXY) signaling in regulating Scots pine cambial activity. The distribution of CLE41/44-PXY-WOXs gene expression in Scots pine trunk tissues was studied: (1) depending on the stage of ontogenesis (the first group of objects); and (2) depending on the stage of cambial growth (the second group of objects). The first group of objects is lingonberry pine forests of different ages (30-, 80-, and 180-year-old stands) in the middle taiga subzone. At the time of selection, all the trees of the studied groups were at the same seasonal stage of development: the formation of late phloem and early xylem was occurring in the trunk. The second group of objects is 40-year-old pine trees that were selected growing in the forest seed orchard. We took the trunk tissue samples on 27 May 2022, 21 June 2022, and 21 July 2022. We have indicated the spatial separation expressed of PsCLE41/44 and PsPXY in pine trunk tissues. PsCLE41/44 was differentially expressed in Fraction 1, including phloem cells and cambial zone. Maximum expression of the PsPXY gene occurred in Fraction 2, including differentiating xylem cells. The maximum expression of the PsCLE41/44 gene occurred on 27 May, when the number of cells in the cambial zone was the highest, and then it decreased to almost zero. The PsPXY gene transcript level increased from May to the end of July. We found that the highest transcript level of the PsWOX4 gene was during the period of active cell proliferation in the cambial zone, and also in the trees with the cambial age 63 years, which were characterized by the largest number of cell layers in the cambial zone. In this study, we have examined the expression profiles of genes belonging to the ancient clade (PsWOXG and PsWOX13) in stem tissues in Scots pine for the first time. We found that, in contrast to PsWOX4 (high expression that was observed during the period of active formation of early tracheids), the expression of genes of the ancient clade of the WOX genes was observed during the period of decreased cambial activity in the second half of the growing season. We found that PsWOX13 expression was shifted to Fraction 1 in most cases and increased from the phloem side, while PsWOXG expression was not clearly bound to a certain fraction. Based on the data, the role of the CLE41/44-PXY-WOX signaling module in regulating P. sylvestris cambial growth is discussed. Full article
Show Figures

Figure 1

18 pages, 3819 KiB  
Article
Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation
by Yulia L. Moshchenskaya, Natalia A. Galibina, Kseniya M. Nikerova, Tatiana V. Tarelkina, Maksim A. Korzhenevsky, Irina N. Sofronova, Maria A. Ershova and Ludmila I. Semenova
Plants 2022, 11(24), 3438; https://doi.org/10.3390/plants11243438 - 9 Dec 2022
Cited by 7 | Viewed by 2673
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles [...] Read more.
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family—BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells’ PCD during the formation of Scots pine heartwood were discussed. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

19 pages, 1928 KiB  
Article
Regional, Site, and Tree Variations of Wood Density and Growth in Thuja occidentalis L. in the Quebec Forest
by Besma Bouslimi, Ahmed Koubaa and Yves Bergeron
Forests 2022, 13(12), 1984; https://doi.org/10.3390/f13121984 - 24 Nov 2022
Cited by 5 | Viewed by 2338
Abstract
Thuja occidentalis L. wood is desirabl, e for wooden structures that require wood density uniformity. Wood density is a wood quality indicator related to numerous morphological, mechanical, physiological, and ecological properties. This study aimed to investigate the regional, site, and tree-to-tree variations of [...] Read more.
Thuja occidentalis L. wood is desirabl, e for wooden structures that require wood density uniformity. Wood density is a wood quality indicator related to numerous morphological, mechanical, physiological, and ecological properties. This study aimed to investigate the regional, site, and tree-to-tree variations of T. occidentalis wood density and growth components through the analysis of X-ray densitometer data. A total of 287 trees were randomly sampled from 11 sites in the Abitibi-Témiscamingue regions in Québec, Canada. The average ring density at breast height was 356 kg m−3, with a small difference between earlywood and latewood (167 kg m−3), indicating a relatively uniform wood. Ring density and width varied significantly between the Abitibi and the Témiscamingue regions, mainly in the juvenile wood. Trees from the Abitibi region showed higher ring density than those in the Témiscamingue region. In contrast, the ring width was higher in the Témiscamingue region. Site, tree, and cambial age significantly (p < 0.001) affected wood density and growth components. However, the largest variation is due to the tree-to-tree variation, accounting for about 15%–31% of the total variation. Compared to ring widths, ring density components showed a considerably smaller tree-to-tree variation and higher variation (7.1%) with cambial age than ring widths (0.6%). Ring width correlated positively and significantly (p < 0.001) with average temperature and annual precipitation, while ring density correlated negatively and significantly (p < 0.001) with average temperature and annual precipitation. Full article
(This article belongs to the Special Issue Silviculture and Management of Boreal Forests)
Show Figures

