Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (553)

Search Parameters:
Keywords = calcium transient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1040 KB  
Article
Functional Phytochemicals Cooperatively Suppress Inflammation in RAW264.7 Cells
by Kaori Terashita, Masato Kohakura, Katsura Sugawara, Shinichi Miyagawa and Gen-ichiro Arimura
Nutrients 2026, 18(3), 376; https://doi.org/10.3390/nu18030376 - 23 Jan 2026
Viewed by 222
Abstract
Background: Chronic inflammation contributes to the development of lifestyle-related diseases, and dietary phytochemicals are recognized as important modulators of inflammatory responses. However, the synergistic anti-inflammatory effects of phytochemical combinations and their underlying mechanisms remain insufficiently understood. Methods: The anti-inflammatory activities of menthol (ME), [...] Read more.
Background: Chronic inflammation contributes to the development of lifestyle-related diseases, and dietary phytochemicals are recognized as important modulators of inflammatory responses. However, the synergistic anti-inflammatory effects of phytochemical combinations and their underlying mechanisms remain insufficiently understood. Methods: The anti-inflammatory activities of menthol (ME), 1,8-cineole (CI), β-eudesmol (EU), and capsaicin (CA) were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pro-inflammatory gene expression was quantified by quantitative PCR, intracellular Ca2+ signaling was assessed by calcium imaging, and the involvement of transient receptor potential (TRP) channels was examined using selective inhibitors. Synergistic effects were analyzed based on changes in half-maximal effective concentrations (EC50). Results: All compounds suppressed LPS-induced pro-inflammatory genes, including tumor necrosis factor-alpha (Tnf) and interleukin-6 (Il6), in a dose-dependent manner, with CA showing the lowest EC50 for Tnf expression (0.087 µM). Notably, combinations of CA with ME or CI exhibited strong synergy, reducing their EC50 values by 699-fold and 154-fold, respectively, without cytotoxicity. These effects likely resulted from the synergic interaction between ME/CI-induced TRP-mediated signaling and CA-activated, TRP-independent signaling. Conclusions: Specific combinations of plant-derived functional components can markedly enhance anti-inflammatory efficacy, supporting dietary strategies that harness multiple phytochemicals for inflammation control and disease prevention. Full article
Show Figures

Figure 1

19 pages, 2842 KB  
Article
Signaling Pathway Analysis and Downstream Genes Associated with Disease Resistance Mediated by GmSRC7
by Aoga Li, Chongyang Yao, Ting Yan, Xiaomin Hao, Dongying Geng, Qi Zhang, Hui Li, Wenquan Bao and Yue Bai
Plants 2026, 15(2), 318; https://doi.org/10.3390/plants15020318 - 21 Jan 2026
Viewed by 162
Abstract
GmSRC7 is a broad-spectrum antiviral R gene from soybean, but its downstream and functionally related genes remain unclear. Virus-induced gene silencing (VIGS) assays in Nicotiana benthamiana (Nb) showed that suppression of several gene families—WRKY transcription factors, chaperones, ethylene pathway components, MAPK [...] Read more.
GmSRC7 is a broad-spectrum antiviral R gene from soybean, but its downstream and functionally related genes remain unclear. Virus-induced gene silencing (VIGS) assays in Nicotiana benthamiana (Nb) showed that suppression of several gene families—WRKY transcription factors, chaperones, ethylene pathway components, MAPK cascade elements, salicylic acid (SA) signaling genes, calcium-dependent protein kinases, nuclear migration proteins, RNA replication-related genes, and immune regulators—consistently weakened GmSRC7-mediated resistance to Soybean Mosaic Virus (SMV) and Tobacco Mosaic Virus (TMV). Targeted silencing of four regulatory genes—NbEDS1, NbARF1, NbSGT1, and NbCOI1—markedly enhanced GmSRC7-mediated resistance to SMV and TMV in our experiments. Silencing the serine/threonine kinase gene NbPBS1 increased GmSRC7-conferred resistance to SMV but did not significantly alter its resistance to TMV. Transient expression assays showed that NbARF1, NbSGT1, and NbCOI1 antagonize GmSRC7-mediated defense against SMV and TMV, whereas NbPBS1 specifically suppresses anti-SMV activity without affecting TMV resistance. Transient overexpression of SA-degrading enzymes (AtS3H, AtS5H, and NahG) significantly reduced GmSRC7-conferred resistance to SMV, indicating that SA is essential for this R protein-mediated defense. Genes were also grouped by immune pathways and function: co-expression of chaperone family genes inhibited GmSRC7 activity against SMV and TMV, while co-expression of WRKY family genes enhanced anti-SMV activity of GmSRC7. Finally, transient silencing of soybean genes GmEDS1, GmSGT1-1, GmSGT1-2, GmJAR1, and GmSGS3 compromised GmSRC7-mediated resistance to SMV. Full article
(This article belongs to the Special Issue Advances in Plant Molecular Biology and Gene Function)
Show Figures

