Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Material and Data Collection
2.3. Measurements of Anatomical Characteristics
2.4. Statistical Analyses
3. Results
3.1. Xylem Anatomical Features
3.2. Variation in Anatomical Characteristics Between Clones
3.3. Radial Variation in Anatomical Characteristics
4. Discussion
4.1. Xylem Anatomical Features
4.2. Variation in Anatomical Characteristics between Clones
4.3. Radial Variation in Anatomical Characteristics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olsen, R.T., Jr.; Kirkbride, J.H. Taxonomic revision of the genus Catalpa (Bignoniaceae). Brittonia 2017, 69, 387–421. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Liu, P. Chinese Timbers; China Forestry Press: Beijing, China, 1992; pp. 150–152. [Google Scholar]
- Ma, W.; Zhang, S.; Wang, J.; Zhai, W.; Cui, Y.; Wang, Q. Timber physical and mechanical properties of new Catalpa bungei clones. Sci. Silvae Sin. 2013, 49, 126–134. [Google Scholar]
- Lin, J.; Wu, L.; Liang, J.; Wang, J. Effect of different plant growth regulators on callus induction in Catalpa bungei. Afr. J. Agric. Res. 2010, 5, 2699–2704. [Google Scholar]
- Zhang, S.; Wang, J.; Yuan, H.; Ma, J.; Li, Y.; Li, C. Genetic variation in growth, physiological and morphological traits of Catalpa bungei. J. Northeast For. Univ. 2011, 39, 4–8. [Google Scholar]
- Zhao, K.; Wang, J.; Jiao, Y.; Yu, J.; Zhao, M. New variety of hybridized Chinese Catalpa-breeding report of Los Chinese catalpa 1, 2. J. Henan For. Sci. Technol. 2011, 31, 4–6. [Google Scholar]
- Ma, W.; Zhang, S.; Wang, J.; Zhang, J.; Zhao, K. Growth traits of one -year -old Catalpa bungei clones in seedling stage. For. Res. 2012, 25, 657–663. [Google Scholar]
- Qiu, Q.; Li, J.; Wang, J.; He, Q.; Dong, L.; Ma, J.; Bai, J.; Wu, J. Coupling effects of water and fertilizer on the growth characteristics of Catalpa bungei seedlings. Pak. J. Bot. 2015, 47, 889–896. [Google Scholar]
- Qiu, Q.; Wang, J.; Su, Y.; Li, J.; Ma, J.; He, Q. Organ-level evaluation of the carbon starvation hypothesis in deciduous broad-leaved Catalpa bungei plants undergoing drought-induced mortality. Dendrobiology 2018, 80, 48–60. [Google Scholar] [CrossRef]
- Tong, B.; Zhao, Y.; Yang, H. Research progress on breeding techniques of Sect. Sino catalpa in northern China. J. Anhui Agric. Sci. 2019, 47, 1–3, 17. [Google Scholar]
- Han, D.; Yang, G.; Xiao, Y.; Wang, Q.; Zhai, W.; Ma, W.; Wang, J.; Wang, L. Study on early growth variation of Catalpa bungei clones and optimization. For. Res. 2019, 32, 96–104. [Google Scholar]
- Pérez, D.; Kanninen, M.; Matamoros, F.; Fonseca, W.; Chaves, E. Heartwood, sapwood and bark contents of Bombacopsis quinata in Costa Rica. J. Trop. Sci. 2004, 16, 318–327. [Google Scholar]
- Luostarinen, K.; Pikkarainen, L.; Ikonen, V.; Gerendiain, A.Z.; Pulkkinen, P.; Peltola, H. Relationships of wood anatomy with growth and wood density in three Norway spruce clones of Finnish origin. Can. J. For. Res. 2017, 47, 1184–1192. [Google Scholar] [CrossRef] [Green Version]
- Quilho, T.; Pereira, H.; Richter, H.G. Within-tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. Iawa J. 2000, 21, 31–40. [Google Scholar] [CrossRef]
- Miranda, I.; Pereira, H. Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Ann. For. Sci. 2002, 59, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.L.; Lindstrom, H.; Nakada, R.; Ralston, J. Cell wall structure and wood properties determined by acoustics-a selective review. Holzals Roh-und Werkstoff 2003, 61, 321–335. [Google Scholar] [CrossRef]
- Zhang, S.; Belien, E.; Ren, H.; Rossi, S.; Huang, J. Wood anatomy of boreal species in a warming world: A review. iForest 2020, 13, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Doungpet, M. Environment and Genetic Effects on Wood Quality of Populus. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Šefc, B.; Trajković, J.; Slavko, G.; Padovan, D.; Hasan, M. Selected tree characteristics and wood properties of two poplar clones. Wood Res. Slovak. 2009, 54, 15–22. [Google Scholar]
- Zobel, B.J.; van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin, Germany, 1989; pp. 100–119. [Google Scholar]