Figure 1

15 pages, 2965 KiB  
Article
Stem Growth of Horse Chestnut (Aesculus hippocastanum L.) under a Warming Climate—Tree Age Matters
by Roman Plichta, Luboš Úradníček and Roman Gebauer
Forests 2022, 13(10), 1677; https://doi.org/10.3390/f13101677 - 12 Oct 2022
Cited by 2 | Viewed by 2436
Abstract
This research provides new information about the effect of drought on horse chestnut growth (Aesculus hippocastanum L.) in different ages. Global climatic scenarios predict a higher frequency of heatwaves and drought periods; however, investigations into the growth reaction of horse chestnut to [...] Read more.
This research provides new information about the effect of drought on horse chestnut growth (Aesculus hippocastanum L.) in different ages. Global climatic scenarios predict a higher frequency of heatwaves and drought periods; however, investigations into the growth reaction of horse chestnut to drought are completely lacking. Approximately 50-year-old solitary, 100-year-old solitary, and 100-year-old canopy horse chestnut trees in a floodplain area were investigated. Growth reactions measured using automated dendrometers with respect to meteorological variables and water table depth were investigated during the years 2019–2021. Cambial activity was shown to be driven by tree age, as younger trees had higher stem radial increment rates. Both mature tree groups suffered from a low depth of water level and from higher sensitivity to meteorological variables, as growth was limited when mean daily vapor pressure deficit (VPD) exceeded 600 Pa. Together with a lower probability of growing days and a shorter growing season (GS) with earlier cessation of growth resulted in a lower total year radial increment (GRO) and basal area increment (BAI) when compared to younger trees. The young trees also exhibited lower tree-water-deficit-induced stem shrinkage (TWD) across all the studied years. Overall, horse chestnut trees in this floodplain area could be endangered by the decreasing level of soil water, with a greater age exacerbating the effects of drought. The year water deficit exceeded −340 mm in this locality every year, which has to be compensated for by regular flooding. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 2525 KiB  
Article
Distinct Climate Effects on Dahurian Larch Growth at an Asian Temperate-Boreal Forest Ecotone and Nearby Boreal Sites
by Enzai Du and Yang Tang
Forests 2022, 13(1), 27; https://doi.org/10.3390/f13010027 - 26 Dec 2021
Cited by 11 | Viewed by 3174
Abstract
Climate change is exerting profound impacts on the structure and function of global boreal forest. Compared with their northern counterparts, trees growing at the southern boreal forest and the temperate-boreal forest ecotone likely show distinct responses to climate change. Based on annual basal [...] Read more.
Climate change is exerting profound impacts on the structure and function of global boreal forest. Compared with their northern counterparts, trees growing at the southern boreal forest and the temperate-boreal forest ecotone likely show distinct responses to climate change. Based on annual basal areal increment (BAI) of Dahurian larch (Larix gmelinii Rupr.) plantations with similar ages, tree densities and soil nutrient conditions, we investigated the tree growth responses to inter-annual climate variations at an Asian temperate-boreal forest ecotone and nearby boreal sites in northeast China. Annual BAI changed nonlinearly with cambial age in the form of a lognormal curve. The maximum annual BAI showed no significant difference between the two bioregions, while annual BAI peaked at an elder age at the boreal-temperate forest ecotone. After eliminating the age associated trend, conditional regression analyses indicate that residual BAI at the boreal sites increased significantly with higher growing-season mean nighttime minimum temperature and non-growing-season precipitation, but decreased significantly with higher growing-season mean daytime maximum temperature during the past three decades (1985–2015). In contrast, residual BAI at the boreal-temperate forest ecotone only showed a positive and weak response to inter-annual variations of growing-season precipitation. These findings suggest distinct effects of inter-annual climate variation on the growth of boreal trees at the temperate-boreal forest ecotone in comparison to the southern boreal regions, and highlight future efforts to elucidate the key factors that regulate the growth ofthe southernmost boreal trees. Full article
(This article belongs to the Special Issue Vulnerability of Forests to Climate Variability and Change)
Show Figures