Figure 1

14 pages, 3029 KB  
Article
TRPA1 as a Key Regulator of Keratinocyte Homeostasis and Inflammation in Human Skin
by Caterina Cattani, Claudia Scarponi, Martina Morelli, Kilian Eyerich, Stefanie Eyerich, Christian Napoli, Stefania Madonna, Cristina Albanesi, Andrea Cavani and Fernanda Scopelliti
Cells 2026, 15(2), 192; https://doi.org/10.3390/cells15020192 - 20 Jan 2026
Viewed by 196
Abstract
The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is a non-selective cation channel activated by a range of physical and chemical stimuli. While primarily studied in neuronal tissues, TRPA1 is also expressed in human keratinocytes, where its role remains poorly understood. Here, we [...] Read more.
The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is a non-selective cation channel activated by a range of physical and chemical stimuli. While primarily studied in neuronal tissues, TRPA1 is also expressed in human keratinocytes, where its role remains poorly understood. Here, we investigated TRPA1 expression and function in keratinocytes and examined the effects of its activation on cellular proliferation, immune activation, and neuropeptide release under both basal and inflammatory stimuli. TRPA1 expression was detected in basal keratinocytes and was upregulated by pro-inflammatory cytokines. Stimulation with the TRPA1 agonist allyl isothiocyanate (AITC) induced a rapid calcium influx, confirming functional channel activity. AITC at 5 µM did not induce cytotoxicity but significantly reduced keratinocyte proliferation and caused cell cycle arrest. Under stimulation with TNF-α and IFN-γ, TRPA1 activation decreased the surface expression of HLA-DR and ICAM-1, and downregulated mRNA levels of CXCL10, CXCL8, CCL5, and CCL20, while IL-6 expression remained unchanged. Furthermore, AITC treatment reduced the secretion of Substance P, but not CGRP. These findings indicate that TRPA1 functions as a cytokine-inducible, immunomodulatory receptor in human keratinocytes, capable of attenuating proliferation and inflammatory activation without compromising cell viability, thereby suggesting a potential role in maintaining skin homeostasis and modulating cutaneous inflammation. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

25 pages, 5672 KB  
Article
Euphorbia bicolor Xylene Extract Induces Mitochondrial and Endoplasmic Reticulum Stress-Mediated Apoptotic Pathways in MDA-MB-231 and T47D Cells
by Mafia Mahabub Rumpa, Nguyen Linh Ngo and Camelia Maier
Int. J. Mol. Sci. 2026, 27(2), 962; https://doi.org/10.3390/ijms27020962 - 18 Jan 2026
Viewed by 151
Abstract
Breast cancer is a significant cause of death worldwide. Recent research has focused on identifying natural compounds for developing effective cancer treatments. Resiniferatoxin, a transient receptor potential vanilloid 1 (TRPV1) agonist, is a common diterpene in Euphorbia bicolor Engelm. & A. Gray (Euphorbiaceae), [...] Read more.
Breast cancer is a significant cause of death worldwide. Recent research has focused on identifying natural compounds for developing effective cancer treatments. Resiniferatoxin, a transient receptor potential vanilloid 1 (TRPV1) agonist, is a common diterpene in Euphorbia bicolor Engelm. & A. Gray (Euphorbiaceae), a plant native to the southern United States that has not been studied before. We investigated the antiproliferative activities and mechanisms of action of E. bicolor xylene extract in estrogen receptor-positive T47D and triple-negative MDA-MB-231 cell lines. The extract significantly reduced the viability of T47D and MDA-MB-231 cells in a dose-dependent manner. In MDA-MB-231 cells, the extract induced apoptosis via intracellular calcium overload, triggered by TRPV1 activation. This effect was diminished by the TRPV1 antagonist capsazepine and the calcium chelator BAPTA-AM. Intracellular calcium influx was confirmed through Fura-2 AM staining, revealing that E. bicolor phytochemicals activated TRPV1 in MDA-MB-231 cells. Treatment of T47D cells with E. bicolor xylene extract resulted in apoptosis associated with reactive oxygen species (ROS) generation (10-fold higher in T47D cells than in MDA-MB-231 cells) and mitochondrial calcium overload. These effects were significantly blocked when cells were pretreated with N-acetyl-l-cysteine (NAC), a ROS inhibitor. Both cell lines underwent apoptosis via multiple mitochondrial- and endoplasmic reticulum stress–mediated pathways. This was supported by the activation of caspases 3, 8, and 9; increased expression of FAS, XBP1s, and CHOP; upregulation of BAX; and downregulation of BCL-2. In addition, PI3K, AKT, and pAKT protein expressions were also reduced in both cell lines, indicating downregulation of PI3K/Akt signaling pathway. Phytochemicals in E. bicolor xylene extract could become promising ingredients for developing breast cancer therapeutics. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

