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Abstract: The objective of this study was to develop spatiotemporal whole-stem wood quality predic-
tion models for a suite of end-product-based fibre attribute determinates for jack pine
(Pinus banksiana Lamb.) and red pine (Pinus resinosa Aiton): specifically, for wood density (Wd),
microfibril angle (Ma), modulus of elasticity (Me), fibre coarseness (Co), tracheid wall thickness (Wt),
tracheid radial diameter (Dr), tracheid tangential diameter (Dt), and specific surface area (Sa). Proce-
durally, these attributes were determined for each annual ring within pith-to-bark xylem sequences
extracted from 610 jack pine and 223 red pine cross-sectional disks positioned throughout the main
stem of 61 jack pine and 54 red pine sample trees growing within even-aged monospecific stands in
central Canada. Deploying a block cross-validation-like approach in order to reduce serial data de-
pendency and enable predictive performance assessments, species-specific calibration and validation
data subsets consisting of cumulative moving average values were systematically generated from
the 27,820 jack pine and 11,291 red pine attribute-specific annual ring values. Graphical, correlation,
regression and validation analyses were used to specify, parameterize and assess the predictive
performance of tertiary-level (ring-disk-tree) hierarchical mixed-effects whole-stem equations for
each attribute by species. As a result, the jack pine equations explained 46, 66, 74, 63, 59, 72, 42
and 48% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively. The red pine equations
explained slightly higher levels of variation except for Me: 50, 71, 31, 83, 72, 78, 56 and 71% of the
variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively. Graphical assessments and statistical
metrics related to attribute and species-specific residual error patterns and goodness-of-fit, lack-of-fit
and predictive error metrics, revealed an absence of systematic bias, misspecification or aberrant
predictive performance. Consequently, the resultant parameterized models were acknowledged as ac-
ceptable functional descriptors of the intrinsic spatiotemporal cumulative developmental patterns of
the studied end-product fibre attribute determinates, for these two pine species. Although predicted
development patterns were similar between the species with the greatest degree of nonlinearity
occurring before a cambial age of approximately 30 years, irrespective of attribute, jack pine exhibited
a greater degree of nonlinearity in the Wd and Dt developmental trajectories, whereas red pine
exhibited a greater degree of nonlinearity in the Ma, Me, Co, Wt, Dr and Sa developmental trajectories.
Potential biomechanical linkages underlying the observed attribute distribution patterns, as well as
the potential utility of the models in forest management, are also discussed.

Keywords: fibre coarseness; microfibril angle; modulus of elasticity; specific surface area; tracheid
radial and tangential diameters; tracheid wall thickness; wood density; Silviscan-3; hierarchical
mixed-effects models; tolerance error intervals

1. Introduction

Jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Aiton) are among the
most intensively managed coniferous species within the central portion of the Canadian
Boreal Forest Region [1] and the western portion of the Great Lakes–St. Lawrence Forest
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Region [1], respectively. These species contribute a broad array of commercially relevant
end-products to their respective regional forest sector supply chains. Principally, these
include utility poles (red pine), veneer (red pine), dimensional lumber (jack pine > red
pine), solid wood derivatives including window frames, doors, shelving and non-structural
appearance-based products such as moldings and wall paneling (red pine > jack pine),
composite engineered-based building materials including glulam-based beams, headers,
and trusses, and finger-jointed joists and rafters (jack pine > red pine), pulp and paper
products such as paperboards, newsprint, facial tissues and specialized coated papers
(jack pine >> red pine), and thermal-energy biomass residual products such as wood
pellets (sensu [2]). In addition to the traditional economic benefits that flow from the
production of high-value solid wood end-products is the carbon retainment potential that
such products offer within the context of natural-based climate change mitigation strategies
(sensu [3]). The sequestration of carbon dioxide from the atmosphere via the process of
photosynthesis and maximizing its long-term storage through the production of long-lived
solid wood products is an evolving and increasingly acknowledged forest management
opportunity (e.g., [4,5]). Potentially, such end-products, when utilized in constructing
residential or commercial buildings, can retain their sequestrated bio-carbon for decades,
if not centuries. Although not as beneficial in terms of carbon storage duration, other
end-products such as paper products can also contribute positively to carbon budgets
(e.g., delaying decomposition-induced carbon dioxide emissions by multiple years). Even
residual biomass end-products such as periderm arising from the debarking process and
fibre-based debris generated from milling operations (e.g., chipper fines and sawdust) can
also yield low CO2-emitting heating products (e.g., compressed wood pellets), which can
materially displace the use of high CO2-emitting fossil-based heating products (e.g., oil,
propane, and natural gas). Thus, the ability to predict the type and quality of extractable
end-products for individual trees could also yield dividends when developing carbon-
based budget models or designing carbon-focused crop plans for these species.

Functionally, the type, quantity and quality of extractable end-products from an indi-
vidual coniferous tree is largely dependent on its internal xylem characteristics. Attributes
such as wood density, microfibril angle, modulus of elasticity, fibre coarseness, tracheid
wall thickness, radial and tangential tracheid diameters, and specific surface area, are
among the most important end-product determinates (e.g., [6]). Specifically, these fibre
attributes have been explicitly linked to various performance measures that have been used
to delineate potential end-product type and associated quality based on the mechanical
characteristics of extracted products (e.g., Table 5 in [7]). For example, the stiffness of
extracted solid wood products such as dimensional lumber is a key demarcation metric
used in product identification, differentiation and grading. More precisely, wood stiff-
ness is directly proportional to the modulus of elasticity and inversely proportional to
microfibril angle, both of which when known can be used to identify standing trees or
extracted logs that are the more or less conducive to the production of commercial-grade
solid wood products. Similarly, fibre coarseness and specific surface area characteristics of
xylem tissue are directly proportional to the tear and tensile strength characteristics of derived
paper products and hence can also be used in assessing end-product potential. Consequently,
knowledge of fibre attributes and their internal distribution within tree stems have infor-
mative utility when attempting to forecast the ability of a standing tree or harvested log to
produce a specific end-product upon processing. Acquisition of such prerequisite attribute
knowledge provides a foundation for pre-harvest end-product-based inventory assessments,
post-harvest end-product forecasting and associated carbon-based life cycle analyses, and
expanding forest management decision making by enabling a wider array of objectives to
be addressed simultaneously when designing crop plans (e.g., deriving optimal crop plans
that enhance carbon retainment potentials via maximizing the production of long-lived solid
wood products while simultaneously improving overall economic viability).

Analytically, the temporal developmental pattern of these end-product fibre attribute
determinates at a single vertical stem position (breast-height; 1.3 m) has been character-
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ized as polymorphic-like and size-dependent when examined using a cumulative moving
average metric (e.g., black spruce (Picea mariana (Mill) BSP); [7,8]) and jack pine [9]). As a
consequence, empirical regression modeling approaches have been successfully deployed
in quantitatively characterizing such temporal developmental trajectories. For example,
the employment of hierarchical mixed-effects regression methods has yielded attribute
prediction equation suites for a number of boreal coniferous species (e.g., [7]). These suites
have proven to be quite useful when integrated into structural stand density management
models (SSDMMs; [9]), particularly in regards to informing crop planning decision making
when managing for end-product objectives. Even though these analytical developments
have incrementally expanded the scope of crop planning, the spatially invariant nature
of the equation suites has limited their utility in whole-stem end-product forecasting.
Fortunately, however, the vertical distribution of internal fibre attributes that underlie
end-product potential have been found to vary dramatically but systematically with in-
creasing stem height position for a number of coniferous species, including loblolly pine
(Pinus taeda L.; [10]) and coastal Douglas fir (Pseudotsuga menziesii var. menziesii; [11]).
Such findings have been analytically informative when attempting to map and (or) model
whole-stem attribute variation.

Thus, expanding the scope of the existing hierarchical modeling approach in order to
encompass the entire stem could yield a more complete description of attribute variation
and thereby increase the scope, resolution and precision of end-product forecasts when crop
planning (e.g., [9]). Furthermore, the provision of such spatiotemporal whole-stem attribute
models could also be of utility in forecasting end-product yields of standing forests during
pre-harvest operational inventories or during post-harvest log segregation and allocation
operations (sensu [12]). These two propositions underlie the aspirational expectation of this
investigation with respect to jack pine and red pine, i.e., spatiotemporal whole-stem wood
quality prediction models that could have consequential utility in forecasting end-product
potential of standing trees and (or) predicting rotational end-product outcomes within
crop planning decision-support systems can be developed through an analytical process
of model expansion and adaption. Accordingly, the specific objectives of this study were
to specify, parameterize and evaluate species-specific whole-stem prediction equations
for a suite of end-product fibre attribute determinates for both jack pine and red pine.
The modeled attributes included wood density (Wd), microfibril angle (Ma), modulus of
elasticity (Me), fibre coarseness (Co), tracheid wall thickness (Wt), tracheid radial diameter
(Dr), tracheid tangential diameter (Dt), and specific surface area (Sa). Briefly, for both
species, the observed nonlinear polymorphic-like temporal developmental trajectories for
Wd, Ma, Me, Co, Wt, Dr, Dt and Sa at a specified stem height position of a tree of given size
were described deploying a three-level (ring-disk-tree) hierarchical mixed-effects modeling
framework (sensu [13]). The potential utility of the resultant equation suites within the
context of forecasting end-product potential and associated crop planning decision making
will be reported in a companion contribution (i.e., [14]).

2. Materials and Methods
2.1. Data Acquisition: In-Forest Sampling and In-Lab Processing Procedures

For jack pine, as part of a dual objective investigation examining the potential of non-
destructive attribute estimation methods (e.g., acoustic velocity; [15,16]) and development
of fibre attribute models (e.g., [9] and this study), two geographically separated jack pine
thinning experiments established in northeastern (Sewell) and northcentral (Tyrol) Ontario
were selected for sampling. At the Sewell site, 31 jack pine sample trees were selected within
six variable-size plots that were established in two even-aged natural-origin semi-mature
(≈60 year) monospecific stands. These stands fall within Forest Section B.7—Missinaibi-
Cabonga of the Canadian Boreal Forest Region [1]. At the Tyrol site, 30 jack pine sample
trees were selected within four variable-size plots established in two even-aged natural-
origin mature (≈80 year) pure stands. These stands are situated within Forest Section B9
(Superior) of the Canadian Boreal Forest Region [1]. A stratified random sample protocol
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was used to select sample trees at both of the jack pine sampling sites: the plot-specific
enumerated diameter frequency distributions were stratified into three size classes (terciles)
from which an approximate equal number of sample trees were selected. This approach
resulted in the selection of 1–2 trees per size tercile, ultimately yielding a total of 61 jack
pine sample trees (4 stands × 3 plots/stand × 3 size classes/plot × 1–2 sample trees/size
class). Note, all jack pine sample trees were devoid of visible deformities such as major
stem forks, periderm injuries (blazing scars) or damaged crowns. At the conclusion of
the 2013 and 2015 vegetative growing seasons at the Sewell and Tyrol sites, respectively,
diameter at breast-height (1.3 m) outside-bark diameter (Db (cm)), total height (Ht (m)
and crown height (Hc (m)) measurements were obtained from each sample tree before
it was felled for destructive stem analysis. Descriptive statistics inclusive of the mean,
minimum to maximum values, and coefficient of variation, for the 61 sample trees were,
respectively: 21.5 cm, 14.7 to 29.1 cm, and 16.5% for Db; 59 year, 47 to 71 year, and 15.8%
for breast-height age (Ab (year)); 21.7 m, 18.3 to 24.6 m, and 7.0% for Ht; and 27.1%, 14.1 to
41.5%, and 22.3% for live crown ratio (Cr where Cr = 100(Ht − Hc)/Ht). The destructive
stem analysis protocol deployed consisted of (1) felling each sample tree at stump height
followed by delimbing and topping the main stem at an 80% relative height position, and
(2) extracting cross-sectional disk samples at stump height (≈0.3 m), breast-height (1.3 m),
and at relative height positions of 10, 20, 30, 40, 50, 60, 70 and 80%. This protocol yielded a
total of 610 cross-sectional disks (10 disks/tree × 61 trees). These disks were immediately
(≤8 h) placed in short-term cold storage (<0 ◦C) at the time of sampling and subsequently
placed in long-term cold storage (<0 ◦C) upon arrival at the Great Lakes Forestry Centre
(Sault Ste. Marie, ON, Canada).

Similarly, for red pine, as part of a dual objective investigation examining acoustic
methods for attribute estimation (e.g., [17,18]) and developing fibre attribute models (this
study), two intensely managed 80-year-old plantations within the Kirkwood Forest that
were scheduled for harvest in 2012 and 2014 were selected for sampling. The Kirkwood
Forest is a legacy demonstration research forest that lies just north of the North Chan-
nel town of Thessalon and falls within Forest Section L.10—Algoma of the Great Lakes-
St. Lawrence Forest Region [1]. The first plantation (denoted Site 1) was sampled dur-
ing the late spring and early summer periods of 2012 (May, June and July), during which
three fixed-size sample plots were established within which 30 red pine trees were selected
for destructive stem analysis. The second plantation (denoted Site 2) was sampled during
the late spring period of 2014 (May and June), during which three variable-size sample plots
were established from which 24 red pine sample trees were selected for destructive stem
analysis. A systematic sampling protocol was used to select representative sample trees from
across the enumerated diameter distribution within each plot at both sites, yielding a to-
tal of 54 red pine sample trees (2 plantations × 3 plots/plantation × 8–10 sample trees/plot).
Similar to the jack pine measurement protocol, Db, Ht and Hc were measured on each
of the selected sample trees before they were felled. Resultant descriptive statistics in-
clusive of the mean, minimum to maximum values, and coefficient of variation for the
54 sample trees were, respectively: 38.0 cm, 30.7 to 46.5 cm, and 9.8% for Db; 77 year,
73 to 78 year, and 3.0% for Ab; 27.8 m, 23.8 to 30.0 m, and 4.4% for Ht; and 34.1%, 24.9 to
51.7%, and 18.0% for Cr. Statutory-defined safety protocols within the Kirkwood Forest
dictated that destructive cross-sectional sampling be carried out by a third party, deploying
conventional harvesting equipment in concert with scheduled thinning and harvesting
operations. Consequently, at the time of harvest on Site 1, the 30 sample trees were felled
and priority bucked using the Link Belt 135 Spin Ace dangle-head harvester according to
the following protocol: proceeding from the stump to the stem tip, all possible 5.03 m (16 ft)
sawlogs were removed first, followed by all possible 3.66 m (12 ft) sawlogs, followed by
all possible 2.44 m (8 ft) pulplogs, and then by all possible 1.83 m (6 ft) pulplogs. During
the processing of the 1st-order (butt) log, the machine operator extracted a cross-sectional
disk (≈10 cm in thickness) from both the bottom (stump) and top of the log. The equip-
ment operator deployed a slightly different processing protocol at Site 2. Specifically, the
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24 sample trees were similarly felled and priority bucked; however, the operator of the Link
Belt 135 Spin Ace dangle-head harvester not only sectioned off a cross-sectional disk from
the bottom (stump) and top of the 1st-order butt log, but also extracted a similarly sized disk
sample (≈10 cm in thickness) from the top of all subsequently extracted logs. Collectively,
this sampling protocol yielded a total of 223 cross-sectional disks (2 disks/tree × 30 trees
at Site 1 and up to 7 disks/tree × 24 trees at Site 2). These disks were immediately (≤8 h)
placed in long-term cold storage (<0 ◦C) at the Great Lakes Forestry Centre (Sault Ste. Marie,
ON, Canada).

Descriptive statistics (i.e., mean, median, minimum to maximum, and relative vari-
ation) of the mensurational and sampling characteristics of the cross-sectional samples
(i.e., cambial age, cross-sectional diameter, absolute stem height position and relative stem
height position) are given on a collective basis in Table 1 for each species, and by vertical sam-
ple position, in Table S1a for jack pine and in Table S1b for red pine (Supplementary Materials).
In accord with expectation, cambial age and cross-sectional diameter systematically declined
with increasing stem height for both species (Tables S1a and S1b). Furthermore, the distri-
butions of each of the absolute variates for both species were assumed to be approximately
normal at each stem height position as inferred from the approximate equivalence of the
mean and median values. Additional details regarding the sites in terms of their silvicul-
tural histories, site productivity and mensurational characteristics specific to the sampled
stands and destructively sampled trees can be found in [15,16] for jack pine and in [17,18]
for red pine.