- Ramírez, M.; Rodríguez, J.; Peredo, M.; Valenzuela, S.; Mendonca, R. Wood anatomy and biometric parameters variation of Eucalyptus globulus clones. Wood Sci. Technol. 2009, 43, 131–141. [Google Scholar] [CrossRef]
- Guo, L. Research on Variations within Tracheid Traits and Vegetative Propagation Techniques in Chinese Fir Clones. Master’s Thesis, Zhejiang A&F University, Zhejiang, China, 2014. [Google Scholar]
- Li, R.; Huang, S.; Liang, J.; Zhou, C.; He, C.; Li, L.; Tang, G. Genetic variation of growth traits and wood properties in Chinese fir clones. J. South. Agric. 2014, 45, 1626–1631. [Google Scholar]
- Pande, P.K.; Singh, M. Inter-clonal, intra-clonal, and single tree variations of wood anatomical properties and specific gravity of clonal ramets of Dalbergia sissoo Roxb. Wood Sci. Technol. 2005, 39, 351–366. [Google Scholar] [CrossRef]
- Dadswell, H.E. Wood structure variations occurring during tree growth and their influence on properties. J. Inst. Wood Sci. 1958, 1, 1–24. [Google Scholar]
- Butterfield, R.P.; Crook, R.P.; Adams, R.; Morris, R. Radial variation in wood specific gravity, fiber length and vessel area for two central American hardwood: Hyeronima alchorneoides and Vochysia guatemalensis: Natural and plantation-grown trees. IAWA J. 1993, 14, 153–161. [Google Scholar] [CrossRef]
- Hudson, I.; Wilson, L.; Van Beveren, K. Vessel distribution at two percentage heights from pith to bark in a seven year old Eucalyptus globulus tree. Appita J. 1997, 50, 495–500. [Google Scholar]
- Hudson, I.; Wilson, L.; Van Beveren, K. Vessel and fiber property variation in Eucalyptus globulus and Eucalyptus nitens: Some preliminary results. IAWA J. 1998, 19, 111–130. [Google Scholar] [CrossRef]
- Fan, Z.; Cao, K.; Becker, P. Axial radial variations in xylem anatomy of angiosperm and conifer trees in Yunnan, China. IAWA J. 2009, 30, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Izekor, D.N.; Fuwape, J.A. Variations in the anatomical characteristics of plantation grown Tectona grandis wood in Edo State, Nigeria. Arch. Appl. Sci. Res. 2011, 3, 83–90. [Google Scholar]
- Zhao, X. Effects of cambial age and flow path-length on vessel characteristics in birch. J. Forest Res.-JPN 2015, 20, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef]
- Bendtsen, B. Properties of wood from improved and intensively managed trees. For. Prod. J. 1978, 28, 61–72. [Google Scholar]
- Loo, J.A.; Tauer, C.G.; McNew, R.W. Genetic variation in the time of transition from juvenile to mature wood in loblolly pine (Pinus taeda L.). Silvae Genet. 1985, 34, 14–19. [Google Scholar]
- Zobel, B.J.; Sprague, J.R. Juvenile Wood in Forest Trees; Springer: New York, NY, USA, 1998. [Google Scholar]
- Ferreira, A.L.; Severo, E.T.D.; Calonego, F.W. Determination of fiber length and juvenile and mature wood zones from Hevea brasiliensis trees grown in Brazil. Eur. J. Wood Wood Prod. 2011, 69, 659–662. [Google Scholar] [CrossRef]
- De Palermo, G.P.M.; de Latorraca, J.V.F.; de Carvalho, A.M.; Calonego, F.W.; Severo, E.T.D. Anatomical properties of Eucalyptus grandis wood and transition age between the juvenile and mature woods. Eur. J. Wood Wood Prod. 2015, 73, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Wang, J.; Song, L.; Yun, H. Genetic variation of wood properties of Catalpa bungei hybrid clones at the young stage. J. Northeast For. Univ. 2014, 42, 11–19. [Google Scholar]
- Li, S.; Li, X.; Link, R.; Li, R.; Deng, L.; Schuldt, B.; Jiang, X.; Zhao, R.; Zheng, J.; Li, S.; et al. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a Ring-Porous tree species native to China. Forests 2019, 10, 662. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, J.W.P.; Pederick, L.A. Variation of some wood characteristics of Eucalyptus nitens. Aust. For. 1979, 9, 309–321. [Google Scholar]
- Githiomi, J.K.; Dougal, E. Analysis of heartwood–sapwood demarcation methods and variation of sapwood and heartwood within and between 15 year old plantation grown Eucalyptus regnans. Int. J. Appl. Sci. Technol. 2012, 2. Available online: http://197.248.75.118:8282/jspui/handle/123456789/324 (accessed on 28 July 2020).