16 pages, 3088 KB  
Article
Defect-Selective Luminescence in Hydroxyapatite Under Electron and Gallium Ion Beams
by Verónica J. Huerta, Fabián Martínez, Hanna M. Ochoa, Olivia A. Graeve and Manuel Herrera-Zaldívar
Materials 2026, 19(2), 321; https://doi.org/10.3390/ma19020321 - 13 Jan 2026
Viewed by 160
Abstract
We report a defect-selective luminescence response in calcium-deficient hydroxyapatite (HAp) induced by electron and ion irradiation. Compacted HAp pellets prepared from hydrothermally grown nanofibers were investigated to analyze defect-related luminescence using photoluminescence (PL) and cathodoluminescence (CL) techniques, both before and after compaction. Low-energy [...] Read more.
We report a defect-selective luminescence response in calcium-deficient hydroxyapatite (HAp) induced by electron and ion irradiation. Compacted HAp pellets prepared from hydrothermally grown nanofibers were investigated to analyze defect-related luminescence using photoluminescence (PL) and cathodoluminescence (CL) techniques, both before and after compaction. Low-energy electron beam irradiation (15 keV) produced a two-stage luminescent response, an initial enhancement arising from field-assisted activation of OH-channel vacancies (VOH and VOH + Hi), followed by an exponential decay attributed to defect annealing. Monochromatic transient CL measurements show that this rise–decay behavior is selective to the OH-related bands at 2.57 and 2.95 eV, whereas the 3.32 and 3.67 eV emissions exhibit only a monotonic exponential decay. The corresponding decay constants further indicate that the activated OH-channel vacancies anneal more rapidly than the other centers, consistent with their higher electron-capture probability and lower structural stability. In contrast, Ga+ ion irradiation (30 keV, 1.4 × 10−13 A/µm2) induced progressive monotonic luminescence quenching, primarily driven by selective annealing of oxygen vacancies in PO43 groups. These complementary pathways, electron-induced activation and ion-driven suppression, demonstrate that irradiation serves as a versatile tool for defect engineering in hydroxyapatite. Beyond providing fundamental insights into vacancy stability, these results open new routes for tailoring the optical, sensing, and bioimaging functionalities of HAp through controlled irradiation. Full article
(This article belongs to the Special Issue Hydroxyapatite and Hydroxyapatite-Based Materials)
Show Figures

Graphical abstract

21 pages, 4286 KB  
Article
Potential Molecular Targets of the Broad-Range Antimicrobial Peptide Tyrothricin in the Apicomplexan Parasite Toxoplasma gondii
by Yosra Amdouni, Ghalia Boubaker, Joachim Müller, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anne-Christine Uldry, Sophie Braga-Lagache, Manfred Heller and Andrew Hemphill
Biomedicines 2026, 14(1), 172; https://doi.org/10.3390/biomedicines14010172 - 13 Jan 2026
Viewed by 196
Abstract
Background: The apicomplexan parasite Toxoplasma gondii causes serious diseases in animals and humans. The in vitro efficacy of the antimicrobial peptide mixture tyrothricin, composed of tyrocidines and gramicidins, against T. gondii tachyzoites was investigated. Methods: Effects against T. gondii were determined by monitoring [...] Read more.
Background: The apicomplexan parasite Toxoplasma gondii causes serious diseases in animals and humans. The in vitro efficacy of the antimicrobial peptide mixture tyrothricin, composed of tyrocidines and gramicidins, against T. gondii tachyzoites was investigated. Methods: Effects against T. gondii were determined by monitoring inhibition of tachyzoite proliferation and electron microscopy, host cell and splenocyte toxicity was measured by Alamar blue assay, and early embryo toxicity was assessed using zebrafish embryos. Differential affinity chromatography coupled to mass spectrometry and proteomics (DAC-MS-proteomics) was employed to identify potential molecular targets in T. gondii cell-free extracts. Results: Tyrothricin inhibited T. gondii proliferation at IC50s < 100 nM, with tyrocidine A being the active and gramicidin A the inactive component. Tyrothricin also impaired fibroblast, T cell and zebrafish embryo viability at 1 µM. Electron microscopy carried out after 6 h of treatment revealed cytoplasmic vacuolization and structural alterations in the parasite mitochondrion, but these changes appeared only transiently, and tachyzoites recovered after 96 h. Tyrothricin also induced a reduction in the mitochondrial membrane potential. DAC-MS-proteomics identified 521 proteins binding only to tyrocidine A. No specific binding to gramicidin A was noted, and four proteins were common to both peptides. Among the proteins binding specifically to tyrocidine A were several SRS surface antigens and secretory proteins, mitochondrial inner and outer membrane proteins associated with the electron transfer chain and porin, and several calcium-binding proteins putatively involved in signaling. Discussion: These results suggest that tyrocidine A potentially affected multiple pathways important for parasite survival and development. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