Table 1. Descriptive mensurational, sampling and disk-level attribute statistical summaries for the
610 jack pine and 223 red pine cross-sectional samples.

Attribute Species Mean Median Minimum Maximum CV a

(%)

Cambial age
(year)

Jack pine 47 48 12 74 31.0
Red pine 52 56 14 81 39.0

Cross-sectional diameter
(cm)

Jack pine 16.38 16.54 4.64 31.88 29.6
Red pine 25.05 25.44 5.18 42.96 36.6

Stem height
(m)

Jack pine 8.03 7.48 0.02 19.80 71.8
Red pine 10.07 10.21 0.12 24.62 79.6

Relative stem height
(%)

Jack pine 37.11 34.81 0.07 83.28 71.2
Red pine 36.85 36.11 0.48 90.65 79.8

Wood density
(Wd; kg/m3)

Jack pine 416.90 415.05 337.88 532.95 7.7
Red pine 387.87 392.61 313.86 472.31 9.2

Microfibril angle
(Ma; ◦)

Jack pine 13.34 12.73 6.24 32.32 29.2
Red pine 14.87 13.66 7.55 29.06 31.2

Modulus of elasticity
(Me; GPa)

Jack pine 12.11 12.22 5.77 17.62 16.0
Red pine 10.86 10.55 5.98 15.31 17.4

Fibre coarseness
(Co; µg/m)

Jack pine 390.87 389.37 306.33 515.78 8.9
Red pine 455.98 466.25 310.74 548.12 10.7

Tracheid wall thickness
(Wt; µm)

Jack pine 2.58 2.57 2.05 3.57 9.6
Red pine 2.63 2.68 1.94 3.22 11.1

Tracheid radial diameter
(Dr; µm)

Jack pine 30.49 30.54 26.21 34.04 4.1
Red pine 34.86 35.02 29.36 37.75 3.6

Tracheid tangential diameter
(Dt; µm)

Jack pine 27.88 27.93 25.91 30.25 2.7
Red pine 30.27 30.35 27.14 32.52 3.7

Specific surface area
(Sa; m2/kg)

Jack pine 322.46 323.26 248.26 386.61 7.5
Red pine 302.38 297.45 253.91 386.12 9.0

a Coefficient of variation.

The cross-sectional fibre attribute determination was completed at the Silviscan-3
processing laboratory located at the FPInnovations headquarters situated at the Univer-
sity of British Columbia in Vancouver, British Columbia, Canada. The Silviscan-3 system
was used to determine annual ring-specific fibre attribute values for each disk of both
species. Analytically, this CSIRO-developed (Commonwealth Scientific and Industrial
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Research Organization) integrated system readily provides estimates for a number of
commercially relevant xylem attributes. Relevant to this study, these included (1) radial
and tangential tracheid diameters, and tracheid wall thickness as determined directly
from image analyses [19], (2) wood density as derived directly from X-ray densitome-
try [19], (3) microfibril angle as directly ascertained through X-ray diffraction methods [20],
(4) modulus of elasticity as indirectly determined via a combination of X-ray densitometry
and diffraction measurements [21], and (5) fibre coarseness and specific surface area as
indirectly calculated using measured cell dimension and wood density estimates [19]. The
preparatory laboratory-based processing involved the extrication of a 2 × 2 cm diametrical
bark-to-pith-to-bark sample along the geometric mean diameter on each cross-sectional
disk. From each of the resultant 610 jack pine and 223 red pine diametrical samples, one of
the two pith-to-bark radial sequences was randomly selected and subjected to resin-removal
extraction techniques prior to the Silviscan-3 analysis. More precisely, the technique in-
cluded soaking the samples in acetone for 12 h, followed by extraction for 8 h at 70 ◦C
using a modified Soxhlet system. The samples were then air-dried until an equilibrium
moisture content of approximately 8% was attained.

In total, 27,820 jack pine and 11,291 red pine attribute-specific annual ring values were
derived from 610 jack pine and 223 red pine cross-sectional disks extracted throughout
the main stem of the 61 jack pine and 54 red pine sample trees. The descriptive statistical
summaries for each attribute are given in Table 1 for each species, and by vertical sample
position in Table S2a for jack pine and Table S2b for red pine (Supplementary Materials).
Examination of Supplementary Tables S2a and S2b revealed systematic patterns in which
Wd, Co and Wt values declined with increasing stem height irrespective of species. Con-
versely, Sa values increased with increasing stem height for both red pine and jack pine.
Complex concave patterns with increasing height were observed for Ma (i.e., higher within
the basal and apex stem regions relative to lower values observed within the central
stem region), whereas convex patterns were observed for Me and Dt in both species
(i.e., lower within the basal and apex stem regions relative to higher values observed within
the lower central region). This latter convex pattern for Me suggested that wood stiffness
was maximized within the lower central region of the stem for both species. Irrespective
of species and as inferred from the magnitude of the coefficient of variation metric, the
attributes exhibiting the lowest and highest degree of relative variation were Dr and Dt,
and Ma and Me, respectively. The approximate equivalence between the mean and median
values at each relative height position across all attributes of both species suggested an
absence of non-normality within the underlying attribute sample distributions.

2.2. Data Analysis: Model Specification, Parameterization and Evaluation

In acknowledgement of the intrinsic physiological-based age-dependent effect on fibre
attribute development, cambial age (number of annual rings from the pith) was employed
as the temporal variate of change within the 1st hierarchical level model specification
(i.e., level-one independent variable). The corresponding fibre attribute value (i.e., level-one
dependent variable) was represented by the pith-to-bark cumulative annual ring-area-
weighted moving average value (Equation (1)).

V(ijk)(l)
=

I
∑

i=1
v(ijk)(l) aijk

I
∑

i=1
aijk

(1)

where V(ijk)(l)
is the cumulative annual ring-area-weighted moving average value up to the

ith cambial age (i = 1, . . ., I; I = cross-sectional total cambial age) specific to the jth cross-
sectional disk per tree, kth sample tree and lth attribute (i.e., wood density, microfibril angle,
modulus of elasticity, fibre coarseness, tracheid wall thickness, tracheid radial diameter,
tracheid tangential diameter or specific surface area); v(ijk)(l) is the mean area-weighed
attribute value for the annual ring produced in the ith cambial year specific to the jth
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cross-sectional disk, kth sample tree and lth attribute; and aijk is the area (mm2) of the
annual ring produced in the ith cambial year specific to the jth cross-sectional disk and kth
sample tree. As quantitatively expressed via Equation (1), the cumulative moving average
is a composite descriptive statistic that accounts for all preceding values of a temporally
ordered annual ring attribute sequence. Area-based weighting of the contributions from
the preceding annual-rings and carrying forward their influence, computationally dampens
the effect of annual variation arising from fluctuations in external growth and development
determinates. Thus, the cumulative moving average sequence is more reflective of long-
term attribute development trends than other measures of central tendency (e.g., arithmetic
mean). Additionally, the metric has inferential utility in terms of reflecting the temporal
evolution of end-product potential. For example, the cumulative value for the dynamic
modulus of elasticity at the end of a sequence reflects the overall wood stiffness of the
tree at that specific stem height position, and hence, by extension, reflects the solid wood
end-product potential of that stem region. Collectively, cumulative values provide an
inferential framework for identifying and delineating the potential type and associated
grade of extractable end-products (e.g., [9]).

2.2.1. Specification

Firstly, species-specific graphical analyses were used to examine the attribute-specific
temporal trends from each cross-section (i.e., 1st hierarchical level). Results from these
analyses revealed attribute-specific polymorphic-like nonlinear relationships that varied
systematically with stem height irrespective of species (i.e., a general pattern of declining
nonlinearity with increasing stem height). Based on these graphical inferences, two variants
of Hoerl’s [22] compound exponential function were evaluated in terms of their ability
to describe the cross-sectional attribute development trajectories. Accordingly, Hoerl’s
original formulation (Equation (2a); [22]), and an expanded variant in which an exponential
square term was added in order to potentially provide a more complete description of the
observed nonlinearity (Equation (2b)), were selected.

V(ijk)(l)
= α0(jk)(l)

a
α1(jk)(l)
c(ijk) e

α2(jk)(l)
ac(ijk)

ε(ijk)(l) (2a)

V(ijk)(l)
= α0(jk)(l)

a
α1(jk)(l)
c(ijk) e

α2(jk)(l)
ac(ijk)+α3(jk)(l)

a2
c(ijk) ε(ijk)(l) (2b)

where αm(jk)(l)
, m = 0, . . ., 3 are species-specific 1st-level model parameters specific to the jth

cross-sectional disk, kth sample tree, and lth attribute, ac(ijk) is the ith cambial age specific to
the jth cross-sectional disk and kth sample tree, and ε(ijk)(l) is a random error term specific
to ith cambial age, jth cross-sectional disk, kth sample tree and lth attribute. In order to
determine which of these models was the most applicable, the logarithmically transformed
model analogue of both variants were parameterized deploying autoregressive regression
analysis by disk and attribute for each species. Statistically, a first-order autoregressive
error structure was assumed and the significance (p ≤ 0.05) of the squared term was
determined following each set of parameterizations. More precisely, both model variants
were parameterized deploying the species-specific data sets using SAS’s Autoreg procedure.
For each attribute-specific cross-sectional sequence that was successfully parameterized by
both model variants in terms of achieving statistical significance (e.g., significant (p ≤ 0.05)
F-statistics) and general adherence to underlying assumptions (e.g., devoid of consequential
autocorrelation among adjacent residuals as determined via the Cochrane–Orcutt approach
(sensu Neter [23], p. 497)), the modified model variant (logarithmic version of Equation (2b))
was compared to the original model (logarithmic version of Equation (2a)); specifically,
assessing the significance (p) of the additional term with respect to its ability to increase the
percentage of variation explained, via an F-test (sensu Gujarati [24], p. 231).

For jack pine, the results indicated that for a potential total of 610 attribute-specific
regression comparisons, the expanded model specification was more applicable in 80.2% of
the Wd relationships (478 of 596 statistically significant (p ≤ 0.05) paired regression relation-
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ship comparisons), 82% of the Ma relationships (499 of 610 comparisons), 81% of the Me
relationships (492 of 610 comparisons), 84% of the Co relationships (513 of 609 comparisons),
85% of the Wt relationships (517 of 608 comparisons), 83% of the Dr relationships (509 of
610 comparisons), 95% of the Dt relationships (571 of 600 comparisons) and 88% of the
Sa relationships (535 of 606 comparisons). Examining the attribute-specific proportion of
the regressions where the modified model was most applicable on a disk positional basis
revealed a marginal decline in its applicability with increasing relative stem height for
Wd, Ma, Dr and Sa (e.g., significant (p ≤ 0.05) correlation coefficient values between the
applicability proportion and increasing relative stem height position of the disk of −0.87,
−0.69, −0.93 and −0.75 for Wd, Ma, Dr and Sa, respectively). However, in all comparisons,
with the exception of the highest disk position (80% relative height) for Wd (applicabil-
ity proportion of 46%), the applicability proportion remained above 50%. Similarly, for
red pine, the results indicated that for the 223 attribute-specific regression comparisons,
the expanded model specification was more applicable in 86% of the Wd relationships
(191 of 223 statistically significant (p ≤ 0.05) paired regression relationship comparisons),
83% of the Ma relationships (186 of 223 comparisons), 83% of the Me relationships
(186 of 223 comparisons), 85% of the Co relationships (190 of 223 comparisons), 77% of the
Wt relationships (171 of 223 comparisons), 82% of the Dr relationships (183 of 223 compar-
isons), 76% of the Dr relationships (169 of 223 comparisons), 87% of the Dt relationships
(193 of 223 comparisons) and 81% of the Sa relationships (180 of 222 comparisons). Thus,
given the overall superiority of the modified Hoerl’s [22] compound exponential function
(i.e., Equation (2b) being more applicable in 84.8% of the jack pine and 92.5% of the red
pine comparisons), it was selected as the most applicable specification to be deployed at
the 1st hierarchical level.

Secondly, in order to inform the specification of the 2nd hierarchical level model, which
attempted to quantify the effect of potential disk-level covariates on the 1st-level model
parameter estimates, graphical, correlation and regression analyses were used to identify
plausible candidate functions. Specifically, this involved examining attribute-specific
relationships between each of the four parameter estimates extracted from the selected
1st hierarchical level model (logarithmic variant of Equation (2b)) and three potential cross-
sectional-based covariates (spatial position, age and size) across all sample disks by species.
Analytically, when a parameter of the 1st hierarchical level model varied linearly with cross-
sectional height position (stem height of the kth cross-sectional disk; H (m)), cross-sectional
total cambial age (total age of the kth cross-sectional disk; A (year)) and (or) cross-sectional
cumulative size (inside-bark diameter at stem height H; D (cm)), as was the case for the
intercept (loge(α0(jk)(l)

)) and α3(jk)(l)
parameters across all attributes for both species, then

a multivariate linear relationship was specified (Equation (3a)). Conversely, when the
relationship was nonlinear in nature, as was the case for the α1(jk)(l)

and α2(jk)(l)
parameters

irrespective of attribute or species, then a linear-logarithmic multivariate relationship was
specified (Equation (3b)).

αm(jk)(l)
= βm0(jk)(l)

+ βm1(jk)(l)
H + βm2(jk)(l)

A + βm3(jk)(l)
D + rm(jk)(l)

where m = 0, 3 (3a)

αm(jk)(l)
= βm0(jk)(l)

+ βm1(jk)(l)
loge H + βm2(jk)(l)

loge A + βm3(jk)(l)
loge D + rm(jk)(l)

where m = 1, 2
(3b)

where βmn(jk)(l)
, n = 0, 1, 2, 3 are species-specific 2nd-level parameters specific to the jth

cross-sectional disk, kth sample tree and lth attribute, which quantifies the effect of cross-
sectional height, total age and cumulative cross-sectional diameter on the mth level-one
parameter (n., intercept parameter is expressed logarithmically), and rm(jk)(l)

is the second-
level random effect error term specific to the mth parameter, jth cross-sectional disk, kth
sample tree and lth attribute.
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Thirdly, the 3rd hierarchical level model specification, which attempted to describe the
potential effect of overall tree size on the 2nd-level model parameter estimates, is specified
as such given the size-dependence inferences previously reported for these attributes
(e.g., [7,9] for black spruce and jack pine, respectively). In order to minimize complexity
and facilitate parameterization, only the intercept parameters from the 2nd-level models
were examined in terms of their linear relationship with tree size (breast-height diameter;
Equation (4)).

βm0(jk)(l)
= γ0m(l)

+ γ1m(l)
Db(k) + um0(jk)(l)

(4)

where γn′m(l) , n’ = 0, 1 are species-specific 3rd hierarchical level model parameters associated
with the mth 2nd-level model’s intercept parameter for the lth attribute, which quantifies
the effect of cumulative tree size (breast-height diameter) on the parameters of the 2nd
hierarchical level models, and um0(jk)(l)

is the species-specific 3rd-level random effect error
term associated with the jth cross-sectional disk, kth sample tree and lth attribute.