Figure 1

5 pages, 726 KiB  
Proceeding Paper
Changes in the Differentiation Program of Phloem Derivatives of Birch Cambium after Trunk Girdling
by Aleksandra A. Serkova, Tatiana V. Tarelkina, Natalia A. Galibina, Yulia L. Moshchenskaya, Irina N. Sofronova, Diana S. Ivanova and Ludmila I. Semenova
Biol. Life Sci. Forum 2022, 11(1), 56; https://doi.org/10.3390/IECPS2021-11928 - 29 Nov 2021
Viewed by 1074
Abstract
The processes of cambial activity and secondary xylem and phloem differentiation are completely dependent on the influx of photoassimates. Trunk girdling is a frequently used method for studying cambial growth under conditions of different assimilate supply. We girdled 20-year-old birch trees (Betula [...] Read more.
The processes of cambial activity and secondary xylem and phloem differentiation are completely dependent on the influx of photoassimates. Trunk girdling is a frequently used method for studying cambial growth under conditions of different assimilate supply. We girdled 20-year-old birch trees (Betula pendula Roth) and took samples 1 cm (AG1) and 35 cm above the girdle (AG35). Tissues of ungirdled trees served as a control. A sharp increase in carbohydrates level (AG1) inhibited xylogenesis and stimulated phloemogenesis. A moderate increase (AG35) also stimulated phloemogenesis; however, xylogenesis continued. The activity of the APL gene encoding a phloem-specific transcription factor correlates with the active phloemogenesis, as it was 2.18 (AG1) and 3 (AG35) times higher than in the control. The SUC gene encoding the transmembrane sucrose transporter was up-regulated in the AG1 and AG35 zones by 2.24 and 2.51 times, respectively, compared with the control, which indicates an active sucrose loads into the cells and correlates with the preferential differentiation of parenchyma. The activity of the PIN1 gene encoding the auxin transporter was highest in zone AG35 (2.1 times higher than in the control). In zone AG1, the PIN1 activity was 1.7 times lower than that of AG35, which corresponds to the impaired differentiation of the phloem sieve tubes. The data obtained can be useful for a better understanding of physiological processes and predicting changes in the forest’s productivity under conditions of a changing climate. Full article
Show Figures

Figure 1

12 pages, 3220 KiB  
Article
Investigating Masking Effects of Age Trends on the Correlations among Tree Ring Proxies
by Tito Arosio, Malin Michelle Ziehmer-Wenz, Kurt Nicolussi, Christian Schlüchter and Markus Christian Leuenberger
Forests 2021, 12(11), 1523; https://doi.org/10.3390/f12111523 - 4 Nov 2021
Cited by 7 | Viewed by 2441
Abstract
Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the [...] Read more.
Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the juvenile period (>100 years), which might mask the inter-relations between tree-ring proxies during cambial age. This work tries to unmask the age-trend influences by examining the correlations in TRW—stable isotopes with and without age-trend correction. The non-detrended and linear-detrended values of TRW, of δD and δ18O showed significant correlations for ages up to 100 years, but not afterward. However, the correlation values, after spline or first-difference time-series detrending, were not age-related. Thus, detrending methods affect the correlations in the juvenile phase and may affect climate-related interpretations. The correlations between TRW and δ13C were not age-related, while those among the isotopes were significant throughout the ages. The correlation between δ13C and δD was the exception, as it became significant only after age > 100 years, suggesting a different use of reserves in the juvenile phase. In conclusion, the relationships among the tree-ring parameters are stable in all the different detrend scenarios after the juvenile phase, and they can be used together in multi-proxy paleoclimatic studies. The data of the juvenile phase can be used after spline-detrending or first-difference time-series calculation, depending on the purpose of the analysis to remove age-related trends. The work also provides clues on the possible causes of juvenile age trends. Full article
(This article belongs to the Special Issue Stable Isotopes in Dendroecology)
Show Figures