25 pages, 7503 KB  
Article
Naringin Mitigates PEDV-Induced Intestinal Damage in Suckling Piglets by Modulating Inflammatory, Antiviral, and Metabolic and Transport Pathways
by Yanyan Zhang, Muzi Li, Zongyun Li, Zhonghua Li, Lei Wang, Di Zhao, Tao Wu, Dan Yi and Yongqing Hou
Biomolecules 2026, 16(1), 48; https://doi.org/10.3390/biom16010048 - 28 Dec 2025
Viewed by 359
Abstract
This study evaluated the protective effects of naringin (NG) against intestinal injury in 7-day-old piglets infected with porcine epidemic diarrhea virus (PEDV). Eighteen piglets (Duroc × Landrace × Large, body weight = 2.58 ± 0.05 kg) were divided into three treatment groups based [...] Read more.
This study evaluated the protective effects of naringin (NG) against intestinal injury in 7-day-old piglets infected with porcine epidemic diarrhea virus (PEDV). Eighteen piglets (Duroc × Landrace × Large, body weight = 2.58 ± 0.05 kg) were divided into three treatment groups based on similar body weights and equal numbers of males and females: the blank control group (CON group), the PEDV infection group (PEDV group), and the NG intervention + PEDV infection group (NG + PEDV group) (n = 6 per group). The experiment lasted for 11 days, comprising a pre-feeding period from days 0 to 3 and a formal experimental period from days 4 to 10. On days 4–10 of the experiment, piglets in the NG + PEDV group were orally administered NG (10 mg/kg). On Day 8 of the experiment, piglets in the PEDV and NG + PEDV groups were inoculated with PEDV (3 mL, 106 50% tissue culture infective dose (TCID50) per milliliter). On day 11 of the experiment, piglets were euthanized for sample collection. PEDV infection caused significant intestinal damage, including a decreased (p < 0.05) villus height in the duodenum and ileum and an increased (p < 0.05) crypt depth in all intestinal segments. This intestinal damage was accompanied by an impaired absorptive function, as indicated by reduced (p < 0.05) serum D-xylose. Further results showed that PEDV compromised the intestinal antioxidant capacity by decreasing (p < 0.05) glutathione peroxidase and catalase activities, and it stimulated the intestinal inflammatory response by upregulating (p < 0.05) the expression of key inflammatory genes, including regenerating family member 3 gamma (REG3G; duodenum, jejunum, colon), S100 calcium binding protein A9 (S100A9; ileum, colon), interleukin 1 beta (IL-1β; ileum, colon), and S100 calcium binding protein A8 (S100A8; colon). PEDV also suppressed the intestinal lipid metabolism pathway by downregulating (p < 0.05) the ileal expression of Solute Carrier Family 27 Member 4 (SLC27A4), Microsomal Triglyceride Transfer Protein (MTTP), Apolipoprotein A4 (APOA4), Apolipoprotein C3 (APOC3), Diacylglycerol O-Acyltransferase 1 (DGAT1), and Cytochrome P450 Family 2 Subfamily J Member 34 (CYP2J34). Moreover, PEDV suppressed the intestinal antiviral ability by downregulating (p < 0.05) interferon (IFN) signaling pathway genes, including MX dynamin like GTPase 1 (MX1) and ISG15 ubiquitin like modifier (ISG15) in the duodenum; weakened intestinal water and ion transport by downregulating (p < 0.05) aquaporin 10 (AQP10) and potassium inwardly rectifying channel subfamily J member 13 (KCNJ13) in the duodenum, aquaporin 7 (AQP7) and transient receptor potential cation channel subfamily V member 6 (TRPV6) in the ileum, and TRPV6 and transient receptor potential cation channel subfamily M member 6 (TRPM6) in the colon; and inhibited intestinal digestive and absorptive function by downregulating (p < 0.05) phosphoenolpyruvate carboxykinase 1 (PCK1) in the duodenum and sucrase-isomaltase (SI) in the ileum. Notably, NG effectively counteracted these detrimental effects. Moreover, NG activated the IFN signaling pathway in the jejunum and suppressed PEDV replication in the colon. In conclusion, NG alleviates PEDV-induced intestinal injury by enhancing the antioxidant capacity, suppressing inflammation, normalizing the expression of metabolic and transport genes, and improving the antiviral ability. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 1825 KB  
Article
Tranilast Does Not Inhibit TRPV2
by Tabea C. Fricke, Nele Stein, Christine Herzog, Frank G. Echtermeyer and Andreas Leffler
Cells 2026, 15(1), 13; https://doi.org/10.3390/cells15010013 - 21 Dec 2025
Viewed by 470
Abstract
Transient receptor potential vanilloid 2 (TRPV2) is a non-selective cation channel involved in diverse physiological and pathological processes. Tranilast has frequently been described and used as a rather specific inhibitor of TRPV2. However, the molecular basis of this inhibition was never been studied [...] Read more.
Transient receptor potential vanilloid 2 (TRPV2) is a non-selective cation channel involved in diverse physiological and pathological processes. Tranilast has frequently been described and used as a rather specific inhibitor of TRPV2. However, the molecular basis of this inhibition was never been studied in detail. Here, we investigated whether tranilast indeed directly inhibits TRPV2. Rat TRPV2 was expressed in human embryonic kidney (HEK293) cells, and channel function was assessed using whole-cell electrophysiology and calcium imaging in response to established agonists. In parallel, we conducted phagocytosis assays in rat basophilic leukemia (RBL) cells, including a CRISPR/Cas9-generated TRPV2-knockout cell line. Tranilast up to 1 mM did not inhibit TRPV2-mediated currents or calcium influx induced by any agonist. However, when co-applied with the oxidant chloramine T, tranilast diminished oxidation-induced activation of TRPV2. This effect may indicate a general interference of tranilast with redox signaling. Accordingly, tranilast also reduced chloramine T-induced activation of TRPA1 as well as the development of non-inactivating currents of voltage-gated Na+ channels. Furthermore, tranilast decreased phagocytic activity in both wildtype and TRPV2-knockout RBL cells. However, the reduction was less pronounced in TRPV2-knockout cells. These findings demonstrate that tranilast does not directly inhibit TRPV2. Instead, tranilast seems to indirectly suppress channel activation by reducing reactive oxygen species (ROS). This refined understanding of how tranilast modulates TRPV2 has important implications for the interpretation of prior and future pharmacological studies targeting TRPV2. Full article
(This article belongs to the Special Issue Transient Receptor Potential (TRP) Channels and Health and Disease)
Show Figures