Fourthly, sequentially incorporating each hierarchical model yielded the overall
tertiary-level hierarchical mixed-effects model specification for each attribute of both species
(Equation (5)): specifically, by transforming Equation (2b) into its logarithmic equivalent,
treating 1st and 2nd level parameters as random, and then re-incorporating the 2nd and
3rd level component models back into the logarithmic variant of the 1st-level model.

loge V(ijk)(l)
= γ00(l) + γ10(l)Db(k) + β01(l) H(jk) + β02(l) A(jk) + β03(l)D(jk)+

γ01(l) loge ac(ijk) + γ11(l)Db(k) loge ac(ijk) + β11(l) H(jk) loge ac(ijk)+

β12(l) A(jk) loge ac(ijk) + β13(l)D(jk) loge ac(ijk)+

γ02(l) ac(ijk) + γ12(l) ac(ijk)Db(k) + β21(l) ac(ijk) loge H(jk) + β22(l) ac(ijk) loge A(jk)+

β22(l) ac(ijk) loge D(jk)+

γ03(l) a
2
c (ijk) + γ13(l) a

2
c (ijk)Db(k) + β31(l) a

2
c (ijk)H(jk) + β32(l) a

2
c (ijk)A(jk)+

β33(l) a
2
c (ijk)D(jk)+

r0(jk)(l)
+ r1(jk)(l)

loge ac(ijk) + r2(jk)(l)
ac(ijk) + r3(jk)(l)

a2
c (ijk)+

u00(jk)(l)
+ u10(jk)(l)

loge ac(ijk) + u20(jk)(l)
ac(ijk) + u30(jk)(l)

a2
c (ijk)+

logeε(ijk)(l)

(5)

2.2.2. Parameterization

Firstly, to reduce the likelihood of erroneous statistical inferences regarding the im-
portance (significance) of the covariates due to the serial correlation that is intrinsically
embedded within fibre attribute developmental sequences when composed of cumula-
tive moving average values (e.g., [7,9]), partial autocorrelation coefficients were deployed
to measure the degree of temporal dependence within each of the 610 jack pine and
223 red pine attribute-specific cross-sectional sequences. Results indicated that significant
(p ≤ 0.05) first-order serial correlation between adjacent values was present in the majority
of the sequences, irrespective of attribute, disk stem height position or species (Table A1
in Appendix A). Furthermore, significant (p ≤ 0.05) second-order serial correlation was
also occasionally present, whereas the occurrence of significant (p ≤ 0.05) third-order serial
correlation was very infrequent (Table A1). The species-specific percentage decrease in the
occurrence of significant (p ≤ 0.05) serial correlation with increasing lag distance averaged
across all eight variates were as follows (Table A1): (1) mean decline of 81.4% from lag 1 to
lag 2, and 13.5% from lag 2 to lag 3, for jack pine; and (2) mean decline of 85.9% from lag 1
to lag 2, and 10.8% from lag 2 to lag 3, for red pine. Thus, based on the large reduction in the
presence of serial correlation at lag 2 and the marginal reductions at lag 2 versus those at lag
3, irrespective of species or attribute, a data removal approach was implemented to reduce
the effect of temporal data dependence during the model specification and parameteriza-
tion phases. This approach is similar to that deployed in block cross-validation analyses
where strategic data splitting techniques are used in such a manner as to reduce the effects
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of serial correlation within highly correlated temporal sequences without compromising
subsequent model specification efforts [25,26].

Specifically, based on these observed correlative patterns, the data splitting approach
consisted of sub-dividing the species-specific fibre attribute sequences into parameteri-
zation and validation data subsets deploying the following protocol: starting from the
2nd cambial year, retaining the value for the 2nd cambial age, removing values for the 3rd
and 4th cambial years, retaining the value for the 5th cambial age, removing values the
6th and 7th cambial ages, and so forth, for each sequence. This ultimately yielded species-
specific calibration (retained observations) and validation (removed observations) data
subsets for each attribute. For jack pine, a calibration data subset consisting of 9479 attribute-
specific observations (i.e., comprised of attribute values for cambial ages 2, 5, 8, 11, . . .,
n − 1) and a validation data subset consisting of 18,341 attribute-specific observations
(i.e., comprised of attribute values for cambial ages 3, 4, 6, 7, . . ., n), were formulated. Simi-
larly, for red pine, the stratification procedure yielded a calibration data subset consisting
of 3845 observations for each attribute (i.e., comprised of attribute values for cambial ages
2, 5, 8, 11, . . ., n − 1) and a validation data subset consisting of 7446 observations for each
attribute (i.e., comprised of attribute values for cambial ages 3, 4, 6, 7, . . ., n).

Secondly, deploying the calibration data subsets, parameter estimates for each species-
specific attribute model (Equation (5)) were obtained using the hierarchical linear and
nonlinear modeling software program, HLM8 [27]. Statistically, this program provides
empirical Bayes estimates for the randomly varying 1st and 2nd level model coefficients,
generalized least squares (maximum-likelihood) estimates for the 3rd-level model coeffi-
cients and maximum-likelihood estimates for the covariance components [27]. For each
species, the model specification process also included an evaluation of the random com-
ponents in terms of their significance, i.e., retaining as initially specified when significant
(p ≤ 0.05) or redefining as fixed when non-significant (p > 0.05). This involved (1) test-
ing the null hypotheses that the 2nd-level model parameters included random variation
among cross-sectional disks versus the alternative hypothesis of nil random variation
among individual cross-sectional disks; and, similarly, (2) testing the null hypotheses
that the 3rd-level model intercept parameters included random variation among different
diameter-sized trees versus the alternative hypothesis of nil random variation among
different diameter-sized trees. Once the random and fixed effects were determined and as-
sociated model specifications modified accordingly, the significance of the 2nd and 3rd level
model covariates was then assessed. This involved the systematic removal of insignificant
(p > 0.05) covariates deploying an iterative procedure until the final model specifications
were determined. As a result, the final models consisted of only covariates that were
significantly (p ≤ 0.05) contributing to explaining the variation in the dependent variable.
Conceptually, the approach is analogous to the backward variable selection procedure
commonly deployed in stepwise multiple regression analysis (sensu [23]).

The final model specifications were then evaluated for compliance with the underlying
statistical assumptions. That is, assessing the (1) constant variance assumption, (2) presence
of potential outliers via deployment of raw residual scatterplots, (3) occurrence of remaining
serial correlation among the 1st-level Bayes residuals for each cross-sectional attribute
sequence using an autocorrelation coefficient in conjunction with the Box–Ljung statistic,
and (4) presence of systematic bias and overall fit via an examination of observed-predicted
value scatterplots. Statistically, the index of fit (I2; Equation (6)) which is analogous to the
coefficient of multiple determination, was used to quantify the proportion of variation
explained by the retransformed models.

I2
(l) = 1−

K
∑

k=1

J
∑

j=1

n(l)

∑
i=1

(
V(ijk)(l)

− V̂(ijk)(l)

)2

K
∑

k=1

J
∑

j=1

n(l)

∑
i=1

(
V(ijk)(l)

−V ...(l)

)2
(6)
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where V̂(ijk)(l)
is the predicted cumulative moving average value in its original untrans-

formed form for the ith cambial age, jth cross-sectional disk per tree, kth sample tree and
lth attribute, and n(l) is the number of predicted–observed data pairs specific to the lth
attribute within the calibration data subset.

2.2.3. Model Evaluation: Goodness-of-Fit, and Predictive Lack-of-Fit and Accuracy

The retransformed parameterized models were evaluated deploying the validation
data subsets. Specifically, in order to enable the detection of systematic biases and as-
sess predictive performance throughout the entire stem, the goodness-of-fit, lack-of-fit,
and prediction error indices, were calculated on both a collective and positional basis
(i.e., whole-stem and cross-sectional relative stem height position basis, respectively). For
jack pine, the ten nominal relative height classes consisted of stump height (≈1%; 0.3 m),
breast-height (≈6%; 1.3 m) and at the 10, 20, . . ., 80% relative stem height positions (see Table
S1a for additional positional-based descriptive statistics). Although similar, precise control
of the sectioning height on each red pine sample tree was not possible given the nature
of the machine-dependent stem sectioning protocol deployed, and hence six equal-width
relative height classes were alternatively delineated: mid-class relative height positional
values of 7.5, 22.5, 37.5, 52.5, 67.5 and 82.5% (see Table S1b for additional positional-based
descriptive statistics). Goodness-of-fit was quantified by the coefficient of determination
(r2) for the simple linear regression relationship between the observed (y) and predicted
(x) values, which represents a relative measure of the proportion of the variance of the
observed values that is explained by the predicted values (sensu [28]). Collective and
positional-based r2 values were generated for each attribute and species.

The degree of predictive lack-of-fit and accuracy on both a collective and positional
basis was inferred from an examination of the magnitude of the mean absolute and relative
biases (Ba(l) (Equation (7)) and Br(l); Equation (8), respectively) and their corresponding 95%
prediction and tolerance confidence intervals (e.g., Equations (9) and (10), respectively; [29,30]).

Ba(l) =

K
∑

k=1

J
∑

j=1

n(l)

∑
i=1

(
V(ijk)(l)

− V̂(ijk)(l)

)
K
∑

k=1

J
∑

j=1

n(l)

∑
i=1

ijk
(7)

Br(l) =

K
∑

k=1

J
∑

j=1

n(l)

∑
i=1

(
100

V(ijk)(l)
−V̂(ijk)(l)

V(ijk)(l)

)
K
∑

k=1

J
∑

j=1

n(l)

∑
i=1

ijk
(8)

Ba,r(l) ±
√

1/n(l) + 1/np · Sa,r(l) · t(n(l)−1,0.975) (9)

Ba,r(l) ± g(λ, n(l), P) · Sa,r(l) (10)

where n(l) is the number of predicted–observed data pairs specific to the lth attribute within
the valuation data subset, np is the number of future predictions considered
(i.e., np = 10 given the assumed expectation that a stand-level mean attribute prediction
would involve approximately 10 unique diameter-class-specific predictions across the range
of the distribution), Sa,r(l) is the standard deviation of the absolute (Sa(l)) or relative (Sr(l))
biases specific to the lth attribute, t(n(l)−1,0.975) is the 0.975 quantile of the t-distribution
with n(l) − 1 degrees of freedom specific to the lth attribute, and g is a normal distribution
tolerance factor specifying the probability (λ) that at least the specified proportion (P) of
the errors (P = 95%) would be included within the resultant tolerance interval.

Furthermore, given that the models may be used to generate rotational (end-point)
composite attribute estimates when used in pre-harvest inventory assessments or crop
planning decision-support systems (e.g., SSDMMs), the following additional assessment of
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model performance was included. Firstly, 403 jack pine and 136 red pine cross-sectional
samples for which the cumulative attribute trajectories included the cross-sectional ter-
minal cambial age (cross-sectional age), were selected within the validation data subsets.
Contextually, these end-point weighted cumulative moving average values represent the
cross-sectional composite values at the time of in-field sampling or at forecasted rotation
ages, from which end-product potential could be inferred (sensu Table 5 in [7]). Secondly,
based on these observed end-point ages, the parameterized models were then used to
generate a corresponding set of predicted attribute values, from which positional-based
95% tolerant error intervals were constructed (i.e., via Equation (10)) and subsequently
graphically illustrated and assessed.

3. Results
3.1. Resultant Model Specifications, Parameter Estimates and Compliance with Underlying Assumptions

Attribute-specific parameter estimates and associated regression statistics including
the results from the assessment of the presence of serial correlation are presented in Table 2
for jack pine and Table 3 for red pine. In order to attain convergence during the initial
parameterizations and maintain a common model specification across all attributes and
species, the full model was slightly re-specified by treating the square term (π3l(k) ) as fixed

rather than random (i.e., deletion of u30(k) a
2
c(li) term from Equation (5)). The final model

specifications included only significant (p ≤ 0.05) random and fixed effects as determined
from univariate and multivariate tests of significance (sensu [13]). Random effects within
the second hierarchical level models that were determined to be significant (p ≤ 0.05) were
indicative of the presence of random variation among cross-sectional disks. The associated
significant fixed-effect predictor variables were used to partially explain this variation.

The results from the serial correlation assessment deploying autocorrelation coeffi-
cients, in conjunction with the Box–Ljung statistic, indicated there was evidence of residual
first-order serial correlation among consecutive first-level Bayes values but for a much
reduced proportion of the attribute-specific sequences: (1) 26, 34, 24, 30, 29, 17, 27 and 27%
of the Wd, Ma, Me, Co, Wt, Dr, Dt and Sa jack pine residual sequences exhibited significant
(p ≤ 0.05) correlation, respectively (Table 2); and (2) 28, 41, 33, 36, 30, 26, 36 and 32% of
the Wd, Ma, Me, Co, Wt, Dr, Dt and Sa red pine residual sequences exhibited significant
(p ≤ 0.05) correlation, respectively (Table 3). Although the data dependency reduction
strategy did not completely eliminate the occurrence of significant (p ≤ 0.05) first-order
serial correlation, it did yield consequential reductions across all eight attributes for both
species: specifically, collectively reducing its mean occurrence from 98% to 27% for jack
pine (Tables 2 and A1) and from 99% to 33% for red pine (Tables 3 and A1). Procedurally,
deploying further remedial efforts such as iteratively removing additional observations
from the sequences in order to create greater lag distances between successive observations
may have reduced the occurrence of serial correlation. However, this approach could also
compromise model specification efforts. More precisely, further reduction in the size of
the parameterization data subsets would most plausibly result in insufficient observations
to fully reflect the size-dependent nonlinear trends present within the attribute temporal
trajectories, particularly at the upper stem positions. For example, the minimum cambial
age for the upper-most cross-sectional disks was 12 for jack pine (Table S1a) and 14 for red
pine (Table S1b), and hence only four data pairs were available for the first-level model
parameterization when deploying the current stratification procedure. Thus, in order to
avoid compromising model specification efforts and given that approximately 66% of
the original observations within the individual cross-sectional sequences were already
removed through the data stratification procedure deployed (e.g., creating the calibration
and validation data subsets), further reductions were not considered.

In terms of the homogeneity of variance assumption, graphical examination of attribute-
specific residual scatterplots revealed no evidence of systematic bias for either species, and
thus the assumption was not rejected. In terms of explanatory power, the proportion of
variation explained as measured by the magnitude of the index-of-fit statistic (Equation (6))
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revealed that the (1) jack pine models explained 74, 72, 66, 63, 59, 48, 48, and 42% of the
variation in Me, Dr, Ma, Co, Wt, Sa, Wd, and Dt, respectively (Table 2), and (2) red pine
models explained 83, 78, 72, 71, 71, 56, 50 and 31% of the variation in Co, Dr, Wt, Ma, Sa, Dt,
Wd and Me, respectively (Table 3).

Table 2. Parameter estimates and associated statistics for the attribute-specific hierarchical mixed-
effects models (Equation (5)) for jack pine parameterized by employing the calibration data subset.

