Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = calcium phosphate glasses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2162 KiB  
Review
Teriparatide for Guided Bone Regeneration in Craniomaxillofacial Defects: A Systematic Review of Preclinical Studies
by Jessika Dethlefs Canto, Carlos Fernando Mourão, Vittorio Moraschini, Rafael da Silva Bonato, Suelen Cristina Sartoretto, Monica Diuana Calasans-Maia, José Mauro Granjeiro and Rafael Seabra Louro
Curr. Issues Mol. Biol. 2025, 47(8), 582; https://doi.org/10.3390/cimb47080582 - 23 Jul 2025
Viewed by 280
Abstract
This systematic review aimed to evaluate the effectiveness of teriparatide (TP) in guided bone regeneration (GBR). An electronic search without language or date restrictions was performed in PubMed, Web of Science, Scopus, Scielo, and gray literature for articles published until June 2025. Inclusion [...] Read more.
This systematic review aimed to evaluate the effectiveness of teriparatide (TP) in guided bone regeneration (GBR). An electronic search without language or date restrictions was performed in PubMed, Web of Science, Scopus, Scielo, and gray literature for articles published until June 2025. Inclusion criteria considered studies evaluating the effect of TP on bone regeneration, analyzed using SYRCLE’s Risk of Bias tool. Twenty-four preclinical studies were included, covering diverse craniofacial models (mandibular, calvarial, extraction sockets, sinus augmentation, distraction osteogenesis, segmental defects) and employing systemic or local TP administration. Teriparatide consistently enhanced osteogenesis, graft integration, angiogenesis, and mineralization, with potentiated effects when combined with various biomaterials, including polyethylene glycol (PEG), hydroxyapatite/tricalcium phosphate (HA/TCP), biphasic calcium phosphate (BCP), octacalcium phosphate collagen (OCP/Col), enamel matrix derivatives (EMDs), autografts, allografts, xenografts (Bio-Oss), strontium ranelate, and bioactive glass. Critically, most studies presented a moderate-to-high risk of bias, with insufficient randomization, allocation concealment, and blinding, which limited the internal validity of the findings. TP shows promising osteoanabolic potential in guided bone regeneration, enhancing bone formation, angiogenesis, and scaffold integration across preclinical models. Nonetheless, its translation to clinical practice requires well-designed human randomized controlled trials to define optimal dosing strategies, long-term safety, and its role in oral and craniomaxillofacial surgical applications. Full article
Show Figures

Graphical abstract

39 pages, 8474 KiB  
Article
Between Heritage Conservation and Forensic Science: An Analytical Study of Personal Items Found in Mass Graves of the Francoism (1939–1956) (Spain)
by María Teresa Doménech-Carbó, Trinidad Pasíes Oviedo, Ramón Canal Roca and Janire Múgica Mestanza
Molecules 2025, 30(13), 2783; https://doi.org/10.3390/molecules30132783 - 27 Jun 2025
Viewed by 322
Abstract
This article describes the case of the personal items found in common graves dated between 1939 and 1956 after the Spanish Civil War (1936–1939), located in Paterna’s cemetery (Spain). It was important in this study to know the state of the conservation of [...] Read more.
This article describes the case of the personal items found in common graves dated between 1939 and 1956 after the Spanish Civil War (1936–1939), located in Paterna’s cemetery (Spain). It was important in this study to know the state of the conservation of the objects and to obtain clues about their origin and use just as in a forensic study. This would allow the moral restitution of the historical memory of the victims of the war conflict. The multi-technique strategy has included light and electron microscopy, infrared spectroscopy and X-ray diffraction. Materials of the early 20th century used in pencil sharpeners, glasses, cutlery, lighters, rings, and buttons or medications contained in small bottles and boxes have been identified and have enabled the lives of their owners to be reconstructed during their imprisonment and execution. All these objects exhibited a thin layer of adipocere, a well-known compound in forensic science formed during the decomposition of human and animal corpses. Interestingly, rare corrosion processes have been identified in two of the objects analyzed, which are linked to their proximity to the decomposing corpses of the deceased. Copper sulfides and/or sulfates have been identified in the lighter, and scholzite, a zinc and calcium phosphate, has been identified in the glasses. Full article
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Prosser-Type Sintered “Glassy” Beads Excavated from Dohouan (Côte d’Ivoire)
by Kouakou Modeste Koffi, Philippe Colomban, Christophe Petit and Kouakou Siméon Kouassi
Ceramics 2025, 8(2), 71; https://doi.org/10.3390/ceramics8020071 - 11 Jun 2025
Viewed by 1320
Abstract
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a [...] Read more.
Recent archaeological sites dating to the late 19th and early 20th centuries have rarely been studied to date. Among the 500 “glassy” beads excavated from Dohouan (Côte d’Ivoire), elemental analyses reveal that fewer than half contain abnormally high alumina contents, associated with a soda–potash–lime flux (three compositional groups). The remaining beads are typical lead-based glass. The Raman spectra of the alumina-rich beads are quite complex due to their glass–ceramic nature, combining features similar to the vitreous phase of porcelain glaze with the presence of various crystalline phases (quartz, wollastonite, calcium phosphate, calcite). Organic residues are also observed. Colors are primarily produced by transition metal ions, although some specific pigments have also been identified. These characteristics suggest that the alumina-rich beads were manufactured by pressing followed by sintering, as described in patents by Richard Prosser (1840, UK) and Jean Félix Bapterosse (1844, France). A comparison is made with beads from scrap piles at the site of the former Bapterosse factory in Briare, France. This process represents one of the earliest examples of replacing traditional glassmaking with a ceramic process to enhance productivity and reduce costs. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