- Mansfield, S.D.; Parish, R.; Di Lucca, C.M.; Goudie, J.; Kang, K.; Ott, P. Revisiting the transition between juvenile and mature wood: A comparison of fiber length, microfibril angle and relative wood density in lodgepole pine. Holzforschung 2009, 63, 449–456. [Google Scholar] [CrossRef]
- Gorman, T.M.; Kretschmann, D.E.; Green, D.W.; Wiemann, M.C. Effect of site characteristics on juvenile wood transition in lodgepole pine in the inland northweat. Wood Fiber. Sci. 2018, 50, 180–192. [Google Scholar] [CrossRef]
- Dobrowolska, E.; Wroniszewska, P.; Jankowska, A. Density distribution in wood of European birch (Betula pendula Roth.). Forests 2020, 11, 445. [Google Scholar] [CrossRef] [Green Version]
- Cave, I.I. Theory of X—ray measurement of microfibril angle in wood. For. Prod. J. 1966, 16, 37–42. [Google Scholar]
- IAWA, Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar]
- Simcha, L.Y.; Paolo, C. Atlas of woody plant stems: Evolution, structure, and environmental modifications. J. Veg. Sci. 2008, 19, 893–894. [Google Scholar]
- Wheeler, E.A.; Baas, P.; Rodgers, S. Variations in dicot wood anatomy: A global analysis based on the inside wood database. IAWA J. 2007, 28, 229–258. [Google Scholar] [CrossRef]
- Helińska-Raczkowska, L. Variation of vessel lumen diameter in radial direction as an indication of the juvenile wood growth in oak (Quercus petraea Liebl). Ann. Des. Sci. For. 1994, 51, 283–290. [Google Scholar] [CrossRef]
- Chattaway, M.M. The sapwood-heartwood transition. Aust. For. 1952, 25–34. [Google Scholar] [CrossRef]
- Yin, J.; Song, K.; Lu, Y.; Zhao, G.; Yin, Y. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci. Technol. 2015, 49, 987–1001. [Google Scholar] [CrossRef]
- Brito, A.S.; Vidaurre, G.B.; de Oliveira, J.T.S.; Missia Da Silva, J.G.; Rodrigues, B.P.; de Carneiro, A.C.O. Effect of planting spacing in production and permeability of heartwood and sapwood of Eucalyptus wood. Floresta e Ambiente 2019, 26, e20180378. [Google Scholar] [CrossRef]
- Kohonen, M.M.; Helland, A. On the function of wall sculpturing in xylem conduits. J. Bionics Eng. 2009, 6, 324–329. [Google Scholar] [CrossRef]
- Wei, L.; McDonald, A.G.; Freitag, C.; Morrell, J.J. Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym. Degrad. Stabil. 2013, 98, 1348–1361. [Google Scholar] [CrossRef]
- Hein, P.R.G.; Silva, J.R.M.; Brancheriau, L. Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 6-year-old Eucalyptus urophylla x E. Grandis. Maderas-Cienc. Tecnol. 2013, 15, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Panshin, A.J.; de Zeeuw, C. Textbook of Wood Technology. Structure, Identification and Uses of The Commercial Woods of the United States and Canada; McGraw-Hill Book Company: New York, NY, USA, 1980. [Google Scholar]