Figure 1

14 pages, 1755 KiB  
Article
Wood Density and Ring Width in Quercus rotundifolia Trees in Southern Portugal
by Vicelina Sousa, Maria Emília Silva, José Luís Louzada and Helena Pereira
Forests 2021, 12(11), 1499; https://doi.org/10.3390/f12111499 - 29 Oct 2021
Cited by 11 | Viewed by 3065
Abstract
Quercus rotundifolia Lam., known as holm oak or evergreen oak, occurs naturally in the western Mediterranean region, mainly as part of the agroforestry or agrosilvopastoral systems in Portugal (“montado”) and Spain (“dehesa”), and is economically important for acorn production. Less attention has been [...] Read more.
Quercus rotundifolia Lam., known as holm oak or evergreen oak, occurs naturally in the western Mediterranean region, mainly as part of the agroforestry or agrosilvopastoral systems in Portugal (“montado”) and Spain (“dehesa”), and is economically important for acorn production. Less attention has been given to Q. rotundifolia wood, and its density variability is not known, namely related to tree growth. The wood density of 20 Q. rotundifolia trees was measured along the radial direction by X-ray densitometry and the factors responsible for ring width and wood density variation within and between trees were investigated at two sites located within the main species region in southern Portugal. Ring width was significantly different between sites, with an average of 1.81 mm and 1.55 mm. Wood density was very high and averaged between 888 kg/m3 and 914 kg/m3 but not significantly different between sites. Ring width and wood density showed a positive and significant correlation at both sites. Cambial age was the main source of variation for ring width and wood density, while between-tree effects accounted for a considerable proportion of wood density variation. The results are an important contribution for the species valorisation aiming at high-value wood products, also adding knowledge on the species growth of interest for tree selection and sustainable management. Full article
(This article belongs to the Special Issue Wood Production and Promotion)
Show Figures

Figure 1

20 pages, 2914 KiB  
Article
Transcriptome Analysis of Cambium Tissue of Paulownia Collected during Winter and Spring
by Zachary D. Perry, Thangasamy Saminathan, Alok Arun, Brajesh N. Vaidya, Chhandak Basu, Umesh K. Reddy and Nirmal Joshee
Diversity 2021, 13(9), 423; https://doi.org/10.3390/d13090423 - 1 Sep 2021
Cited by 3 | Viewed by 2996
Abstract
Paulownia (Paulownia elongata) is a fast-growing, multipurpose deciduous hardwood species that grows in a wide range of temperatures from –30 °C to 45 °C. Seasonal cues influence the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to [...] Read more.
Paulownia (Paulownia elongata) is a fast-growing, multipurpose deciduous hardwood species that grows in a wide range of temperatures from –30 °C to 45 °C. Seasonal cues influence the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation. In this study, a de novo transcriptome approach was conducted to identify the transcripts expressed in vascular cambial tissue from senescent winter and actively growing spring seasons. An Illumina paired-end sequenced cambial transcriptome generated 297,049,842 clean reads, which finally yielded 61,639 annotated unigenes. Based on non-redundant protein database analyses, Paulownia cambial unigenes shared the highest homology (64.8%) with Erythranthe guttata. KEGG annotation of 35,471 unigenes identified pathways enriched in metabolic activities. Transcriptome-wide DEG analysis showed that 2688 and 7411 genes were upregulated and downregulated, respectively, in spring tissues compared to winter. Interestingly, several transcripts encoding heat shock proteins were upregulated in the spring season. RT-qPCR expression results of fifteen wood-forming candidate genes involved in hemicellulose, cellulose, lignin, auxin, and cytokinin pathways showed that the hemicellulose genes (CSLC4, FUT1, AXY4, GATL1, and IRX19) were significantly upregulated in spring season tissues when compared to winter tissues. In contrast, lignin pathway genes CCR1 and CAD1 were upregulated in winter cambium. Finally, a transcriptome-wide marker analysis identified 11,338 Simple Sequence Repeat (SSRs). The AG/CT dinucleotide repeat predominately represented all SSRs. Altogether, the cambial transcriptomic analysis reported here highlights the molecular events of wood formation during winter and spring. The identification of candidate genes involved in the cambial growth provides a roadmap of wood formation in Paulownia and other trees for the seasonal growth variation. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