20 pages, 5211 KiB  
Review
Unveiling the Potential of Bioactive Glass in Volumetric Muscle Loss Regeneration
by Andreea-Alina Zăvoi, Alexandra Dreancă, Klara Magyari, Lucian Baia, Ciprian Ober and Liviu Oana
Materials 2025, 18(11), 2529; https://doi.org/10.3390/ma18112529 - 27 May 2025
Viewed by 486
Abstract
Injuries characterized by significant loss of skeletal muscle tissue volume, known as volumetric muscle loss (VML), lead to substantial impairment in functional capabilities. Natural repair processes and existing medical interventions fall short of fully restoring function post-VML. Despite progress in the VML field, [...] Read more.
Injuries characterized by significant loss of skeletal muscle tissue volume, known as volumetric muscle loss (VML), lead to substantial impairment in functional capabilities. Natural repair processes and existing medical interventions fall short of fully restoring function post-VML. Despite progress in the VML field, there is an unsatisfactory success rate, donor site morbidity, and inefficient reconstruction of lost muscle tissue. This leads to persistent strength and functional deficits, impacting the quality of life for VML patients. In recent years, studies have explored the potential of bioactive glasses (BGs) as crucial materials in regenerating tissues beyond the skeletal system. BG, used mainly in bone engineering, can aid muscle repair by releasing ions like calcium and phosphate to stimulate cellular response. However, current BG composites struggle to match the mechanical properties of soft tissues, limiting seamless healing. This review summarizes recent advances in various BG structures studied for skeletal muscle tissue regeneration. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

14 pages, 4743 KiB  
Article
Bioactive Calcium Silico-Phosphate Glasses Doped with Mg2+ and/or Zn2+: Biocompatibility, Bioactivity and Antibacterial Activity
by Laura-Nicoleta Dragomir, Cristina-Daniela Ghiţulică, Andreia Cucuruz, Andreea Lazar, Georgeta Voicu and Sorina Dinescu
Antibiotics 2025, 14(6), 534; https://doi.org/10.3390/antibiotics14060534 - 22 May 2025
Viewed by 550
Abstract
Bioactive glasses in the SiO2-CaO-P2O5 system represent emerging materials for hard-tissue-regeneration applications. This article focuses on the synthesis, characterization, and biological interaction of glasses doped with Mg2+ and/or Zn2+, with an emphasis on their effects [...] Read more.
Bioactive glasses in the SiO2-CaO-P2O5 system represent emerging materials for hard-tissue-regeneration applications. This article focuses on the synthesis, characterization, and biological interaction of glasses doped with Mg2+ and/or Zn2+, with an emphasis on their effects on biomineralization, antibacterial behavior, and interactions with preosteoblasts from the MC3T3-E1 cell line. The bioglasses were synthesized using the sol-gel method, and the vitreous nature remained predominant even after thermal treatment at 600 °C for 2 h. From an in vitro perspective, the synthesized bioglasses demonstrated strong cell adhesion and proliferation (notably in the case of Mg2+ doping), low cytotoxicity, and antibacterial properties (especially in Zn2+-doped samples). Additionally, the simultaneous doping with Mg2+ and Zn2+ of the bioactive glass matrix is a prospective strategy for developing biomaterials with a “dual” biological characteristics–both osteoinductive and antibacterial. Full article
(This article belongs to the Special Issue Nanotechnology-Based Antimicrobials and Drug Delivery Systems)
Show Figures