Parameter a,

Variable

lth Fibre Attribute b

Random
Effect, or
Statistic

Wd Ma Me Co Wt Dr Dt Sa

γ′00(l)
401.623820 37.126828 3.011156 172.014195 1.800849 21.760379 19.030677 378.292044

γ10(l) Db(k) −0.010579 −0.019807 - - −0.008676 0.005334 0.007599 0.006007

β01(l) H(jk) 0.012703 0.016052 - 0.017522 0.016488 −0.009914 0.008584 −0.011855

β02(l) A(jk) −0.002407 - −0.003333 0.004457 - - 0.005950 -

β03(l) D(jk) 0.012596 0.017669 - 0.012507 0.011873 −0.005916 - −0.007490

γ01(l) loge ac(ijk) −0.114273 −0.293697 0.464557 0.247765 −0.000149 0.246598 0.087726 0.066162

γ11(l) loge ac(ijk)

(
Db(k)

)
0.003746 - 0.012133 −0.007597 - −0.003507 −0.007505 -

β11(l) loge ac(ijk)

(
H(jk)

)
−0.002788 - - −0.006434 −0.005150 0.001227 −0.003945 0.003419

β12(l) loge ac(ijk)

(
A(jk)

)
0.001550 −0.002962 0.005566 −0.002004 0.000555 −0.000343 −0.002045 -

β13(l) loge ac(ijk)

(
D(jk)

)
−0.005309 0.012945 −0.028623 - −0.002676 0.002480 0.001869 -

γ02(l) ac(ijk) 0.024921 −0.055034 −0.029822 0.023887 0.045297 −0.019110 0.036661 −0.041912

γ12(l) ac(ijk)Db(k) −0.000224 - −0.000957 0.001168 0.000381 0.000486 0.000834 −0.000249

β21(l) ac(ijk) loge H(jk) −0.000159 −0.003268 −0.001646 0.000621 - −0.000100 0.001171 -

β22(l) ac(ijk) loge A(jk) −0.006426 0.011713 −0.013587 - −0.009204 - −0.005296 0.007799

β23(l) ac(ijk) loge D(jk) 0.006052 - 0.033710 −0.009955 - −0.001007 −0.005198 -

γ03(l) a2
c (ijk) −0.000449 0.001449 −0.000032 −0.000905 −0.000958 0.000163 −0.000830 0.000854

γ13(l) a2
c (ijk)Db(k) - 0.000006 - −0.000011 −0.000007 −0.000005 −0.000007 0.000003

β31(l) a2
c (ijk) loge H(jk) 0.000003 0.000019 0.000051 −0.000007 0.000005 0.000004 −0.000015 -

β32(l) a2
c (ijk) loge A(jk) 0.000087 −0.000233 - 0.000112 0.000180 - 0.000163 −0.000193

β33(l) a2
c (ijk) loge D(jk) - −0.000171 - 0.000168 0.000072 - 0.000054 -

r0(l) 0.00606 0.06602 0.11524 0.02659 0.01334 0.00566 0.01219 0.01221

r1(l) 0.00000 0.00007 0.00010 0.00001 0.00001 0.00000 0.00001 0.00001

r2(l) 0.00155 0.02254 0.03273 0.00682 0.00356 0.00147 0.00313 0.00290

u0(l) 0.00236 0.00849 - - 0.00202 0.00047 0.00055 0.00178

u1(l) 0.00000 - 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000

u2(l) 0.00043 - 0.00213 0.00061 - 0.00026 0.00044 -

SEE c 0.0176 0.0513 0.0404 0.0351 0.0235 0.0158 0.0243 0.0210

nα(1) (%) d 25.6 33.9 24.4 30.4 28.9 17.2 26.9 27.3

I2 e 0.461 0.662 0.744 0.633 0.585 0.720 0.415 0.480
a Transformed estimate for intercept parameter includes the correction factor for the bias introduced via the
logarithmic transformation [31]. γ′00(l)

= exp(γ00(l) + SEE2/2); parameters and variance components as specified

in Equation (5); b Wd, Ma, Me, Co, Wt, Dr, Dt and Sa denote wood density, microfibril angle, modulus of elasticity,
fibre coarseness, tracheid wall thickness, tracheid radial diameter, tracheid tangential diameter and specific surface
area, respectively; c SEE denotes the standard error of estimate in natural logarithmic units specific to the kth
attribute (Table 1); d nα(1) is the number of significant (p ≤ 0.05) first-order autocorrelation coefficients (α(1))
between consecutive residual values at the individual cross-sectional level for the 610 jack pine disks; e I2 is
the index-of-fit squared metric (Equation (6)) quantifying the proportion of the total attribute-specific variation
explained by the retransformed model.
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Table 3. Parameter estimates and associated statistics for the attribute-specific hierarchical mixed-
effects models (Equation (5)) for red pine parameterized by employing the calibration data subset.

Parameter a,

Variable

lth Fibre Attribute b

Random
Effect, or
Statistic

Wd Ma Me Co Wt Dr Dt Sa

γ′00(l)
151.000450 13.322938 3.882271 291.975123 1.160004 78.967480 28.092212 407.384118

γ10(l) Db(k) - −0.011363 - - - - - 0.002261

β01(l) H(jk) 0.028957 0.048419 −0.017342 −0.014601 0.010450 −0.044643 −0.008045 -

β02(l) A(jk) 0.014217 0.017654 −0.008542 - 0.007532 −0.016607 - −0.002358

β03(l) D(jk) - - 0.019715 0.003937 0.004903 - - −0.005377

γ01(l) loge ac(ijk) 0.246407 −0.604161 1.663382 0.160570 0.168033 −0.122181 −0.024519 −0.053479

γ11(l) loge ac(ijk)

(
Db(k)

)
−0.001988 0.009661 −0.015442 - - 0.001309 0.000984 -

β11(l) loge ac(ijk)

(
H(jk)

)
−0.008812 −0.013957 - 0.003320 −0.003164 0.012351 0.001750 -

β12(l) loge ac(ijk)

(
A(jk)

)
−0.004887 0.003445 −0.016636 −0.002802 −0.003714 0.003458 −0.000900 0.001966

β13(l) loge ac(ijk)

(
D(jk)

)
0.001854 - - - - −0.000745 - -

γ02(l) ac(ijk) 0.006700 0.194451 −0.260962 −0.001405 0.005937 −0.030963 0.025575 −0.011969

γ12(l) ac(ijk)Db(k) 0.000137 −0.000796 0.001448 −0.000152 - −0.000180 −0.000182 -

β21(l) ac(ijk) loge H(jk) - −0.002658 −0.009010 −0.000860 −0.000441 −0.000605 −0.000216 0.000678

β22(l) ac(ijk) loge A(jk) 0.003891 −0.055838 0.062292 - 0.002097 0.001486 −0.005210 -

β23(l) ac(ijk) loge D(jk) −0.004921 0.017166 −0.006163 0.006368 - 0.007457 0.003360 -

γ03(l) a2
c (ijk) −0.000431 −0.001278 0.001464 −0.001011 −0.000772 0.000213 −0.000807 0.000815

γ13(l) a2
c (ijk)Db(k) −0.000002 0.000004 −0.000011 0.000002 −0.000001 0.000002 0.000003 -

β31(l) a2
c (ijk) loge H(jk) 0.000008 - 0.000111 0.000033 0.000021 0.000008 0.000017 −0.000023

β32(l) a2
c (ijk) loge A(jk) 0.000064 0.000282 −0.000298 0.000268 0.000168 - 0.000201 −0.000174

β33(l) a2
c (ijk) loge D(jk) 0.000048 - - −0.000089 - −0.000080 −0.000059 -

r0(l) 0.01251 0.04491 0.06655 0.02391 0.02000 0.00921 0.00795 0.01855

r1(l) 0.00000 0.00013 0.00013 0.00002 0.00001 0.00000 0.00001 0.00001

r2(l) 0.00195 0.02099 0.04160 0.00775 0.00492 0.00084 0.00283 0.00483

u0(l) - - - 0.00085 0.00072 0.00020 0.00008 0.00095

u1(l) - 0.00000 0.00000 - - - - 0.00000

u2(l) 0.00005 - - - - - - 0.00000

SEE c 0.0158 0.0329 0.0574 0.0239 0.0184 0.0155 0.0126 0.0148

nα(1) (%) d 27.5 40.8 32.6 36.2 29.8 26.1 36.2 31.6

I2 e 0.503 0.713 0.308 0.829 0.724 0.782 0.561 0.707

a,b,c,e As defined in Table 2; d nα(1) is the number of significant (p ≤ 0.05) first-order autocorrelation coefficients
(α(1)) between consecutive residual values at the individual cross-sectional level for the 223 red pine disks.

3.2. Model Performance Metrics: Goodness-of-Fit, and Predictive Lack-of-Fit and Accuracy

Goodness-of-fit, predictive lack-of-fit and predictive accuracy metrics of the trans-
formed attribute-specific hierarchical mixed-effects models on both a positional and collec-
tive basis are presented in Table 4 for jack pine and Table 5 for red pine. The proportion of
variance in the observed values explained by the parameterized model as quantified by the
coefficient of determination (r2) at the individual cross-sectional height positions closely
mirrored that of the collective-based values, for most of the attributes. However, the values
were not spatially invariant: (1) jack pine r2 values for Wd and Sa declined with increasing
height, whereas Dr values increased with increasing height; and (2) red pine r2 values for
Wd, Me, Wt, and Sa declined with increasing height, whereas Dr and Dt values increased
with increasing height. Overall, there was a slight declining trend in the percentage of
variation explained with increasing stem height, more so for red pine than for jack pine.
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The final parameterized models exhibited an absence of systematic predictive bias
across the relative height classes as inferred from graphical assessment of the observed
and predicted value scatterplots (Figure A1 in Appendix B). Specifically, based on the
validation data subset, examination of the attribute-specific observed versus predicted
bivariate plots at each relative height position or class for each species-specific attribute
revealed that most data pairs oscillated randomly along the diagonal line of equivalence
(x = y) and were devoid of any obvious systematic pattern of bias (Figure A1a–h for jack
pine and Figure A2a–h for red pine). Across the 80 jack pine scatterplots (10 relative
stem height positions × 8 attributes) and 48 red pine scatterplots (6 relative stem height
classes × 8 attributes) examined, exceptions to this generalized inference were very infre-
quent (i.e., occurring only at the upper range of the tangential diameter values for the lower
stem relative positions in red pine (22.5% and 37.5% relative stem height position classes
(Figure A2g))).

Predictive lack-of-fit and accuracy was also assessed on a positional and collective
basis using absolute and relative, prediction and tolerance error intervals [29,30]. The
prediction interval reflects the potential accuracy of the equations when applied to a
newly sampled group of trees: specifically, there is a 95% probability that the mean error
generated from 10 newly sampled trees would fall between the specified limits. Similarly,
the tolerance interval reflects the overall predictive ability of the equations, e.g., there
is a 95% probability that 95% of all future errors generated from the specified equation
would fall within the stated tolerance interval. Further to assessing the magnitude and
width of the absolute and relative prediction and tolerance error intervals at any given
specific relative height position or cumulatively across all height positions, examining the
spatial trend with respect to increasing or decreasing relative height positions provides
insights into the potential presence of spatial-based systematic bias, lack-of-fit or predictive
performance degradation.

The predictive performance measures in both absolute and relative terms indicated
that the vast majority of the mean biases were not significantly different (p ≤ 0.05) from
zero on both a collective and positional basis for both species. Specifically, for jack pine
(Table 4), (1) only 6 of the 88 (7%) absolute prediction error intervals were significantly
different from zero (p ≤ 0.05), with 4 of them occurring for Wt predictions within the
upper stem region (>50% relative height), and (2) 4 of the 88 (5%) relative prediction error
intervals were significantly different from zero (p ≤ 0.05) and all were associated with Wt
predictions within the upper stem region (>50% relative height). Otherwise, systematic
positional-based absolute and relative biases were absent across all attributes. All the jack
pine tolerance intervals for absolute and relative errors were not significantly different
from zero (p ≤ 0.05). For red pine (Table 5), (1) 14 of the 56 (25%) absolute prediction error
intervals were significantly different from zero (p ≤ 0.05) and most were associated with
Ma, Me, Dr and Dt predictions, and similarly (2) 14 of the 56 (25%) relative prediction error
intervals were significantly different from zero (p ≤ 0.05) and were also mostly associated
with the Ma, Me, Dr and Dt.
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Table 4. Goodness-of-fit and lack-of-fit statistics and overall predictive ability metrics of the trans-
formed attribute-specific hierarchical mixed-effects models for jack pine by cross-sectional relative
height position and on a whole-stem collective basis.

Attribute

Relative
Height a

N b r2 c

Lack-of-Fit Measures d Predictive Ability: 95% Error Intervals f

Absolute e Relative (%) Prediction Interval Tolerance Interval

(%) Mean
Bias ±95% CL Mean

Bias ±95% CL Absolute e,g Relative
(%) g Absolute e,g Relative

(%) g

±95% CL ±95% CL ±95% CL ±95% CL

Wood
density
(kg/m3)

1 (SH) 2463 0.462 −4.185 1.196 −0.615 0.283 18.800 4.452 60.940 14.429
6 (BH) 2347 0.618 −1.924 0.960 −0.132 0.237 14.738 3.642 47.779 11.806

10 2282 0.568 2.003 0.987 0.867 0.247 14.934 3.745 48.420 12.142
20 2162 0.518 1.496 1.007 0.759 0.256 14.845 3.778 48.141 12.251
30 1977 0.467 3.334 1.000 1.216 0.261 14.099 3.684 45.741 11.953
40 1847 0.405 2.728 1.065 1.087 0.275 14.516 3.743 47.114 12.149
50 1634 0.196 −1.129 1.174 0.076 0.291 15.058 3.725 48.914 12.100
60 1467 0.052 −3.093 1.274 −0.421 0.316 15.483 3.841 50.339 12.489
70 1212 0.022 −3.683 1.177 −0.687 0.293 13.015 3.241 42.393 10.558
80 950 0.000 −3.100 1.519 −0.462 0.381 14.884 3.736 48.621 12.204

All 18341 0.466 −0.501 0.358 0.242 0.089 15.333 3.820 51.524 12.835

Microfibril
angle

(◦)

1 (SH) 2463 0.424 −3.755 0.206 −11.363 0.724 3.233 11.391 10.481 36.922
6 (BH) 2347 0.554 0.055 0.138 4.167 0.852 2.113 13.081 6.852 42.407

10 2282 0.580 0.055 0.135 4.108 0.919 2.048 13.909 6.640 45.095
20 2162 0.635 −0.161 0.138 2.642 0.869 2.035 12.813 6.600 41.551
30 1977 0.649 0.892 0.133 10.078 0.995 1.868 14.032 6.060 45.522
40 1847 0.649 1.006 0.154 11.580 1.054 2.097 14.357 6.804 46.595
50 1634 0.578 0.844 0.181 11.015 1.185 2.323 15.194 7.546 49.354
60 1467 0.619 0.119 0.195 5.894 1.187 2.375 14.428 7.720 46.909
70 1212 0.702 −0.142 0.187 3.319 1.121 2.072 12.386 6.748 40.346
80 950 0.652 −2.491 0.245 −10.149 1.091 2.399 10.693 7.837 34.932

All 18341 0.638 −0.366 0.058 3.229 0.329 2.487 14.087 8.356 47.337

Modulus
of

elasticity
(GPa)

1 (SH) 2463 0.561 0.795 0.078 19.345 1.269 1.233 19.955 3.997 64.684
6 (BH) 2347 0.707 −0.492 0.063 −2.362 0.687 0.974 10.547 3.156 34.192

10 2282 0.716 −0.313 0.063 −1.457 0.627 0.948 9.488 3.073 30.760
20 2162 0.766 −0.561 0.058 −4.187 0.579 0.857 8.534 2.780 27.675
30 1977 0.750 −0.419 0.062 −2.720 0.655 0.867 9.234 2.813 29.956
40 1847 0.757 −0.779 0.060 −6.303 0.650 0.823 8.856 2.670 28.744
50 1634 0.746 −0.332 0.065 −1.304 0.790 0.836 10.132 2.716 32.911
60 1467 0.727 −0.376 0.069 −1.874 0.811 0.836 9.853 2.717 32.036
70 1212 0.793 −0.017 0.063 1.806 0.838 0.696 9.264 2.266 30.175
80 950 0.694 0.681 0.086 11.477 1.281 0.843 12.551 2.754 41.001

All 18341 0.709 −0.210 0.023 1.141 0.295 0.974 12.618 3.274 42.400

Fibre
coarse-

ness
(µg/m)

1 (SH) 2463 0.620 4.865 1.202 1.815 0.322 18.902 5.064 61.269 16.415
6 (BH) 2347 0.710 4.487 0.987 1.549 0.274 15.154 4.203 49.129 13.625

10 2282 0.679 5.426 1.029 1.873 0.286 15.574 4.333 50.495 14.048
20 2162 0.708 0.690 1.004 0.672 0.285 14.801 4.195 47.998 13.605
30 1977 0.660 1.805 1.043 0.949 0.298 14.705 4.199 47.707 13.623
40 1847 0.638 2.647 1.119 1.317 0.327 15.249 4.457 49.491 14.467
50 1634 0.563 −0.879 1.275 0.346 0.358 16.352 4.591 53.116 14.913
60 1467 0.583 −0.010 1.247 0.586 0.373 15.156 4.527 49.277 14.718
70 1212 0.485 1.822 1.443 1.139 0.430 15.950 4.758 51.955 15.499
80 950 0.491 7.075 1.490 2.726 0.473 14.594 4.634 47.675 15.139

All 18341 0.678 2.853 0.370 1.283 0.105 15.829 4.489 53.191 15.085

Tracheid
wall

thickness
(µm)

1 (SH) 2463 0.455 0.008 0.010 1.059 0.370 0.153 5.821 0.496 18.870
6 (BH) 2347 0.711 −0.042 0.007 −1.178 0.264 0.103 4.045 0.334 13.113

10 2282 0.570 −0.042 0.008 −1.142 0.308 0.119 4.669 0.386 15.138
20 2162 0.560 −0.071 0.008 −2.293 0.316 0.117 4.655 0.379 15.096
30 1977 0.495 −0.091 0.008 −3.235 0.323 0.113 4.549 0.366 14.758
40 1847 0.489 −0.092 0.008 −3.257 0.335 0.112 4.566 0.364 14.819
50 1634 0.313 −0.148 0.009 −5.713 0.360 0.118 4.621 0.383 15.012
60 1467 0.233 −0.150 0.009 −5.911 0.373 0.111 4.529 0.361 14.725
70 1212 0.135 −0.168 0.009 −6.920 0.379 0.102 4.191 0.332 13.652
80 950 0.020 −0.158 0.011 −6.686 0.459 0.106 4.492 0.345 14.675

All 18341 0.508 −0.081 0.003 −2.883 0.115 0.123 4.922 0.413 16.540
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Table 4. Cont.