16 pages, 4150 KiB  
Article
Long-Term Tree-Ring Response to Drought and Frost in Two Pinus halepensis Populations Growing under Contrasting Environmental Conditions in Peninsular Italy
by Alfredo Di Filippo, Michele Baliva, Michele Brunetti and Luca Di Fiore
Forests 2021, 12(3), 305; https://doi.org/10.3390/f12030305 - 6 Mar 2021
Cited by 20 | Viewed by 3358
Abstract
Pinus halepensis dominates coastal to mountain areas throughout the Mediterranean Basin. Its growth plasticity, based on polycyclic shoot formation and dynamic cambial activity, and tolerance to extreme drought and exceptional frosts, allows it to colonize a vast array of environments. We used tree-rings [...] Read more.
Pinus halepensis dominates coastal to mountain areas throughout the Mediterranean Basin. Its growth plasticity, based on polycyclic shoot formation and dynamic cambial activity, and tolerance to extreme drought and exceptional frosts, allows it to colonize a vast array of environments. We used tree-rings from codominant pines to compare lifespan, growth rates, age and size distribution in a typical coastal (i.e., prolonged drought, occasional low-intensity fires) vs. inland hilly (i.e., moister conditions, recurrent frosts) population. BAI trends, growth-limiting climate factors and tree-ring anatomical anomalies were analyzed considering the differences in climate and phenology obtained from multispectral satellite images. The species maximum lifespan was 100–125 years. Mortality was mainly due to fire on the coast, or heart-rot in the inland site. Populations differed in productivity, which was maintained over time despite recent warming. Site conditions affected the growing season dynamics, the control over ring formation by summer drought vs. winter cold and the frequency of anatomical anomalies. Recurrent frost rings, associated with temperatures below −10 °C, occurred only at the inland site. Pinus halepensis confirmed its remarkable growth plasticity to diverse and variable environmental conditions. Its ability to survive extreme events and sustain productivity confirmed its adaptability to climate change in coastal areas as well as on Mediterranean mountains. Full article
(This article belongs to the Special Issue The Physiology of Tree Response to Drought)
Show Figures

Figure 1

17 pages, 4949 KiB  
Article
Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones
by Yamei Liu, Liang Zhou, Yingqi Zhu and Shengquan Liu
Forests 2020, 11(8), 824; https://doi.org/10.3390/f11080824 - 29 Jul 2020
Cited by 16 | Viewed by 3549
Abstract
Research highlights: Annual wood anatomy (xylem) aids our understanding of mature wood formation and the growth strategies of trees. Background and Objectives: Catalpa bungei is an important native species in China that produces excellent quality wood. Herein, we clarified the effects of the [...] Read more.
Research highlights: Annual wood anatomy (xylem) aids our understanding of mature wood formation and the growth strategies of trees. Background and Objectives: Catalpa bungei is an important native species in China that produces excellent quality wood. Herein, we clarified the effects of the genetic origin and cambial age on the anatomical characteristics of C. bungei wood. Materials and Methods: Six new 13-year-old C. bungei clones: ‘1-1’ (n trees = 3), ‘1-3’ (n trees = 3), ‘2-7’ (n trees = 3), ‘2-8’ (n trees = 3), ‘8-1’ (n trees = 4), and ‘9-1’ (n trees = 3) were removed for study from a plantation in Tianshui City, Gansu province, China. Xylem features were observed and the anatomical variables were manually measured via image analysis on (macro- micro-, and ultra-) features cut from radial increments of earlywood and latewood sampled at breast height. Results: Between the age of 1 and 2 years, wood was diffuse-porous; between the age of 3 and 9 years, wood was semi-ring-porous; and between the age of 10 and 13 years, wood was ring-porous. The effect of clones on anatomical characteristics was significant except for the microfibril angle in latewood and ring width. The transition between juvenile and mature wood was between 7 and 8 years based on patterns of radial variation in fiber length (earlywood) and microfibril angle. From the pith to the bark, fiber length, double wall thickness, fiber wall: lumen ratio, vessel diameter in earlywood, proportion of vessel in earlywood, and axial parenchyma in latewood increased significantly, whereas ring width, earlywood vessels, and the proportion of fiber decreased significantly. In addition, other features, such as vessel length, microfibril angle, and ray proportion, did not differ significantly from the pith to the bark. Conclusions: Breeding program must consider both clone and cambial age to improve the economic profitability of wood production. Full article
(This article belongs to the Special Issue Wood Structure and Properties)
Show Figures

Figure 1

Back to TopTop