Figure 1

14 pages, 267 KB  
Review
Cinacalcet Efficacy in Hyperparathyroidism—Chronic Kidney Disease—Non-Dialysis, Hemodialysis, Peritoneal Dialysis, Kidney Transplantation: Critical Review
by Dominik Lewandowski, Miłosz Miedziaszczyk, Katarzyna Lacka and Ilona Idasiak-Piechocka
Biomedicines 2026, 14(1), 16; https://doi.org/10.3390/biomedicines14010016 - 21 Dec 2025
Viewed by 643
Abstract
Hyperparathyroidism is a serious complication of chronic kidney disease (CKD) and can occur in patients not on renal replacement therapy, during dialysis therapy, or after kidney transplantation. The disease leads to an increased risk of cardiovascular events, bone loss, and fractures. Cinacalcet is [...] Read more.
Hyperparathyroidism is a serious complication of chronic kidney disease (CKD) and can occur in patients not on renal replacement therapy, during dialysis therapy, or after kidney transplantation. The disease leads to an increased risk of cardiovascular events, bone loss, and fractures. Cinacalcet is a widely used drug, but its effectiveness in treating hyperparathyroidism in selected stages of chronic kidney disease remains unclear. This critical review aims to integrate findings from meta-analyses and clinical trials to assess optimal therapeutic strategies in patients suffering from CKD, who are non-dialysis-dependent, dialysis-dependent, and after kidney transplantation. The authors reviewed eligible studies, including meta-analyses, randomized controlled trials, and observational studies assessing biochemical outcomes, cardiovascular, bone, and survival outcomes with cinacalcet. Cinacalcet effectively reduced serum parathyroid hormone (PTH), calcium, and phosphorus across all CKD stages, particularly in hemodialysis patients. Combination therapy with vitamin D analogs enhanced biochemical control without increasing adverse events, although mild, transient hypocalcemia and gastrointestinal symptoms were common. In kidney transplant recipients, parathyroidectomy achieved greater normalization of PTH and calcium. Cinacalcet has been shown to reduce mortality in patients on hemodialysis and peritoneal dialysis. Full article
(This article belongs to the Special Issue Advanced Research in Thyroid and Parathyroid Diseases)
21 pages, 1710 KB  
Review
Modified mRNA-Based Therapeutic Strategies for Myocardial Ischemia–Reperfusion Injury
by Ting Cai and Xiang-Qun Yang
Int. J. Mol. Sci. 2026, 27(1), 55; https://doi.org/10.3390/ijms27010055 - 20 Dec 2025
Viewed by 764
Abstract
Ischemic heart disease (IHD), the leading causes of cardiovascular morbidity and mortality worldwide, is currently treated though revascularization strategies such as pharmacological thrombolysis, coronary artery bypass grafting (CABG), and percutaneous coronary intervention (PCI). However, the restoration of blood flow often induces cardiac dysfunction, [...] Read more.
Ischemic heart disease (IHD), the leading causes of cardiovascular morbidity and mortality worldwide, is currently treated though revascularization strategies such as pharmacological thrombolysis, coronary artery bypass grafting (CABG), and percutaneous coronary intervention (PCI). However, the restoration of blood flow often induces cardiac dysfunction, known as myocardial ischemia–reperfusion injury (MIRI). The pathogenesis of MIRI involves a complex, multifactorial process characterized by the interplay of diverse pathophysiological mechanisms, including oxidative stress, intracellular calcium overload, inflammatory cascade activation, apoptosis, autophagy, and microvascular endothelial dysfunction. In recent years, modified RNA (modRNA) technology has emerged as a novel therapeutic strategy for MIRI due to its enhanced molecular stability, reduced immunogenicity, and controllable transient protein expression. Studies have demonstrated that optimized modRNA delivery systems enable efficient, localized expression of therapeutic genes (e.g., antioxidant, anti-apoptotic, and pro-angiogenic factors) at injury sites, significantly mitigating MIRI-associated pathological damage. Nevertheless, significant challenges remain in clinical translation, such as delivery system targeting, transfection efficiency and cytotoxicity. This review focuses on recent advances in the development and application of modRNA-based delivery systems for MIRI treatment. Understanding the molecular mechanisms of MIRI and the structural characteristics and application of modRNA may encourage researchers to explore promising therapeutic modalities for addressing reperfusion-related cardiac injury. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 334 KB  
Review
Monocellular and Multicellular Parasites Infesting Humans: A Review of Calcium Ion Mechanisms
by John A. D’Elia and Larry A. Weinrauch
Biomedicines 2026, 14(1), 2; https://doi.org/10.3390/biomedicines14010002 - 19 Dec 2025
Viewed by 472
Abstract
Calcium (Ca2+) is a signal messenger for ion flow in and out of microbial, parasitic, and host defense cells. Manipulation of calcium ion signaling with ion blockers and calcineurin inhibitors may improve host defense while decreasing microbial/parasitic resistance to therapy. Ca [...] Read more.