- Van Leeuwen, M.; Hilker, T.; Coops, N.C.; Frazer, G.; Wulder, M.A.; Newnham, G.J.; Culvenor, D.S. Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review. For. Ecol. Manag. 2011, 261, 1467–1478. [Google Scholar] [CrossRef]
- Mitchell, M.D.; Denne, M.P. Variation in density of Picea sitchensis in relation to within-tree trends in tracheid diameter and wall thickness. Forestry 1997, 70, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Hannrup, B.; Danell, O.; Ekberg, I.; Moell, M. Relationships between wood density and tracheid dimensions in Pinus sylvestris L. Wood Fiber Sci. 2001, 33, 173–181. [Google Scholar]
- Uprichard, J.M. Wood extracts. In Primary Wood Processing: Principles and Practice; Walker, J.C.F., Ed.; Chapman & Hall: London, UK, 1993; pp. 56–63. [Google Scholar]
- Yamamoto, H.; Sassus, F.; Ninomiya, M.; Gril, J. A model of anisotropic swelling and shrinking process of wood-Part 2. A simulation of shrinking wood. Wood Sci. Technol. 2001, 35, 167–181. [Google Scholar] [CrossRef]
- Yang, J.L.; Evans, R. Prediction of MOE of eucalypt wood from microfibril angle and density. Holzals Roh-und Werkstoff 2003, 61, 449–452. [Google Scholar] [CrossRef]
- Hein, P.R.G.; Clair, B.; Brancheriau, L.; Chaix, G. Predicting microfibril angle in Eucalyptus wood from different wood faces and surface qualities using near infrared spectra. J. Near Infrared Spec. 2010, 18, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Lube, V.; Lazarescu, C.; Mansfield, S.D.; Avramidis, S. Wood microfibril angle variation after drying. Holzforschung 2016, 70, 485–488. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, I.; Souto-Herrero, M.; Campelo, F. Ring-porosity and earlywood vessels: A review on extracting environmental information through time. IAWA J. 2016, 37, 295–314. [Google Scholar] [CrossRef]
- Lenz, P.; Cloutier, A.; MacKay, J.; Beaulieu, J. Genetic control of wood properties in Picea glauca: An analysis of trends with cambial age. Can. J. Forest Res. 2010, 40, 703–715. [Google Scholar] [CrossRef]
- Bao, F.; Jiang, Z.; Jiang, X.; Lu, X.X.; Luo, X.; Zhang, S. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar] [CrossRef]
- Maeglin, R. Juvenile wood, tension wood, and growth stress effects on processing hardwoods. In Proceedings of the 15th annual hardwood symposium of the Hardwood Research Council, Memphis, TN, USA, 10–12 May 1987. [Google Scholar]