Attribute

Relative
Height a

N b r2 c

Lack-of-Fit Measures d Predictive Ability: 95% Error Intervals f

Absolute e Relative (%) Prediction Interval Tolerance Interval

(%) Mean
Bias ±95% CL Mean

Bias ±95% CL Absolute e,g Relative
(%) g Absolute e,g Relative

(%) g

±95% CL ±95% CL ±95% CL ±95% CL

Tracheid
radial

diameter
(µm)

1 (SH) 2463 0.365 −0.141 0.065 −0.183 0.220 1.016 3.455 3.293 11.200
6 (BH) 2347 0.488 −0.321 0.052 −0.871 0.173 0.797 2.649 2.584 8.589

10 2282 0.532 −0.461 0.050 −1.329 0.166 0.763 2.512 2.474 8.144
20 2162 0.662 −0.494 0.049 −1.418 0.166 0.725 2.440 2.350 7.912
30 1977 0.614 −0.621 0.051 −1.875 0.169 0.713 2.384 2.312 7.736
40 1847 0.695 −0.494 0.054 −1.427 0.183 0.738 2.488 2.395 8.075
50 1634 0.685 −0.467 0.059 −1.347 0.203 0.759 2.606 2.466 8.464
60 1467 0.758 −0.052 0.065 0.134 0.240 0.793 2.921 2.578 9.496
70 1212 0.736 0.050 0.072 0.466 0.265 0.793 2.927 2.583 9.536
80 950 0.737 0.514 0.085 2.205 0.323 0.832 3.164 2.719 10.334

All 18341 0.657 −0.308 0.019 −0.779 0.066 0.817 2.814 2.746 9.455

Tracheid
tangen-

tial
diameter

(µm)

1 (SH) 2463 0.175 0.174 0.034 0.713 0.129 0.536 2.022 1.737 6.555
6 (BH) 2347 0.159 0.212 0.038 0.868 0.143 0.590 2.196 1.913 7.120

10 2282 0.158 0.189 0.040 0.789 0.151 0.608 2.279 1.971 7.390
20 2162 0.149 0.006 0.043 0.124 0.158 0.626 2.323 2.031 7.534
30 1977 0.210 0.059 0.042 0.305 0.156 0.585 2.192 1.899 7.111
40 1847 0.270 0.047 0.040 0.258 0.151 0.551 2.057 1.789 6.677
50 1634 0.305 0.058 0.044 0.306 0.164 0.562 2.101 1.827 6.824
60 1467 0.309 −0.018 0.047 0.034 0.174 0.568 2.109 1.848 6.857
70 1212 0.350 0.097 0.051 0.456 0.189 0.558 2.091 1.818 6.810
80 950 0.363 0.145 0.058 0.641 0.210 0.564 2.061 1.844 6.732

All 18341 0.267 0.103 0.014 0.472 0.050 0.578 2.157 1.943 7.248

Specific
surface

area
(m2/kg)

1 (SH) 2463 0.552 −0.941 0.891 0.061 0.277 14.014 4.362 45.424 14.140
6 (BH) 2347 0.636 −4.014 0.788 −0.928 0.228 12.090 3.496 39.194 11.334

10 2282 0.591 −5.401 0.815 −1.309 0.239 12.344 3.619 40.022 11.733
20 2162 0.547 −2.557 0.843 −0.435 0.244 12.428 3.595 40.302 11.660
30 1977 0.506 −3.197 0.854 −0.630 0.246 12.038 3.461 39.053 11.230
40 1847 0.427 −3.324 0.957 −0.584 0.279 13.044 3.808 42.335 12.358
50 1634 0.307 0.906 1.057 0.671 0.323 13.556 4.135 44.035 13.430
60 1467 0.210 0.670 1.099 0.568 0.325 13.360 3.953 43.436 12.852
70 1212 0.146 −0.232 1.143 0.258 0.338 12.639 3.741 41.169 12.187
80 950 0.069 −3.425 1.360 −0.622 0.386 13.324 3.785 43.524 12.365

All 18341 0.517 −2.351 0.301 −0.362 0.089 12.878 3.810 43.274 12.803

a Relative stem height position where SH and BH refer to stump height and breast-height, respectively; b Number
of observations for a given relative height class within the validation data subset; c Coefficient of determination for
the observed (y)—predicted (x) relationship; d Mean absolute (Equation (7)) and relative (Equation (8)) bias and
the limits (CL) of the associated 95% confidence interval where mean values not significantly (p > 0.05) different
from zero (i.e., interval includes zero) are indicative of an unbiased relationship with respect to single attribute
predictions [30] whereas mean values significantly (p ≤ 0.05) different from zero (i.e., interval does not include
zero) are indicative of a biased relationship with respect to single attribute predictions [30]; note, underlined CL
values denote non-normal error distributions (p ≤ 0.05) and hence the underlined CL and associated prediction
and tolerance CLs are approximations; e Absolute error units are specific to each attribute: kg/m3, ◦, GPa, µg/m,
µm, µm, µm, and m2/kg for Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively. f Confidence limits (CL) for the
95% prediction and tolerance error intervals for absolute and relative errors (Equations (9) and (10), respectively):
mean bias ± 95% CL. Note, there is a 95% probability that the mean of 10 future errors will be within the stated
prediction interval and that there is a 95% probability that 95% of all future errors will be within the stated
tolerance interval [29,30]; g Underlined values denote 95% prediction or tolerance error intervals that do not
overlap with zero and hence indictive of the presence of significant (p ≤ 0.05) predictive bias.
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Table 5. Goodness-of-fit and lack-of-fit statistics and overall predictive ability metrics of the trans-
formed attribute-specific hierarchical mixed-effects models for red pine by cross-sectional relative
height position and on a whole-stem collective basis.

Attribute

Relative
Height N b r2 c Lack-of-Fit Measures d Predictive Ability: 95% Error Intervals f

Absolute e Relative (%) Prediction Interval Tolerance Interval
Class Mid-

Point a
Mean
Bias ±95% CL Mean

Bias ±95% CL Absolute e,g Relative
(%) g Absolute e,g Relative

(%) g

(%) ±95% CL ±95% CL ±95% CL ±95% CL

Wood
density
(kg/m3)

7.5 2720 0.613 −17.696 0.688 −4.204 0.160 11.370 2.641 36.849 8.559
22.5 2190 0.555 1.394 0.725 0.627 0.197 10.752 2.921 34.865 9.471
37.5 826 0.398 6.665 1.075 2.041 0.289 9.832 2.643 32.177 8.651
52.5 623 0.074 −4.594 1.400 −1.068 0.370 11.140 2.944 36.613 9.676
67.5 765 0.162 −1.069 1.063 −0.150 0.285 9.357 2.513 30.658 8.232
82.5 322 0.317 −11.107 2.044 −2.889 0.533 11.780 3.070 39.153 10.204

All 7446 0.584 −6.290 0.449 −1.355 0.114 12.248 3.118 40.015 10.186

Microfibril
angle

(◦)

7.5 2720 0.508 −4.102 0.225 −9.287 0.684 3.711 11.307 12.026 36.646
22.5 2190 0.632 2.777 0.120 20.040 0.794 1.785 11.771 5.789 38.170
37.5 826 0.618 2.074 0.208 16.458 1.290 1.899 11.795 6.214 38.601
52.5 623 0.579 0.019 0.245 2.883 1.354 1.950 10.776 6.409 35.415
67.5 765 0.683 −0.154 0.157 0.450 0.912 1.379 8.030 4.518 26.309
82.5 322 0.544 −3.201 0.394 −13.957 1.470 2.271 8.471 7.548 28.154

All 7446 0.753 −0.604 0.119 4.011 0.502 3.243 13.707 10.594 44.781

Modulus
of

elasticity
(GPa)

7.5 2720 0.817 2.252 0.046 47.012 1.199 0.752 19.809 2.436 64.200
22.5 2190 0.694 −2.767 0.055 −27.179 0.531 0.822 7.870 2.665 25.521
37.5 826 0.550 −2.285 0.096 −22.707 0.925 0.880 8.455 2.882 27.673
52.5 623 0.462 −0.667 0.110 −5.836 1.233 0.876 9.810 2.879 32.241
67.5 765 0.473 0.345 0.082 5.040 1.014 0.721 8.924 2.362 29.239
82.5 322 0.470 1.162 0.137 18.376 2.378 0.787 13.702 2.615 45.541

All 7446 0.315 −0.215 0.057 7.485 0.894 1.567 24.398 5.120 79.710

Fibre
coarse-

ness
(µg/m)

7.5 2720 0.806 −3.537 1.035 −0.126 0.255 17.107 4.210 55.441 13.643
22.5 2190 0.847 −1.855 0.988 −0.454 0.230 14.649 3.414 47.501 11.071
37.5 826 0.871 −2.006 1.388 −0.420 0.338 12.688 3.090 41.526 10.111
52.5 623 0.865 −5.112 1.558 −0.972 0.383 12.399 3.050 40.749 10.024
67.5 765 0.868 2.452 1.174 0.834 0.314 10.330 2.763 33.847 9.053
82.5 322 0.643 6.445 2.934 2.563 0.848 16.905 4.885 56.189 16.238

All 7446 0.831 −1.957 0.549 −0.111 0.135 14.997 3.692 48.996 12.063

Tracheid
wall

thickness
(µm)

7.5 2720 0.719 −0.078 0.006 −2.599 0.215 0.094 3.550 0.305 11.504
22.5 2190 0.790 −0.018 0.005 −0.477 0.206 0.076 3.051 0.246 9.892
37.5 826 0.796 0.002 0.007 0.283 0.285 0.063 2.603 0.208 8.520
52.5 623 0.672 −0.047 0.009 −1.741 0.372 0.071 2.960 0.234 9.728
67.5 765 0.581 −0.005 0.007 −0.058 0.305 0.062 2.687 0.202 8.805
82.5 322 0.341 −0.031 0.017 −0.982 0.727 0.096 4.188 0.320 13.920

All 7446 0.767 −0.039 0.003 −1.252 0.120 0.083 3.275 0.272 10.698

Tracheid
radial

diameter
(µm)

7.5 2720 0.763 0.051 0.058 0.542 0.198 0.951 3.276 3.081 10.618
22.5 2190 0.743 −1.242 0.039 −3.579 0.116 0.575 1.721 1.864 5.580
37.5 826 0.847 −1.372 0.064 −3.948 0.194 0.589 1.772 1.927 5.798
52.5 623 0.850 −0.435 0.086 −1.169 0.280 0.681 2.230 2.238 7.327
67.5 765 0.904 −0.185 0.063 −0.475 0.200 0.553 1.760 1.812 5.766
82.5 322 0.837 1.126 0.124 3.873 0.448 0.717 2.584 2.382 8.588

All 7446 0.740 −0.506 0.032 −1.272 0.103 0.860 2.821 2.810 9.215

Tracheid
tangen-

tial
diameter

(µm)

7.5 2720 0.721 0.936 0.029 3.381 0.101 0.471 1.670 1.526 5.412
22.5 2190 0.763 0.550 0.052 1.791 0.171 0.766 2.543 2.485 8.246
37.5 826 0.834 0.220 0.062 0.723 0.210 0.569 1.923 1.862 6.293
52.5 623 0.873 0.171 0.053 0.622 0.187 0.422 1.484 1.386 4.878
67.5 765 0.894 0.203 0.040 0.730 0.143 0.356 1.260 1.166 4.129
82.5 322 0.790 0.555 0.076 2.068 0.279 0.437 1.607 1.452 5.340

All 7446 0.769 0.587 0.022 2.058 0.075 0.598 2.056 1.954 6.718
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Table 5. Cont.

Attribute

Relative
Height N b r2 c Lack-of-Fit Measures d Predictive Ability: 95% Error Intervals f

Absolute e Relative (%) Prediction Interval Tolerance Interval
Class Mid-

Point a
Mean
Bias ±95% CL Mean

Bias ±95% CL Absolute e,g Relative
(%) g Absolute e,g Relative

(%) g

(%) ±95% CL ±95% CL ±95% CL ±95% CL

Specific
surface

area
(m2/kg)

7.5 2720 0.679 3.332 0.561 1.392 0.186 9.264 3.081 30.024 9.984
22.5 2190 0.721 −2.491 0.569 −0.671 0.179 8.432 2.648 27.344 8.587
37.5 826 0.723 −2.596 0.821 −0.703 0.255 7.509 2.328 24.576 7.619
52.5 623 0.600 3.952 1.082 1.401 0.339 8.610 2.700 28.297 8.873
67.5 765 0.553 −1.368 0.886 −0.271 0.270 7.800 2.376 25.555 7.785
82.5 322 0.338 −0.265 2.371 0.319 0.715 13.661 4.119 45.405 13.690

All 7446 0.728 0.375 0.330 0.336 0.106 9.017 2.889 29.460 9.438
a Relative stem height position where SH and BH refer to stump height and breast-height, respectively;
b Number of observations for a given relative height class within the validation data subset; c Coefficient of
determination for the observed (y)—predicted (x) relationship; d Mean absolute (Equation (7)) and relative
(Equation (8)) bias and the limits (CL) of the associated 95% confidence interval where mean values not
significantly (p > 0.05) different from zero (i.e., interval includes zero) are indicative of an unbiased relationship
with respect to single attribute predictions [30] whereas mean values significantly (p ≤ 0.05) different from
zero (i.e., interval does not include zero) are indicative of a biased relationship with respect to single attribute
predictions [30]; note, underlined CL values denote non-normal error distributions (p ≤ 0.05) and hence the
underlined CL and associated prediction and tolerance CLs are approximations; e Absolute error units are
specific to each attribute: kg/m3 , ◦ , GPa, µg/m, µm, µm, µm, and m2/kg for Wd , Ma , Me , Co , Wt , Dr , Dt and Sa ,
respectively. f Confidence limits (CL) for the 95% prediction and tolerance error intervals for absolute and
relative errors (Equations (9) and (10), respectively): mean bias ± 95% CL. Note, there is a 95% probability that
the mean of 10 future errors will be within the stated prediction interval and that there is a 95% probability
that 95% of all future errors will be within the stated tolerance interval [29,30]; g Underlined values denote
95% prediction or tolerance error intervals that do not overlap with zero and hence indictive of the presence of
significant (p ≤ 0.05) predictive bias.