Calcium (Ca2+) is a signal messenger for ion flow in and out of microbial, parasitic, and host defense cells. Manipulation of calcium ion signaling with ion blockers and calcineurin inhibitors may improve host defense while decreasing microbial/parasitic resistance to therapy. Ca2+ release from intracellular storage sites controls many host defense functions (cell integrity, movement, and growth). The transformation of phospholipids in the erythrocyte membrane is associated with changes in deformability. This type of lipid bilayer defense mechanism helps to prevent attack by Plasmodium. Patients with sickle cell disease (SS hemoglobin) do not have this protection and are extremely vulnerable to massive hemolysis from parasitic infestation. Patients with thalassemia major also lack parasite protection. Alteration of Ca2+ ion channels responsive to environmental stimuli (transient receptor potential) results in erythrocyte protection from Plasmodium. Similarly, calcineurin inhibitors (cyclosporine) reduce heart and brain inflammation injury with Trypanosoma and Taenia. Ca2+ channel blockers interfere with malarial life cycles. Several species of parasites are known to invade hepatocytes: Plasmodium, Echinococcus, Schistosoma, Taenia, and Toxoplasma. Ligand-specific membrane channel constituents (inositol triphosphate and sphingosine phospholipid) constitute membrane surface signal messengers. Plasmodium requires Ca2+ for energy to grow and to occupy red blood cells. A cascade of signals proceeds from Ca2+ to two proteins: calmodulin and calcineurin. Inhibitors of calmodulin were found to blunt the population growth of Plasmodium. An inhibitor of calcineurin (cyclosporine) was found to retard population growth of both Plasmodium and Schistosoma. Calcineurin also controls sensitivity and resistance to antibiotics. After exposure to cyclosporine, the liver directs Ca2+ ions into storage sites in the endoplasmic reticulum and mitochondria. Storage of large amounts of Ca2+ would be useful if pathogens began to occupy both red blood cells and liver cells. We present scientific evidence supporting the benefits of calcium channel blockers and calcineurin inhibitors to potentiate current antiparasitic therapies. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
19 pages, 2126 KB  
Article
Estrogen-Dependent Variation in the Contributions of TRPM4 and TRPM5 to Fat Taste
by Emeline Masterson, Naima S. Dahir, Ashley N. Calder, Yan Liu, Fangjun Lin and Timothy A. Gilbertson
Nutrients 2025, 17(24), 3847; https://doi.org/10.3390/nu17243847 - 10 Dec 2025
Viewed by 580
Abstract
Background: Sex differences in physiology have garnered significant interest of late; however, comparatively little is known about the effects of sex on the function of the peripheral taste system. Previously, we have shown that fat taste functions in a sexually dimorphic manner using [...] Read more.
Background: Sex differences in physiology have garnered significant interest of late; however, comparatively little is known about the effects of sex on the function of the peripheral taste system. Previously, we have shown that fat taste functions in a sexually dimorphic manner using molecular, cellular, and behavioral assays, and that a subtype of estrogen receptor (ER) proteins is highly expressed in Type II (receptor) cells. The underlying mechanisms of estrogen’s action, though, remain unknown. Objective: Here, we sought to better understand estrogen’s role in fat taste transduction at the molecular level by initially focusing on the transient receptor potential channel types M4 (Trpm4) and M5 (Trpm5), which we have shown to play roles in estrogen-sensitive fatty acid signaling in taste cells. Methods/Results: Using a multidisciplinary approach, using Trpm5-deficient mice, electrophysiological and calcium imaging assays revealed that there are significantly reduced FA responses in both males and females in the estrus phase, whereas females in the proestrus phase did not show this, suggesting that there may be E2-dependent TRPM5-independent FA signaling in Type II cells. During periods of high levels of circulating estrogen, there was no significant difference in cellular responses to fatty acid (FA) stimuli between Trpm5−/− mice and their wild-type counterparts. Moreover, supplemental estradiol enhanced linoleic acid (LA)-induced TRPM5-mediated taste cell activation. Finally, while Type II cells depend on TRPM4 and TRPM5 for FA taste cell activation, proestrus (high-estrogen) females showed a greater dependence on a TRPM5-independent pathway for fatty acid responsiveness. Conclusions: Together, these results underscore the substantial regulatory role of estrogen in the taste system, particularly for fatty acid signaling. Given that the taste system guides food preferences and intake, these findings may have important implications for understanding sex-specific differences in diet and, ultimately, metabolic health. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