- Bendtsen, B.A.; Senft, J. Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cotton-wood and loblolly pine. Wood Fiber Sci. 1986, 18, 23–38. [Google Scholar]
- Cardoso, S.; Sousa, V.B.; Quilho, T.; Pereira, H. Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J. Wood Sci. 2015, 61, 326–333. [Google Scholar] [CrossRef]
- Carrillo, I.; Graciela Aguayo, M.; Valenzuela, S.; Teixeira Mendonca, R.; Pedro Elissetche, J. Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Res. Slovak. 2015, 60, 1–10. [Google Scholar]
- Istok, I.; Sefc, B.; Hasan, M.; Popovic, G.; Sedlar, T. Fiber characteristics of white poplar (Populus alba L.) juvenile wood along the Drava river. Drv. Ind. 2017, 68, 241–247. [Google Scholar] [CrossRef]
- Donaldson, L. Microfibril angle: Measurement, variation and relationships-a review. IAWA J. 2008, 29, 345–386. [Google Scholar] [CrossRef]
- Park, S. Radial variations of elements in the ring-porous wood. J. Korean Wood Sci. Technol. 1981, 9, 1–6. [Google Scholar]
- Peter, G. Implications of anatomical variations in the wood of pedunculate oak (Quercus Robur L.), including comparisons with common beech (Fagus Sylvatica L.). IAWA J. 1987, 8, 149–166. [Google Scholar]
- Lei, H.; Milota, M.R. Variation in the anatomy and specific gravity of wood within and between trees of red alder (Alnus rubra Bong.). Wood Fiber Sci. 1997, 29, 10–20. [Google Scholar]
- Pratt, R.B.; Jacobsen, A.L. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant Cell Environ. 2017, 40, 897–913. [Google Scholar] [CrossRef]
1-1 n = 3 | 1-3 n = 3 | 2-7 n = 3 | 2-8 n = 3 | 8-1 n = 4 | 9-1 n = 3 | |
---|---|---|---|---|---|---|
Age, years | 13 | 13 | 13 | 13 | 13 | 13 |
Height, m | 11.9 ± 1.6 a | 8.8 ± 1.8 b | 11.9 ± 0.1 a | 11.6 ± 0.3 a | 11.8 ± 0.6 a | 12.5 ± 0.6 a |
Diameter at breast height, cm | 16.9 ± 1.9 a | 11.7 ± 2.4 b | 15.7 ± 1.2 ab | 14.8 ± 0.6 ab | 16.4 ± 1.8 a | 15.9 ± 1.1 ab |
Anatomical Characteristic | 1-1 | 1-3 | 2-7 | 2-8 | 8-1 | 9-1 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | M ± SD | CV% | n | M ± SD | CV% | n | M ± SD | CV% | n | M ± SD | CV% | n | M ± SD | CV% | n | M ± SD | CV% | ||
Ring width, cm | 156 | 0.53 ± 0.33 a | 62.3 | 132 | 0.43 ± 0.28 a | 65.1 | 156 | 0.50 ± 0.36 a | 72.0 | 156 | 0.47 ± 0.34 a | 72.3 | 208 | 0.52 ± 0.37 a | 71.2 | 156 | 0.51 ± 0.33 a | 64.7 | |
Fiber length, μm | EW | 1800 | 851 ± 99.6 a | 11.7 | 1600 | 830 ± 141.9 b | 17.1 | 1800 | 828 ± 94.8 b | 11.4 | 1800 | 757 ± 88.8 c | 11.7 | 2350 | 857 ± 98.1 a | 11.4 | 1749 | 758 ± 78.6 c | 10.4 |
LW | 1850 | 879 ± 91.8 c | 10.5 | 1600 | 880 ± 129.7 c | 14.7 | 1800 | 879 ± 74.8 c | 8.5 | 1800 | 834 ± 86.1 d | 10.3 | 2499 | 934 ± 107.1 a | 11.5 | 1850 | 890 ± 110.4 b | 12.4 | |