The width of the prediction error interval varied by attribute, position and species.
For jack pine (Table 4), the range of the (1) relative error prediction interval limits for the
10-sample future mean estimate across all ten stem height positions ranged from ±3.2 to
±4.5% for Wd, ±10.7 to ±15.2% for Ma, ±8.5 to ±20.0% for Me, ±4.2 to ±5.1% for Co, ±4.2
to ±5.8% for Wt, ±2.4 to ±3.5% for Dr, ±2.0 to ±2.3% for Dt, and ±3.5 to ±4.4% for Sa,
and (2) relative error tolerance interval limits for all future values across all ten stem height
positions ranged from ±10.6 to ±14.4% for Wd, ±34.9 to ±49.4% for Ma, ±27.7 to ±64.7%
for Me, ±13.6 to ±16.4% for Co, ±13.1 to ±18.9% for Wt, ±7.7 to ±11.2% for Dr, ±6.6 to
±7.5% for Dt, and ±11.2 to ±14.1% for Sa. For six of the eight jack pine attributes, the
largest error interval ranges occurred at stump height (n., attributes Ma and Dt being the
exceptions). Similarly for red pine (Table 5), the range of the (1) relative error prediction
interval limits for the 10-sample future mean estimate across all six stem height classes
ranged from ±2.5 to ±3.1% for Wd, ±8.0 to ±11.8% for Ma, ±7.9 to ±19.8% for Me, ±2.8 to
±4.9% for Co, ±2.6 to ±4.2% for Wt, ±1.7 to ±3.3% for Dr, ±1.3 to ±2.5% for Dt, and ±2.3
to ±4.1% for Sa, and (2) relative error tolerance interval limits for all future values across
all six stem height positions ranged from ±8.2 to ±10.2% for Wd, ±26.3 to ±38.6% for Ma,
±25.5 to ±64.1% for Me, ±9.1 to ±16.2% for Co, ±8.5 to ±13.9% for Wt, ±5.6 to ±10.6% for
Dr, ±4.1 to ±8.2% for Dt, and ±7.6 to ±13.7% for Sa. Although there was a general lack
of spatial-based systematic trends across the eight red pine attributes, the largest biases
occurred within the mid-lower stem region for Ma and the lower and upper stem regions
for Me.

In terms of prediction precision evaluated on a non-positional basis, the attribute rank-
ings for jack pine and red pine were very similar: Dt > Dr > Sa > Wd > Wt > Co >> Me > Ma
for jack pine; and Dt > Dr > Sa > Wd > Wt > Co >> Ma > Me for red pine. Specifically for jack
pine, the range of the relative error interval for the 10-sample mean estimate would not ex-
ceed±5% for six of the attributes (Dt < Dr < Sa < Wd < Wt < Co) and±15% for the remaining
two attributes (Me < Ma) (Table 4). Similarly, 95% of all future individual prediction errors
would be fall within tolerance intervals with ranges of less than ±17% for six of the at-
tributes (Dt < Dr < Sa < Wd < Wt < Co) and±47% for the remaining two attributes (Me < Ma)
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(Table 4). For red pine, the range of the relative error interval for the 10-sample mean
estimate would not exceed ±4% for six of the attributes (Dt < Dr < Sa < Wd < Wt < Co) and
±25% for the remaining two attributes (Ma and Me) (Table 5). Likewise, 95% of all future
individual prediction errors would be fall within tolerance intervals with ranges of less than
±13% for six of the attributes (Dt < Dr < Sa < Wd < Wt < Co) and ±80% for the remaining
two attributes (Ma and Me) (Table 5). In order to visually contrast the attribute-specific
tolerance intervals for relative error across height positions for each species, whisker plots
were deployed: Figure 1a for jack pine and Figure 1b for red pine. As illustrated, the
intervals for a given attribute and species are relatively invariant across stem positions.
However, exceptions did occur, particularly the intervals for Me for both species at the
lowest relative height positions.

Although dependent on the error threshold tolerance of the end-user, caution should
be nevertheless exercised when using the Ma and Me prediction models for single tree
forecasts for either species, particularly at the lower relative stem height positions.
Alternatively, however, the mean errors arising from a minimum of 10 future projections
for these two attributes of either species would be generally acceptable, i.e., mean
prediction errors of less than ±13% and ±15% for Me and Ma, respectively, across all
stem positions, for the jack pine models (Table 4), and mean prediction errors of less
than ±14% and ±25% for Ma and Me, respectively, across all stem positions for the red
pine models (Table 5). Consequently, deploying the Me and Ma equations to provide
sample-based mean estimates for a group of trees rather than deploying them to yield
individual tree predictions would be advisable.

The predictive ability of the models for estimating the end-point attribute value
was also assessed graphically. Specifically, for all cross-sectional disks within the
validation data subset which had a cambial age termination value that matched the
last annual ring within a given relative height class, attribute-specific 95% predictive
error tolerance intervals were calculated for each species and graphically presented
(Figure 2). As illustrated for jack pine in Figure 2a, the intervals were relatively sta-
ble across all 10 relative stem height positions, although there was slight increase
in interval width at the stump section for five of the eight attributes (i.e., Me, Co,
Wt, Dr and Sa). Likewise, as illustrated for red pine in Figure 2b, the intervals were
also relatively stable across all six relative stem height classes. However, contrary
to the inference for jack pine, the interval range was slightly greater at the upper
most stem position for all attributes but Dt. Similarly, intervals at the lowest stem
region revealed a slight overestimation for Wd, Co, Wt and Dt. Overall, the magni-
tudes of the attribute-specific end-point biases were generally lower than those ob-
served across all cambial ages for both jack pine (cf., Figures 1a and 2a) and red pine
(cf., Figures 1b and 2b).
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Figure 1. (a) Predictive performance of the attribute-specific jack pine models: relative mean error
and associated 95% tolerance intervals by stem height position. (b) Predictive performance of the
attribute-specific red pine models: relative mean error and associated 95% tolerance intervals by stem
height position.
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Figure 2. (a) End-point predictive performance of the attribute-specific jack pine models: relative
mean error and associated 95% tolerance intervals by stem height position. (b) End-point predictive
performance of the attribute-specific red pine models: relative mean error and associated 95%
tolerance intervals by stem height position.
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3.3. Species-Specific Equation Suites: Full Data Set Parameterizations

In order to yield a set of deployable functional forms reflective of the full data sets,
the final model specifications for each attribute were reparameterized by employing all of
the observations within the respective species-specific data set. Tables 6 and 7 provides
the resultant parameter estimates and associated regression statistics for the final model
forms for jack pine and red pine, respectively. Overall, the parameter values were similar in
terms of their sign and magnitude to those estimated using the calibration data subset for
all attributes irrespective of species (cf. Table 2 with Table 6 for jack pine and Table 3 with
Table 7 for red pine). One notable exception, however, was the retransformed intercept
coefficient for Wd specific to red pine. Contrasting the values for the standard error of
estimate and the index-of-fit metric for the species-specific equations parameterized by the
calibration and the full data sets revealed that the magnitude of the regression statistics
were also comparable (i.e., comparing attribute-specific values for index-of-fit and the
standard error of estimates in Table 2 with those in Table 6 for jack pine, and in Table 3
with those in Table 7 for red pine). Implicitly, these results suggest that the calibration data
subsets arising from the deployed data stratification approach did not comprise model
parameterization efforts given the approximate equivalence of the magnitude and polarity
of the parameter estimates, and overall lack-of-fit measures. To exemplify these resultant
functional forms within the context of the full data sets, the species-specific predicted
attribute trajectories along with the corresponding observed trajectories at each height
position are collectively presented in Figure 3a for jack pine and Figure 3b for red pine.

Table 6. Parameter estimates and associated statistics for the attribute-specific hierarchical mixed-
effects models (Equation (5)) for jack pine parameterized by employing the full data set.

Parameter a, Variable lth Attribute b

Random
Effect, or
Statistic

Wd Ma Me Co Wt Dr Dt Sa

γ′00(l)
388.288446 38.8303099 3.00513354 180.989722 1.79483393 23.4973847 20.181548 391.136373

γ10(l) Db(k) −0.010232 −0.018194 - - −0.009309 0.002499 0.003033 0.005863

β01(l) H(jk) 0.014500 0.014367 - 0.013111 0.017028 −0.012589 0.008874 −0.012625

β02(l) A(jk) −0.002707 - −0.003137 0.001904 - - 0.005290 -

β03(l) D(jk) 0.014592 0.015284 - 0.013774 0.010608 −0.007659 - −0.007233

γ01(l) loge ac(ijk) −0.098281 −0.304199 0.429819 0.236242 0.007304 0.213704 0.051381 0.041435

γ11(l) loge ac(ijk)

(
Db(k)

)
0.003116 - 0.012658 −0.005805 - −0.000802 −0.004719 -

β11(l) loge ac(ijk)

(
H(jk)

)
−0.003501 - - −0.005416 −0.005211 0.001864 −0.004082 0.003982

β12(l) loge ac(ijk)

(
A(jk)

)
0.001774 −0.003414 0.006203 −0.001547 0.000790 −0.000445 −0.001668 -

β13(l) loge ac(ijk)

(
D(jk)

)
−0.005977 0.013726 −0.029339 - −0.002286 0.002370 0.002083 -

γ02(l) ac(ijk) 0.025036 −0.062786 −0.014074 0.028470 0.042719 −0.019253 0.047520 −0.041152

γ12(l) ac(ijk)Db(k) −0.000141 - −0.001064 0.001030 0.000382 0.000258 0.000669 −0.000268

β21(l) ac(ijk) loge H(jk) −0.000059 −0.002695 −0.001656 0.000129 - −0.000329 0.000976 -

β22(l) ac(ijk) loge A(jk) −0.006896 0.014027 −0.017811 - −0.009201 - −0.007398 0.008214

β23(l) ac(ijk) loge D(jk) 0.006007 - 0.034852 −0.012035 - 0.000171 −0.006102 -

γ03(l) a2
c (ijk) −0.000313 0.001479 −0.000041 −0.001087 −0.000779 0.000148 −0.001055 0.000803

γ13(l) a2
c (ijk)Db(k) - 0.000007 - −0.000012 −0.000006 −0.000003 −0.000007 0.000003

β31(l) a2
c (ijk) loge H(jk) −0.000002 0.000006 0.000057 0.000007 0.000005 0.000011 −0.000008 -

β32(l) a2
c (ijk) loge A(jk) 0.000054 −0.000243 - 0.000160 0.000147 - 0.000215 −0.000184

β33(l) a2
c (ijk) loge D(jk) - −0.000178 - 0.000182 0.000063 - 0.000069 -
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Table 6. Cont.

Parameter a, Variable lth Attribute b

Random
Effect, or
Statistic

Wd Ma Me Co Wt Dr Dt Sa

r0(l) 0.00706 0.07143 0.11689 0.02307 0.01364 0.00518 0.00777 0.01221

r1(l) 0.00001 0.00010 0.00013 0.00002 0.00001 0.00001 0.00001 0.00001

r2(l) 0.00190 0.02656 0.03317 0.00634 0.00372 0.00135 0.00228 0.00290

u0(l) 0.00263 0.00788 - - 0.00195 0.00120 0.00019 0.00178

u1(l) 0.00000 - 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000

u2(l) 0.00042 - 0.00201 0.00051 - 0.00022 0.00030 -

SEE c 0.0164 0.0385 0.0501 0.0307 0.0210 0.0155 0.0212 0.0184

I2 d 0.453 0.635 0.703 0.666 0.619 0.696 0.310 0.500
a Transformed estimate for intercept parameter includes the correction factor for the bias introduced via the
logarithmic transformation [31]: γ′00(l)

= EXP(γ00(l) + SEE2/2); parameters and variance components as specified

in Equation (5); b Wd, Ma, Me, Co, Wt, Dr, Dt and Sa denote wood density, microfibril angle, modulus of elasticity,
fibre coarseness, tracheid wall thickness, tracheid radial diameter, tracheid tangential diameter and specific surface
area, respectively; c SEE denotes the standard error of estimate in natural logarithmic units specific to the kth
attribute (Table 1); d I2 is the index-of-fit squared metric (Equation (6)) quantifying the proportion of the total
attribute-specific variation explained by the retransformed model.

Table 7. Parameter estimates and associated statistics for the attribute-specific hierarchical mixed-
effects models (Equation (5)) for red pine parameterized by employing the full data set.

Parameter a, Variable lth Attribute b

Random
Effect, or
Statistic

Wd Ma Me Co Wt Dr Dt Sa

γ′00(l)
313.180593 15.359190 3.770403 270.585194 1.170426 89.030321 27.514304 520.996331

γ10(l) Db(k) 0 −0.013737 0 0 0 0 0 −0.001292

β01(l) H(jk) 0.005431 0.048080 −0.017424 −0.011302 0.009350 −0.047786 −0.007544 −0.005235

β02(l) A(jk) 0.004871 0.016555 −0.009033 0 0.008378 −0.018455 0 −0.006210

β03(l) D(jk) 0 0 0.024345 0.005171 0.003212 0 0 0

γ01(l) loge ac(ijk) −0.026826 −0.725915 1.738930 0.160814 0.201558 −0.161665 −0.006684 −0.045047

γ11(l) loge ac(ijk)

(
Db(k)

)
−0.002055 0.011428 −0.016896 0 0 0.000957 0.000807 0

β11(l) loge ac(ijk)

(
H(jk)

)
0 −0.012962 0 0.002356 −0.002966 0.013393 0.001397 0

1em]
β12(l)

loge ac(ijk)

(
A(jk)

)
−0.001632 0.004372 −0.017648 −0.002496 −0.004297 0.003992 −0.000857 0.001794

β13(l) loge ac(ijk)

(
D(jk)

)
0.002387 0 0 0 0 −0.000023 0 0

γ02(l) ac(ijk) 0.005336 0.224761 −0.315960 0.004785 −0.016126 −0.031129 0.022971 −0.011622

γ12(l) ac(ijk)Db(k) 0.000162 −0.001073 0.001838 −0.000088 0 −0.000128 −0.000118 0

β21(l) ac(ijk) loge H(jk) 0 −0.003416 −0.008310 −0.000648 −0.000159 −0.000326 −0.000011 0.000590

β22(l) ac(ijk) loge A(jk) 0.005815 −0.065351 0.082501 0 0.007401 0.002656 −0.004453 0

β23(l) ac(ijk) loge D(jk) −0.007016 0.022925 −0.018260 0.003435 0 0.005275 0.002167 0

γ03(l) a2
c (ijk) −0.000392 −0.001606 0.002856 −0.001111 −0.000249 0.000215 −0.000860 0.000748

γ13(l) a2
c (ijk)Db(k) −0.000001 0.000005 −0.000013 0.000002 −0.000001 0.000002 0.000002 0

β31(l) a2
c (ijk) loge H(jk) 0.000008 0 0.000089 0.000038 0.000006 0.000006 0.000021 −0.000022

β32(l) a2
c (ijk) loge A(jk) 0.000049 0.000354 −0.000622 0.000281 0.000047 0 0.000208 −0.000158

β33(l) a2
c (ijk) loge D(jk) 0.000050 0 0 −0.000072 0 −0.000075 −0.000041 0
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Table 7. Cont.

Parameter a, Variable lth Attribute b

Random
Effect, or
Statistic

Wd Ma Me Co Wt Dr Dt Sa

r0(l) 0.01451 0.04838 0.07152 0.02089 0.01976 0.01177 0.00700 0.01759

r1(l) 0.00001 0.00019 0.00018 0.00003 0.00002 0.00000 0.00001 0.00002

r2(l) 0.00252 0.02523 0.04559 0.00794 0.00551 0.00117 0.00288 0.00497

u0(l) - - - 0.02709 0.02552 0.01433 0.00007 0.00086

u1(l) - 0.00000 0.00000 - - - - 0.00000

u3(l) 0.00004 - - - - - - 0.00000

SEE c 0.014491 0.036056 0.049900 0.021448 0.017029 0.013416 0.011402 0.013784

I2 d 0.494 0.693 0.343 0.768 0.797 0.799 0.627 0.680
a Transformed estimate for intercept parameter includes the correction factor for the bias introduced via the
logarithmic transformation [31]: γ′00(l)

= EXP(γ00(l) + SEE2/2); parameters and variance components as specified

in Equation (5); b Wd, Ma, Me, Co, Wt, Dr, Dt and Sa denote wood density, microfibril angle, modulus of elasticity,
fibre coarseness, tracheid wall thickness, tracheid radial diameter, tracheid tangential diameter and specific surface
area, respectively; c SEE denotes the standard error of estimate in natural logarithmic units specific to the kth
attribute (Table 1); d I2 is the index-of-fit squared metric (Equation (6)) quantifying the proportion of the total
attribute-specific variation explained by the retransformed model.
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Figure 3. (a) Scatterplots of individual-tree predicted attribute trajectories (green solid squares;
Table 6) and corresponding observed trajectories (tan coloured open squares; full data set) are
collectively presented for each jack pine attribute by relative height class and fixed-stem position
(stump and breast-height (BH)). (b) Scatterplots of individual-tree predicted attribute trajectories
(green solid squares; Table 7) and corresponding observed trajectories (tan coloured open squares;
full data set) are collectively presented for each red pine attribute by relative height class.