21 pages, 2532 KB  
Article
Electrophysiological Phenotyping of hiPSC-Derived Atrial Cardiomyocytes Using Automated Patch-Clamp: A Platform for Studying Atrial Inherited Arrhythmias
by Verónica Jiménez-Sábado, Hosna Babini, Peter C. Ruben, Eric A. Accili, Thomas W. Claydon, Leif Hove-Madsen and Glen F. Tibbits
Cells 2025, 14(24), 1941; https://doi.org/10.3390/cells14241941 - 6 Dec 2025
Viewed by 713
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a robust platform for modelling inherited cardiac disorders. Comparative analysis of ion channel activity in patient-specific and isogenic control lines provides critical insights into the molecular mechanisms underlying channelopathies and arrhythmias. Atrial-specific hiPSC-CMs (hiPSC-aCMs) exhibit distinct [...] Read more.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a robust platform for modelling inherited cardiac disorders. Comparative analysis of ion channel activity in patient-specific and isogenic control lines provides critical insights into the molecular mechanisms underlying channelopathies and arrhythmias. Atrial-specific hiPSC-CMs (hiPSC-aCMs) exhibit distinct electrophysiological properties governed by unique ion channel expression profiles, underscoring the need for optimized methodologies to record atrial ionic currents accurately. Here, we characterized the electrophysiological features of hiPSC-aCMs using the Nanion Patchliner automated patch-clamp system. An optimized cell dissociation protocol was developed to enhance cell integrity and seal formation, while tailored intra- and extracellular solutions were employed to isolate specific ionic currents. Using this approach, we reliably recorded major atrial currents, including the sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), ultrarapid component of the delayed rectifier current (IKur), small-conductance calcium-activated potassium current (ISK), and pacemaker funny current (If). The resulting current profiles were reproducible and consistent with those observed in native atrial cardiomyocytes. These findings establish the feasibility of the automated electrophysiological characterization of ion channels in hiPSC-aCMs. This platform enables more efficient investigation of pathogenic variants and facilitates the development of targeted therapeutics for atrial arrhythmias and related channelopathies. Full article
(This article belongs to the Special Issue Advances in Cardiomyocyte and Stem Cell Biology in Heart Disease)
Show Figures