Fiber diameter, μm | EW | 1881 | 18.5 ± 4.5 b | 24.0 | 1764 | 18.5 ± 3.9 b | 21.0 | 1794 | 21.3 ± 5.4 a | 25.3 | 1822 | 18.7 ± 5.3 b | 28.3 | 2452 | 18.3 ± 4.7 b | 25.7 | 1791 | 18.6 ± 5.5 b | 29.6 |
LW | 1887 | 17.9 ± 4.3 c | 24.0 | 1736 | 18.6 ± 3.4 b | 18.3 | 1797 | 21.0 ± 5.5 a | 26.2 | 1859 | 18.8 ± 9.7 b | 51.6 | 2450 | 17.4 ± 3.9 c | 22.4 | 1845 | 16.9 ± 4.5 d | 26.6 | |
double thickness of cell wall, μm | EW | 1881 | 4.29 ± 1.0 a | 23.2 | 1764 | 4.06 ± 1.1 b | 26.8 | 1794 | 4.32 ± 1.3 a | 30.2 | 1822 | 3.68 ± 1.0 d | 27.0 | 2452 | 4.14 ± 1.0 b | 24.3 | 1791 | 3.80 ± 0.9 c | 23.7 |
LW | 1887 | 4.95 ± 1.0 b | 20.2 | 1736 | 4.60 ± 1.0 c | 21.7 | 1797 | 4.82 ± 1.3 b | 27.0 | 1859 | 5.14 ± 2.6 a | 50.6 | 2450 | 5.13 ± 1.0 a | 19.5 | 1845 | 5.01 ± 0.9 ab | 18.0 | |
Fiber wall: lumen ratio | EW | 1881 | 0.33 ± 0.1 a | 40.3 | 1764 | 0.30 ± 0.1 b | 39.3 | 1794 | 0.28 ± 0.1 c | 42.0 | 1822 | 0.27 ± 0.1 c | 43.6 | 2452 | 0.32 ± 0.1 a | 47.1 | 1791 | 0.30 ± 0.1 b | 48.6 |
LW | 1887 | 0.42 ± 0.1 c | 23.8 | 1736 | 0.35 ± 0.1 d | 28.6 | 1797 | 0.33 ± 0.1 e | 30.3 | 1859 | 0.42 ± 0.2 c | 47.6 | 2450 | 0.46 ± 0.2 b | 43.5 | 1845 | 0.48 ± 0.2 a | 41.7 | |
MFA, ° | EW | 34 | 17.2 ± 3.7 b | 21.5 | 27 | 17.6 ± 3.2 b | 18.2 | 35 | 15.9 ± 2.2 b | 13.8 | 35 | 18.6 ± 4.1 ab | 22.0 | 47 | 18.1 ± 4.9 ab | 27.1 | 35 | 20.4 ± 4.7 a | 23.0 |
LW | 36 | 16.0 ± 2.9 a | 18.1 | 27 | 15.1 ± 2.2 a | 14.6 | 36 | 14.9 ± 3.0 a | 20.1 | 36 | 16.1 ± 3.5 a | 21.7 | 48 | 15.9 ± 2.9 a | 18.2 | 36 | 15.2 ± 2.5 a | 16.4 | |
Vessel length, μm | EW | 720 | 206 ± 92.0 b | 44.7 | 640 | 219 ± 59.7 a | 27.3 | 717 | 214 ± 97.4 ab | 45.6 | 722 | 185 ± 49.3 c | 26.6 | 960 | 188 ± 42.9 c | 22.9 | 709 | 195 ± 39.3 c | 20.2 |
LW | 555 | 389 ± 232.2 ab | 59.7 | 480 | 408 ± 232.1 a | 56.9 | 540 | 388 ± 189.2 ab | 48.7 | 555 | 362 ± 190.6 bc | 52.6 | 780 | 334 ± 184.0 c | 55.1 | 570 | 408 ± 188.9 a | 46.3 | |
Vessel lumen diameter, μm | EW | 2160 | 180 ± 48.2 c | 26.8 | 1980 | 168 ± 51.6 d | 30.7 | 2140 | 203 ± 56.6 a | 27.9 | 2160 | 187 ± 58.0 b | 31.1 | 2880 | 181 ± 54.8 c | 30.4 | 2100 | 187 ± 57.2 b | 30.6 |
LW | 2010 | 108 ± 33.9 a | 31.1 | 1304 | 105 ± 31.5 b | 30.1 | 1560 | 106 ± 33.5 ab | 31.5 | 1140 | 109 ± 31.4 a | 28.9 | 1680 | 105 ± 32.1 b | 30.7 | 1560 | 100 ± 31.7 c | 31.8 | |
No. of vessels, no/mm2 | EW | 620 | 13 ± 3.3 b | 26.5 | 580 | 12 ± 3.4 bc | 27.7 | 717 | 10 ± 4.4 d | 43.8 | 660 | 15 ± 8.1 a | 54.6 | 920 | 12 ± 4.5 c | 38.6 | 700 | 11 ± 4.3 d | 40.2 |
LW | 509 | 16 ± 5.9 c | 35.9 | 400 | 17 ± 7.4 bc | 43.2 | 720 | 23 ± 13.0 a | 55.9 | 478 | 23 ± 10.7 a | 46.7 | 740 | 15 ± 6.6 d | 45.3 | 580 | 18 ± 9.5 b | 51.2 | |