4. Discussion
4.1. Cross-Validation Method Deployed and Resultant Explanatory Ability and Predictive
Performance of the Parameterized Whole-Stem Wood Quality Attribute Prediction Models

Analytically, this study deployed an a priori strategic data splitting technique in
order to reduce the presence of significant serial correlation within the attribute sequences
before specifying and parameterizing the models. Essentially, this block cross-validation-
like approach identified the inherent serial correlation pattern within the cross-sectional
temporal attribute sequences and used that knowledge to remove sufficient consecutive
observations so as to reduce its presence without compromising model specification efforts
(sensu [25,26]). More specifically, the method consisted of assessing the magnitude and
pattern of the serial correlation using partial autocorrelation coefficients (i.e., determining
the number of significant correlated temporal lags). Given the resultant lag patterns
observed, all attribute sequences were then systematically reduced through the removal
of two-observation-long blocks sequentially along each attribute sequence (e.g., removal
of the 3rd, 4th and 6th, 7th, and so forth, cohort-age-specific values), yielding an assumed
uncorrelated temporal sequence consisting of the remaining 2nd, 5th, 8th, and so forth,
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cohort-age-specific values. These sequences, when collectively combined by species and
attribute, comprised the data subsets used to specify and parameterize the models. The
removed cohort-age-specific values were then deployed in the creation of corresponding
validation data subsets. Although this approach did not entirely eliminate the presence
of serial correlation, it did substantially decrease its occurrence as reflected by its reduced
presence among first-level residuals following model parameterization (e.g., Tables 4 and 5).
Noteworthy tenets to this approach include the following: (1) although the degree of data
splitting is largely dependent on the serial correlation pattern observed within the temporal
sequences, attention must also be focused on potential specification errors arising from over
removal (e.g., in this study, two out of every three consecutive age-cohort values within each
attribute sequence required removal given the 2-lag serial correlative structure observed
(Table A1)) and (2) block-type cross-valuation-like approaches when applied to time series
data structures do not yield truly independent validation data subsets, and thus reported
predictive performance measures may be inflated. Parametric-based approaches such
as mixed-effects regression analyses with assumed covariance structures (e.g., first-order
autoregressive) or autoregressive moving average modeling techniques may have also
been viable alternative approaches to the data splitting method deployed in this study, in
terms of addressing the inherent serial correlation structure within the attribute sequences
(e.g., [32]). However statistical assumptions regarding error structures and autocorrelative
relationships are required with deployment of these alternative methods and, as such, may
not entirely eliminate data-dependent effects (sensu [25]).

Generally, quantifying the inherent spatiotemporal attribute development patterns at
the whole-stem level along with identifying their underlying physiological, environmental,
biophysical and silvicultural-induced determinates remains an active and increasingly
important area of investigation within the wood quality modeling and carbon accounting
communities. Such research is an essential but challenging prerequisite to addressing
end-product and carbon-retainment forest management objectives. Drew et al. [33], in a
comprehensive review of wood quality modeling efforts, identified a number of successful
empirical-based modeling approaches that have been deployed in quantifying whole-stem
pith-to-bark attribute variability. Although such approaches have been largely concentrated
on coniferous species and focused on describing wood density, microfibril angle, and
modulus of elasticity development patterns and variability, hierarchical mixed-effects
and logarithmic-based models were considered to be among the most promising (see
Table 1 in [33]). Generalized additive mixed models where also found to be successful in
terms of identifying and differentiating the underlying intrinsic and extrinsic determinates
controlling attribute variation.

In this study, the whole-stem cumulative attribute developmental patterns for both
studied pine species were quantified deploying a hierarchical mixed-effects modeling
approach. The resultant models exhibited an adequate level of overall explanatory power
and predictive accuracy as derived from the statistical-based cross-validation analysis. The
jack pine equations explained 46, 66, 74, 63, 59, 72, 42 and 48% of the variation in Wd, Ma,
Me, Co, Wt, Dr, Dt and Sa, respectively, whereas the red pine equations explained 50, 71, 31,
83, 72, 78, 56 and 71% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively.
Although not consequentially different between the species, the equations for red pine were
slightly superior, i.e., explaining 31% to 83% of the variation (mean of 64%) versus 42% to
74% of the variation (mean of 59%) for jack pine. In terms of predictive ability, the relative
tolerance error limits across the 10 relative stem height positions for jack pine ranged from
a minimum of ±11% to a maximum of ±14% (stump) for Wd, ±35% to ±49% (stump) for
Ma, ±28% to ±65% (stump) for Me, ±14% to ±16% (stump) for Co, ±13% to ±19% (stump)
for Wt, ±8% to ±11% (stump) for Dr, ±6% to ±7% for Dt, and from ±11% to ±14% for Sa.
For red pine, the relative tolerance error limits ranged from ±8% to ±10% for Wd, ±26% to
±39% for Ma, ±26% to ±64% (stump) for Me, ±9% to ±16% for Co, ±9% to ±14% for Wt,
±6% to ±11% for Dr, ±4% to ±8% for Dt, and from ±8% to ±14% for Sa. However, the
magnitude of tolerance intervals for prediction error did vary by stem position, more so for
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jack pine than for red pine. Specifically, predictions at the stump position for Wd, Ma, Me,
Co, and Wt for jack pine and Ma for red pine exhibited the largest tolerance interval widths,
suggesting a consistent pattern of decreased predictive ability at the lowest stem position.
Although variation in fibre alignments could affect attribute estimates when determined
via Silviscan-based analyses, and hence may be potentially partially responsible for this
observed pattern, lower model performance for the stump region is not uncommon with
attribute prediction models. For example, wood formation at the base of the stem can be
influenced by mechanical forces such as those arising from wind-induced tree swaying.
This can result in greater attribute variation across the cross-section due to differences in
wood formation patterns (e.g., [34]). Thus, potentially yielding relatively lower levels of
predictive precision when quantified through regression-based modeling methods which
do not account for wood-type variation (e.g., compression and reaction wood types).

The three-level hierarchical mixed-effects whole-tree attribute models developed for
jack pine and red pine in this study were similar in their explanatory power and predictive
accuracy as those previously developed using a two-level hierarchical mixed-effects spatial-
invariant model specification for black spruce and jack pine ([7,9], respectively). For
example, contrasting the proportion of variation described by the equations among the
species-specific models suggested approximate equivalency: (1) three-level models for jack
pine developed in this study explained 62, 55, 71, 71, 71 49, 16 and 64% of the variation
in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively, at the breast-height position (Table 4)
versus 60, 55, 71, 75, 71, 49, 38 and 66% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and
Sa, respectively, for the two-level jack pine models (Table 3 in [9]), and (2) and 74, 72, 74,
62, 63, 88, 70 and 61% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively,
for the two-level black spruce models (Table 3 in [7]). Likewise, contrasting the among
of variation explained for the three-level red pine models (i.e., 61, 51, 82, 81, 72, 76, 72
and 68% of the variation in Wd, Ma, Me, Co, Wt, Dr, Dt and Sa, respectively, at the 7.5%
relative height position (Table 5)) with that for the two-level jack pine and black spruce
models, revealed a similar range for explanatory abilities among the species-specific models.
In terms of prediction ability, contrasting the breast-height positional results among the
species-specific models also suggested approximate equivalency. Specifically, examining the
tolerance intervals for relative error at the breast-height position produced by the three-level
hierarchical jack pine models with respect to those produced from the previous developed
spatially invariant (breast-height position) two-level hierarchical models, revealed similar
predictive abilities, i.e., 95% of all future relative errors for Wd, Ma, Me, Co, Wt, Dr, Dt and Sa
were bounded within a ±12, ±42, ±34, ±14, ±13, ±9, ±7 and ±11% interval, respectively,
when using the three-level model specifications (i.e., values reported for breast-height;
Table 4) versus the ±12, ±42, ±35, ±12, ±13, ±9, ±5 and ±11% intervals for Wd, Ma, Me,
Co, Wt, Dr, Dt and Sa, respectively, generated using the two-level model specifications
(Table 3 in [9]). The tolerance intervals for the three-level hierarchical models for red pine
were also comparable to those for jack pine when predicting approximate breast-height
estimates for 7 of the 8 attributes (Me being the expectation), i.e., 95% of all future relative
errors for Wd, Ma, Me, Co, Wt, Dr, Dt and Sa were bounded within a ±9, ±37, ±64, ±14,
±12, ±11, ±5 and ±10% interval (i.e., values reported at the 7.5% relative height position;
Table 5).

Notably, across the three conifers for which such comparable attribute equations
and statistics exist, the predictive performance metrics suggested a similar differentiation
among attributes (Tables 4 and 5 in this study for jack pine and red pine, respectively, for the
three-level models; Table 3 in [7] for the two-level black spruce models; and Table 3 in [9]
for the two-level jack pine models): Wd, Co, Wt, Dr, Dt and Sa >> Ma and Me. The consistent
attribute ranking in terms of predictive performance presents an inherent challenge when
attempting to model the development patterns of this latter set of key end-product-related
determinates, i.e., microfibril angle and the modulus of elasticity. Examination of the degree
of relative variation among these attributes within the Silviscan data sets for black spruce
(Table 1 in [7], jack pine (Table S2a) and red pine (Table S2b), as quantified by the coefficient
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of variation, suggest that these attributes are intrinsically more variable than the other six
attributes examined.

According to the predicted trajectories as displayed within the context of the full data
(i.e., Figure 3a for jack pine and Figure 3b for red pine), the trajectories were in general
concordance with the observed trajectories in terms of mirroring the overall nonlinear
polymorphic temporal trends within the cross-sectional disks, irrespective of height posi-
tion, attribute or species. Similar to the validation assessment results, the least degree of
concordance was observed within the wood density, microfibril angle, modulus of elasticity
and fibre coarseness trajectories, particularly within the cross-sectional disks located within
the lower bole region. Although predicted spatiotemporal development patterns were
similar between the species irrespective of attribute, at a given height position, jack pine
exhibited a greater degree of nonlinearity in the Wd and Dt trajectories, whereas red pine
exhibited a greater degree of nonlinearity in the Ma, Me, Co, Wt, Dr, and Sa trajectories.
However, for both species and irrespective of attribute, the greatest degree of nonlinearity
occurred before a cambial age of approximately 30 years.

Overall, the predicted and observed trajectories throughout the stem of both species
were similar to those reported for jack pine at the breast-height position [9]. Likewise,
the significance of the tree-level size variable (diameter at breast-height) introduced at
the third hierarchical level across all the attributes (i.e., Tables 2 and 3) reconfirms and
expands the size-dependence inference previously reported for black spruce and jack pine
with respect to breast-height-based cumulative attribute developmental trajectories ([7,9],
respectively). Although not shown, size-dependent attribute trajectory differences for
the models parameterized using the entire data sets (Tables 6 and 7) were most evident
at the lower relative stem height positions (<30%). For example for red pine, within the
stump height to breast-height region, wood density and the modulus of elasticity exhibited
an inversely correlative relationship with tree size, whereas microfibril angle exhibited a
directly correlative relationship. This suggests that the solid wood producing potential
of logs extracted from the lower stem of larger diameter trees would yield lower quality
wood products relative to such logs extracted from smaller diameter trees.

In summary, based on the graphical assessments and statistical metrics related to
residual error patterns, goodness-of-fit, lack-of-fit and predictive performance, which
were devoid of evidence suggesting the presence of systematic biases, misspecification
or unacceptable predictive ability, the resultant parameterized models were considered
unbiased predictors and correctly specified quantitative descriptors of the spatiotemporal
whole-stem cumulative attribute developmental patterns, for these two pine species.

4.2. Analytical Approaches to Quantifying Whole-Stem Attribute Distributions: Annual
Ring-Specific Prediction Models and Composite Modeling Approaches

Historically, the analytical approaches utilized in the quantification of within-stem
attribute variation arising from innovative advancements in attribute determination meth-
ods, such as X-ray densitometry, Silviscan and near-infrared spectroscopy, have included
descriptive graphical interpolation methods (e.g., [6,10,35,36]) and empirical prediction
modeling (e.g., [37–40]). With respect to prediction modeling, one of the earlier attempts
to develop within-stem wood attribute prediction models for conifers were those of Iko-
nen et al. [38]. They developed a non-spatial empirical ring-based model for estimating
wood density within the stems of Scots pine (Pinus sylvestris L.) and Norway spruce
(Picea abies (L.) Karst.) using early wood percentage indirectly estimated from ring width
and cambial age as explanatory variables. Their models explained approximately 40% of
the variation in wood density. They also integrated the models within a process-based
growth and yield model in order to simulate how site occupancy regulation (thinning) and
varying climate change conditions could affect wood density and its within-stem distribu-
tion at rotation age. Development of spatially explicit models followed somewhat later, as
exemplified by Deng et al. [39], who specified and parameterized a mixed-effects regression
model for predicting wood density variation within Masson pine (Pinus massoniana Lamb.)
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stems. Their model utilized tree age, tree size (diameter at breast-height) and relative stem
height position as independent variables in order to predict cross-sectional mean wood den-
sity at any stem position within a tree of given age and size. The resultant model explained
approximately 91% of the variation in mean cross-sectional wood density. Furthermore,
in order to predict specific gravity at the annual ring level throughout the entire stem of
loblolly pine trees, Dahlen et al. [41] parameterized a fixed-effects whole-tree regression
model specification deploying cambial age and stem height as independent variables. The
resultant model was able to describe approximately 55% of the variation in the dependent
variable and, when combined with a taper equation, was able to generate interpolated
whole-tree property maps for this specific attribute and species. Notably, the addition of
annual ring width to potentially account for growth increases arising from silvicultural
treatments such as thinning within the model specification did not consequentially im-
prove the overall explanatory ability of the resultant prediction model. Similarly, for the
same species and deploying a similar model specification inclusive of positional effects
(stem height), Dahlen et al. [42] presented a spatially explicit model for predicting annual
ring-specific tracheid width. The resultant model, which described 57% of the variation in
tracheid width, was then used to project 25-year section-specific rotational estimates and
associated property maps under an assortment of timber production scenarios.

More generally, individual annual ring attribute values can vary dramatically within
cross-sectional sequences due to intrinsic ontogenetic wood formation processes and a
broad array of extrinsic naturogenic and anthropogenic influences (e.g., annual varia-
tion in growing conditions, silvicultural treatment effects, climate change). Variation in
attribute-specific phenotypic plasticity arising in response to external stimuli can also be a
confounding source of unexplained variation when quantifying attribute developmental
patterns. For example, development of dense compression wood on the leeward side versus
formation of less dense reaction wood on the windward side within lower stem regions
is a common occurrence within trees subjected to high wind-induced forces (e.g., [34]).
Consequently, development of annual ring-specific attribute prediction models that can
deliver a high level of explanatory power and predictive ability has been challenging.

In an attempt to minimize such variation when quantifying attribute development
patterns within coniferous forest tree species, mean-based approaches have also been ad-
vanced. These have included the cross-sectional mean metric utilized by Deng et al. [39] and
the cumulative annual ring-area-weighted moving average metric utilized by Newton [7–9].
This latter metric is a measure of central tendency that is reflective of an attribute’s historical
development pattern. Although inherent variability is reduced with the deployment of
such a metric, the resultant attribute development trajectories can retain their complex
polymorphic-like nonlinear curve shapes, which can be analytically challenging to quantify
(e.g., see Figures 1 and 4 in [7]). However, the ability of the Hoerl model to describe such
a wide array of complex unimodal nonlinear trends, as exemplified by Daniel and Wood
(Figure 3.4 in [43]), renders it an analytical consideration when modeling fibre attribute
trajectories. Even though the model has not been widely used in forestry, it has been
successfully utilized in the development of a generic diameter inside a bark prediction
equation [44], a diameter growth equation [45], and by the author in the development of
spatial-invariant attribute models for black spruce and jack pine (i.e., [7,9], respectively).
Such success bodes well for its continued consideration when modeling attribute develop-
ment and tree growth trajectories.