Graphical abstract

20 pages, 4044 KB  
Article
Mitochondria-Targeted Antioxidants Prevent Tachypacing-Induced Contractile Dysfunction in In Vitro Cardiomyocyte and In Vivo Drosophila Models of Atrial Fibrillation
by Alexia van Rinsum, Liangyu Hu, Xi Qi, Jaap Keijer and Deli Zhang
Antioxidants 2025, 14(12), 1444; https://doi.org/10.3390/antiox14121444 - 30 Nov 2025
Viewed by 695
Abstract
Atrial fibrillation (AF) is a growing cardiovascular epidemic lacking effective treatment. Reactive oxygen species are believed to contribute to AF pathophysiology, yet general antioxidants have limited effectiveness. Since mitochondria are abundant in the heart and a major ROS producer, mitochondrial oxidative stress (MitoOxS) [...] Read more.
Atrial fibrillation (AF) is a growing cardiovascular epidemic lacking effective treatment. Reactive oxygen species are believed to contribute to AF pathophysiology, yet general antioxidants have limited effectiveness. Since mitochondria are abundant in the heart and a major ROS producer, mitochondrial oxidative stress (MitoOxS) could be a therapeutic target. To determine this, rat inducible immortalized atrial myocytes (iAMs) were tachypaced to mimic AF, followed by assessment of calcium transients, contractility, mitochondrial respiration and morphology, and ROS damage. Cells were pretreated with MitoTEMPO or Sul-238 to assess their protective effects. In Drosophila, heart wall contractions were analyzed to assess arrhythmogenesis after mitochondrial antioxidant pretreatment. Using the GAL4-UAS system, mitochondrial ROS levels and the effect of SOD1 or SOD2 knockdown or overexpression on arrhythmogenesis were evaluated. Tachypacing induced contractile dysfunction and arrhythmogenesis, mitochondrial impairment, and ROS damage in iAMs and increased mitochondrial ROS and arrhythmogenesis in Drosophila. Both MitoTEMPO and Sul-238 treatments prevented mitochondrial dysfunction and arrhythmogenesis in iAMs and rescued arrhythmia in Drosophila. Underscoring the potential to target MitoOxS specifically, SOD2 knockdown promoted arrhythmogenesis in iAMs and Drosophila, whereas SOD2 overexpression rescued tachypacing-induced arrhythmia. MitoOxS is thus a key driver of tachypacing-induced contractile dysfunction and arrhythmia. Mitochondria-targeted antioxidants, such as MitoTEMPO or Sul-238, represent promising therapeutic strategies for AF. Full article
(This article belongs to the Special Issue Oxidative Stress in Metabolic Syndrome and Cardiovascular Diseases)
Show Figures

Graphical abstract

21 pages, 1126 KB  
Review
Progress and Prospects of Research on the Role of Phosphatidic Acid in Response to Adverse Stress in Plants
by Siqi Xie, Yao Zhao, Menghuan Tao, Yarong Zhang, Zhenfei Guo and Bo Yang
Agronomy 2025, 15(12), 2758; https://doi.org/10.3390/agronomy15122758 - 29 Nov 2025
Viewed by 606
Abstract
Lipid signaling plays a crucial role in how plants perceive and respond to environmental challenges. Among the various lipid mediators, phosphatidic acid (PA) serves as a key metabolic intermediate and second messenger that links membrane dynamics with stress signaling. It is produced rapidly [...] Read more.
Lipid signaling plays a crucial role in how plants perceive and respond to environmental challenges. Among the various lipid mediators, phosphatidic acid (PA) serves as a key metabolic intermediate and second messenger that links membrane dynamics with stress signaling. It is produced rapidly through the coordinated actions of phospholipase C, phospholipase D and diacylglycerol kinase, and its transient accumulation enables plants to adjust defense and acclimation responses with remarkable precision. Recent studies have shown that PA participates in immune signaling, osmotic regulation, and redox control, functioning at the intersection of membrane remodeling and intracellular signal transduction. Through interactions with hormone signaling, calcium fluxes, and reactive oxygen species production, PA integrates multiple stress-responsive pathways, thereby helping to maintain physiological homeostasis under adverse conditions. This review summarizes current understanding of the biosynthetic regulation and signaling roles of PA, and discusses emerging perspectives that highlight its central role in plant immunity and stress adaptation. Full article
(This article belongs to the Special Issue Plant Stress Tolerance: From Genetic Mechanism to Cultivation Methods)
Show Figures

Figure 1

Back to TopTop