Proportion of fiber, % | EW | 1082 | 47.2 ± 11.5 e | 24.4 | 988 | 49.5 ± 13.7 d | 27.6 | 1080 | 48.1 ± 11.5 de | 23.9 | 1050 | 53.7 ± 11.1 c | 20.7 | 1440 | 58.7 ± 12.8 a | 21.8 | 1056 | 55.9 ± 12.5 b | 22.3 |
LW | 1019 | 67.3 ± 10.6 d | 15.8 | 780 | 67.2 ± 10.1 d | 15.0 | 1078 | 71.0 ± 8.2 c | 11.6 | 810 | 71.0 ± 7.4 c | 10.4 | 1140 | 77.1 ± 7.7 a | 10.0 | 779 | 71.9 ± 30.9 b | 43.0 | |
Proportion of vessel, % | EW | 1082 | 31.4 ± 10.1 a | 32.3 | 988 | 28.1 ± 12.6 b | 44.6 | 1080 | 30.4 ± 10.0 a | 32.9 | 1050 | 27.0 ± 10.1 bc | 37.4 | 1440 | 25.4 ± 11.3 d | 44.6 | 1056 | 25.8 ± 10.3 cd | 40.1 |
LW | 1019 | 10.3 ± 6.6 ab | 64.3 | 780 | 10.6 ± 7.4 a | 70.3 | 1078 | 6.8 ± 5.3 d | 77.9 | 810 | 10.6 ± 5.2 a | 48.9 | 1140 | 8.4 ± 4.9 c | 58.1 | 779 | 9.6 ± 5.1 b | 53.4 | |
Proportion of ray, % | EW | 1082 | 9.4 ± 5.3 bc | 56.2 | 988 | 9.7 ± 5.3 bc | 55.0 | 1080 | 10.0 ± 5.2 b | 51.5 | 1050 | 9.3 ± 5.6 c | 60.1 | 1440 | 7.4 ± 4.8 d | 64.7 | 1056 | 10.9 ± 5.6 a | 51.0 |
LW | 1019 | 9.6 ± 6.6 c | 69.0 | 780 | 9.6 ± 5.5 c | 57.3 | 1078 | 9.3 ± 5.1 c | 54.7 | 810 | 10.7 ± 5.6 b | 51.9 | 1140 | 8.9 ± 4.9 c | 55.5 | 779 | 11.9 ± 5.4 a | 45.2 | |
Proportion of axial parenchyma, % | EW | 1082 | 12.1 ± 5.9 ab | 48.8 | 988 | 12.7 ± 6.8 a | 53.6 | 1080 | 11.5 ± 6.0 b | 52.3 | 1050 | 9.9 ± 5.3 c | 52.9 | 1440 | 8.5 ± 5.0 d | 58.6 | 1056 | 7.4 ± 5.2 e | 70.7 |
LW | 1019 | 12.7 ± 7.0 a | 54.7 | 780 | 12.6 ± 6.5 a | 51.7 | 1078 | 12.9 ± 6.6 a | 51.3 | 810 | 7.7 ± 4.4 b | 57.8 | 1140 | 5.6 ± 4.1 c | 73.4 | 779 | 5.4 ± 3.6 c | 66.6 |
1-1 n = 3 | 1-3 n = 3 | 2-7 n = 3 | 2-8 n = 3 | 8-1 n = 4 | 9-1 n = 3 | |
---|---|---|---|---|---|---|
Juvenile wood width, cm | 5.8 ± 0.8 a | 4.2 ± 0.9 b | 5.4 ± 0.4 ab | 5.3 ± 0.1 ab | 5.7 ± 0.6 ab | 5.5 ± 0.2 ab |
Proportion of juvenile wood, % | 82.7 ± 3.7 a | 88.3 ± 1.9 a | 84.0 ± 2.9 a | 85.8 ± 2.0 a | 83.8 ± 2.4 a | 82.7 ± 2.6 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, L.; Zhu, Y.; Liu, S. Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones. Forests 2020, 11, 824. https://doi.org/10.3390/f11080824
Liu Y, Zhou L, Zhu Y, Liu S. Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones. Forests. 2020; 11(8):824. https://doi.org/10.3390/f11080824
Chicago/Turabian StyleLiu, Yamei, Liang Zhou, Yingqi Zhu, and Shengquan Liu. 2020. "Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones" Forests 11, no. 8: 824. https://doi.org/10.3390/f11080824
APA StyleLiu, Y., Zhou, L., Zhu, Y., & Liu, S. (2020). Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones. Forests, 11(8), 824. https://doi.org/10.3390/f11080824