Furthermore, the deployment of the cumulative annual ring-area-weighted moving
average metric within the context of the tri-level hierarchical equations developed in this
study provides a unique perspective in terms of end-product potential. Specifically, this
composite metric for a given attribute reflects the collective end-product potential at a given
cambial age and stem location for a tree of specified size, when product-specific design
and associate grading specifications are known. The extraction of solid wood products is
usually spatially invariant and dimensional-dependent with limited grade class delineation
when sawlogs are processed by conventional SPF-based sawmilling protocols. Although
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visual grading is of utility in terms of classifying dimensional lumber into grade classes
(e.g., Select Structural, No. 1, No. 2, No. 3, and Economy; [46]) when using such attributes
as knot size, grain deviation, degree of wane and presence of decay, more precise spatial-
based zonal differentiation of internal wood fibre attributes remains elusive. By contrast,
however, machine stress-rated (MSR) grading guidelines for SPF lumber include specific
wood attribute thresholds [47], i.e., wood density and static modulus of elasticity ranges by
grade class. Although the assumption of absolute equivalency between Silviscan-based
dynamic modulus of elasticity estimates within standing trees and the static modulus
of elasticity within extracted dimensional lumber is not fully tenable (sensu [48]), an
approximate inferential classification framework system can nevertheless be derived based
on the Silviscan-based attribute estimates predicted by the equations presented in this study.
Hence, by deploying the cumulative attribute moving average estimates for wood density
and the modulus of elasticity of a given standing tree or extracted log, the grade class of
potentially extractable lumber can be approximated. This ability to generate rotational
end-product potentials at the log, tree and stand levels given stem position-specific attribute
predictions enables inferences to be drawn with respect to end-product outcomes for the
entire harvestable stem. Exemplifications of such will be presented in the companion
contribution (i.e., [14]).

4.3. Biomechanical Linkages and Potential Consequences for Whole-Stem Attribute Modeling

The plasticity of excurrent forest tree species in terms of adjusting their morphology
and allometry to accommodate environment-induced stresses enables them to successfully
adapt to resource-limiting and space-restricted growing environments. This plasticity
not only includes changes in height–diameter allometry to accommodate gravity-induced
self-loading forces, but also extends to changes in the temporal and spatial developmental
patterns of within-stem fibre attributes in order to accommodate wind-induced bending
and twisting forces [49].

These biomechanical adaptions yield flexible tree stems that can tolerate an impressive
degree of stress and strain before stem breakage or uprooting occurs. Generally, increasing
buttresses within the lower stem region partially mitigates the effect of gravitational forces
acting on the root system and improves overall stability. For example, as the ratio of
the breast-height diameter to root collar diameter decreases, resistance to snapping and
uprooting increases (sensu [50]). Likewise, decreasing stiffness with increasing height
increases stem flexibility, which allows trees to systematically dissipate wind-induced
crown-based drag forces [51]. Although the likelihood of structural failure or uprooting
during high velocity wind events is reduced, the probability of physical interaction among
neighboring trees increases. The resultant frictional interactions within forest stands can
lead to crown damage and associated foliar biomass losses (crown shyness), which may
ultimately result in tree mortality patterns analogous to those observed during the self-
thinning phase (i.e., asymmetric size-dependent mortality). Spatially, the stem region
subjected to the most intense wind-induced bending forces is located slightly above the
buttressed region (e.g., [50]). Although the probability of breakage is relatively high within
this region, changes in the anatomical characteristics of xylem tissue within the stem
may confer an advantage in terms of lowering the likelihood of mechanically induced
stem failure.

The unique characteristics of this study in terms of the presentation and quantification
of whole-stem attribute distribution patterns for two intensively managed coniferous
species provide an opportunity to examine possible biomechanical linkages, and how they
may be potentially leveraged to improve future whole-stem attribute models. For example,
examination of the vertical distribution of the attributes that underlie the structural integrity
of standing coniferous stems revealed a consistent vertical distributional pattern for the
studied jack pine and red pine trees (Tables S2a and S2b, respectively): (1) wood density
decreased linearly with increasing height; (2) modulus of elasticity increased from the
stump to a relative height of approximately 30%, and thereafter linearly declined with
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increasing stem height; and (3) the highest wood density and modulus of elasticity values
occurred within the 20%–40% relative height region. Similarly, the whole-stem model-
based projections for these species, as exemplified in the companion contribution, were also
congruent with such trends (i.e., [14]). Other studies, such as that of Waghorn [52], who
examined the longitudinal (vertical) variation in the dynamic modulus of elasticity within
radiata pine (Pinus radiata D. Don) trees across a gradient of initial spacings and a mixture
of genotypes, observed similar patterns: stiffness values increased from the stump upward,
attaining maxima across the 15%–45% relative height range (maximizing on average at the
relative height of 27%), and then declined systematically with increasing stem height until
the stem apex was reached. These longitudinal stiffness trends were consistent across all
five initial spacing treatments and five genotypes examined. Likewise, based on in-forest
elasticity–stem height measurements for standing Sitka spruce (Picea sitchensis (Bong.))
trees, Brüchert and Gardiner [51] revealed a nonlinear declining trend with increasing stem
height (e.g., as reflected by a second-degree polymorphic regression equation specification).

Conceptually, the concentration of maximum stem stiffness within the lower stem
region is suggestive of a morphological plastic response for mitigating the effects of gravi-
tational and wind-induced bending and twisting forces. Examination of the distribution
of the density-specific stiffness ratio, which has also been used to quantify a tree stem’s
ability to withstand such stresses (sensu [53]), also revealed its maximization within the
20%–40% relative height region when calculated for the pine species examined in this
study (i.e., Me/Wd ratios as calculated from the observed height-specific mean attribute
values as presented in Table S2a for jack pine and Table S2b for red pine). Although
these empirical exemplifications employed the observed sample-based mean values, the
attribute equations could likewise be of utility in biomechanical and allometric scaling
analyses given their ability to generate longitudinal density-specific stiffness profiles for
the entire stem. Size-dependent effects on within-stem density-specific stiffness profiles
could also be assessed given the tertiary nature of the attribute model specifications pre-
sented. Tangentially, it is also worthwhile to note that for a number of excurrent boreal
coniferous species (e.g., balsam fir (Abies balsamea (L.) Mill.), black spruce and white spruce
(Picea glauca (Moench) Voss)), the 20%–40% relative stem height region is also the point
where the center of gravity of the standing stem occurs (i.e., 30% relative height po-
sition [54]). According to the associated paracone stem profile model developed by
Forslund [55], approximately 50% of a stem’s volume would be expected to be concentrated
within this lower stem region. Thus, combining this volumetric inference with a lower
stem stiffness prediction could yield a partial estimate of end-product potential of standing
trees. For example, deploying the sample values for wood density and the modulus of
elasticity for jack pine and red pine for the lower bole region (≤≈30% relative height;
Tables S2a and S2b, respectively) infers that approximately 50% of the stem mass (volume)
would be conducive to the production of solid wood end-products. Specifically, given
mean wood density and stiffness values are 432 kg/m3 and 12.4 GPa, respectively, for jack
pine, and 407 kg/m3 and 11.8 GPa, respectively, for red pine, suggests that at least 50% of
the harvested stem volume would be capable of yielding dimension lumber products upon
sawmill processing (sensu [47]).

Acknowledging plausible environmental–biomechanical relationships that may influ-
ence attribute spatial distributions within tree stems may be of utility when considering
new covariates for potential inclusion in future whole-stem attribute prediction models. For
example, incorporating surrogate variables that are reflective of environmental causal-based
determinates such as gravitational and wind-induced forces that underlie longitudinal stiff-
ness distributions (e.g., slenderness ratio (height–diameter ratio)), may improve predictive
performance. Appreciating potential linkages between within-stem attribute patterns and ap-
plicable biomechanical axioms may be advantageous when developing whole-stem attribute
prediction models in the future, particularly in terms of reducing the degree of empiricism, in-
creasing model generality, and potentially establishing functional linkages between tree-level
within-stem attribute distributions and stand-level environment-based determinates.
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4.4. Advancing Whole-Tree Attribute Modeling and Evolving Research Opportunities

Analytically, the ability of the tertiary-level hierarchical mixed modeling framework
to describe temporal attribute developmental patterns throughout the entire main stem of
individual trees by size class provides an inferential framework for evaluating end-product
potential at the whole-tree level. For example, deploying the resultant models within
pre-harvest end-product forecasting surveys, post-harvest fibre segregation operations
or crop planning decision-support systems enables the estimation of log-specific end-
product potential throughout the entire vertical (height) and horizontal (diameter) stand-
level structural dimensions. Although the previously developed two-level hierarchical
models were of consequential utility in estimating attributes at breast-height and inferring
associated end-product potential for the first-order extractable log within a tree of given
size (e.g., [9]), the three-level attribute models provide a whole-stem and hence multi-log
description of rotational end-product potential for a tree of specified size. Operationally,
this additional knowledge enriches and improves end-product forecasting in terms of
providing the foundation for optimal log segregation and allocation decision making,
hence potentially yielding logistical and economic efficiency gains within the upper portion
of the forest products supply chains for these species.

Quantifying size-dependent developmental trends of commercially relevant fibre
attributes throughout the entire stem profile of excurrent coniferous species is an analyti-
cally challenging endeavor. Nevertheless, such relationships are essential prerequisites to
projecting end-product potentials from pre-harvest forest inventory surveys, addressing
value-based crop planning objectives and spatial delineation of extractable end-products
using resultant whole-stem attribute property maps. This enables the optimization of
log segregation and allocation decision making at the time of harvest, e.g., differentiat-
ing logs according to their end-product potential (e.g., dimensional lumber derivatives
versus pulp and paper products) and directing them to the most applicable conversion
centre (e.g., sawmill or pulp and paper mills). Furthermore, when attribute equations
are combined with traditional inventory metrics or incorporated within crop planning
models, the generated stand level estimates can be used to inform forest management
planning decision making (e.g., determining optimal rotation ages or density management
regimes that maximize the production of solid wood end-products; sensu [14]). The ability
to estimate the type, quantity and quality of harvestable wood products extracted from
the entire merchantable stem of jack pine and red pine trees may also be of consequential
utility when evaluating competing crop plans on their long-term carbon storage potential
(sensu [56]).

5. Conclusions

The ability to address value-based forest management objectives is partially dependent
on the access to allocation, segregation and crop planning tools that can provide tree-level
end-product estimates. Given that the type and quality of end-products extracted from
individual trees are intrinsically related to internal wood quality attributes, this study
formulated, parameterized and validated a suite of spatiotemporal whole-stem predic-
tion models for estimating a suite of such attributes at any given stem height position
for two intensely managed coniferous species, jack pine and red pine. These models
extend the previously developed spatially invariant (breast-height-only) models by en-
abling spatially explicit forecasting of end-product potential throughout the entire tree
stem. Analytically, the resultant species-specific equation suites generated unbiased and
relatively precise whole-stem predictions of wood density, microfibril angle, modulus
of elasticity, fibre coarseness, tracheid wall thickness, tracheid radial diameter, tracheid
tangential diameter and specific surface area. These modeled attributes were considered
among the most important xylem-based determinates underlying end-product potential.
Consequently, the resultant relationships could find utility in generating pre-harvest and
post-harvest end-product forecasts, enhancing crop planning decision-support models,
and possibly addressing shortcomings in existing inventory-based carbon sequestration
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and retainment accounting models. Furthermore, the inferred allometric and biomechan-
ical linkages with respect to environment-based determinates (gravitational and wind-
induced forces), which affect within-stem wood density and stiffness distributions, sug-
gest more causal-driven specifications are possible when developing future whole-stem
wood attribute models.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f14112211/s1, This file includes four tables providing species-
specific descriptive statistical summaries for the deployed sample data sets, i.e., stem-based mensu-
rational and attribute characteristics by relative height sampling position. Note, the specific contents
of each table are self-evident by its title: (1) Table S1a was entitled “Cross-sectional position-based
mensurational metrics for the 610 jack pine disk samples”; (2) Table S1b was entitled “Cross-sectional
position-based mensurational metrics for the 223 red pine disk samples”; (3) Table S2a was entitled
“Descriptive statistical summary of the jack pine fibre attributes by cross-sectional relative height sam-
pling position”; and (4) Table S2b was entitled “Descriptive statistical summary of the red pine fibre
attributes by cross-sectional relative height sampling position”.
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Appendix A

Table A1. Preliminary autocorrelation analysis: number (n) and percentage (%) of cross-sectional
cumulative moving average attribute sequences exhibiting significant (p ≤ 0.05) autocorrelation by
attribute, lag and species as determined by the partial autocorrelation coefficients.

Species Lag
(Year)

Attribute a

Wd Ma Me Co Wt Dr Dt Sa
n % n % n % n % n % n % n % n %

Jack 1 591 96.9 610 100.0 610 100.0 604 99.0 604 99.0 609 99.8 534 87.5 597 97.9
pine 2 119 19.5 13 2.1 13 2.1 179 29.3 129 21.1 80 13.1 92 15.1 160 26.2

(n = 610) 3 37 6.1 0 0.0 1 0.2 17 2.8 14 2.3 7 1.1 16 2.6 35 5.7
Red 1 215 96.4 222 99.6 221 99.1 223 100.0 220 98.7 221 99.1 223 100.0 220 98.7
pine 2 41 18.4 0 0.0 3 1.3 21 9.4 19 8.5 5 2.2 21 9.4 27 12.1

(n = 223) 3 7 3.1 0 0.0 0 0.0 5 2.2 7 3.1 2 0.9 7 3.1 12 5.4
a Wd, Ma, Me, Co, Wt, Dr, Dt and Sa denote wood density, microfibril angle, modulus of elasticity, fibre coarse-
ness, tracheid wall thickness, tracheid radial diameter, tracheid tangential diameter and specific surface area,
respectively.

https://www.mdpi.com/article/10.3390/f14112211/s1
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Figure A1. Cont.
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Figure A1. Attribute-specific observed versus predicted value scatterplots for jack pine by relative 
stem height class: (a) wood density; (b) microfibril angle; (c) modulus of elasticity; (d) fibre coarse-
ness; (e) tracheid wall thickness; (f) tracheid radial diameter; (g) tracheid tangential diameter; and 
(h) specific surface area. Notes: (1) diagonal solid red line denotes the line of equivalence (y = x); and 
(2) BH denotes breast-height (1.3 m). 
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Figure A1. Attribute-specific observed versus predicted value scatterplots for jack pine by relative
stem height class: (a) wood density; (b) microfibril angle; (c) modulus of elasticity; (d) fibre coarse-
ness; (e) tracheid wall thickness; (f) tracheid radial diameter; (g) tracheid tangential diameter; and
(h) specific surface area. Notes: (1) diagonal solid red line denotes the line of equivalence (y = x); and
(2) BH denotes breast-height (1.3 m).
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Figure A2. Attribute-specific observed versus predicted value scatterplots for red pine by relative 
stem height class: (a) wood density; (b) microfibril angle; (c) modulus of elasticity; (d) fibre coarse-
ness; (e) tracheid wall thickness; (f) tracheid radial diameter; (g) tracheid tangential diameter; and 
(h) specific surface area. Note, the diagonal solid red line denotes the line of equivalence (y = x). 
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Figure A2. Attribute-specific observed versus predicted value scatterplots for red pine by relative
stem height class: (a) wood density; (b) microfibril angle; (c) modulus of elasticity; (d) fibre coarse-
ness; (e) tracheid wall thickness; (f) tracheid radial diameter; (g) tracheid tangential diameter; and
(h) specific surface area. Note, the diagonal solid red line denotes the line of equivalence (y = x).
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