Figure 1

14 pages, 17905 KiB  
Article
The Evaluation of Degree of Monomer Conversion, Biaxial Flexural Strength, and Surface Mineral Precipitation of Orthodontic Adhesive Containing Sr-Bioactive Glass Nanoparticles, Calcium Phosphate, and Andrographolide
by Wirinrat Chaichana, Supachai Chanachai, Kanlaya Insee, Sutiwa Benjakul, Parichart Naruphontjirakul, Piyaphong Panpisut and Woranuch Chetpakdeechit
Materials 2025, 18(10), 2278; https://doi.org/10.3390/ma18102278 - 14 May 2025
Viewed by 524
Abstract
This study examined the degree of monomer conversion (DC) and mechanical properties of experimental orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM), Sr-bioactive glass (Sr-BAG) nanoparticles, and andrographolide. Experimental adhesives were prepared with a 4:1 powder-to-liquid ratio, containing methacrylate monomers with varying formulations of [...] Read more.
This study examined the degree of monomer conversion (DC) and mechanical properties of experimental orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM), Sr-bioactive glass (Sr-BAG) nanoparticles, and andrographolide. Experimental adhesives were prepared with a 4:1 powder-to-liquid ratio, containing methacrylate monomers with varying formulations of glass fillers and additives. DC was measured using ATR-FTIR (n = 5) with and without bracket placement under two curing protocols: conventional LED (1200 mW/cm2, 20 s) and high-intensity LED (3200 mW/cm2, 3 s). The biaxial flexural strength and modulus were tested after 4-week water immersion (n = 8). Transbond XT was used as the commercial comparison. Transbond XT exhibited higher DC (33–38%) than the experimental materials. Conventional LED curing produced higher DC than high-intensity LED, while bracket placement reduced DC by approximately 10% in the experimental materials but minimally affected Transbond XT. Transbond XT demonstrated a superior biaxial flexural strength (188 MPa) compared to the experimental adhesives (106–166 MPa, p < 0.05). However, the experimental formulations with low additive concentrations showed a comparable biaxial flexural modulus (5.0–5.5 GPa) to Transbond XT (5.6 GPa) (p > 0.05). Although the experimental adhesives exhibited lower DC and strength than the commercial product, their values still met the ISO standards, suggesting their potential clinical viability despite their modified compositions. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Applications)
Show Figures

Figure 1

30 pages, 1344 KiB  
Review
Bioceramics in Endodontics: Limitations and Future Innovations—A Review
by Peramune Arachchilage Amila Saman Prasad Kumara, Paul Roy Cooper, Peter Cathro, Maree Gould, George Dias and Jithendra Ratnayake
Dent. J. 2025, 13(4), 157; https://doi.org/10.3390/dj13040157 - 1 Apr 2025
Cited by 1 | Viewed by 3341
Abstract
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, [...] Read more.
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, perforations repair, and apexification repair procedures. However, they have far from ideal mechanical and handling properties, biocompatibility issues, aesthetic concerns due to tooth discolouration, limited antibacterial activity, and affordability, which are amongst several key limitations. Notably, bioceramic materials are popular due to their biocompatibility, sealing ability, and durability, consequently surpassing traditional materials such as gutta-percha and zinc oxide–eugenol sealers. A lack of recent advancements in the field, combined with nanomaterials, has improved the formulations of these materials to overcome these limitations. The existing literature emphasises the benefits of bioceramics while underreporting their poor mechanical properties, handling difficulties, cost, and various other drawbacks. The key gaps identified in the literature are the insufficient coverage of emerging materials, narrow scope, limited insights into future developments, and underreporting of failures and complications of the existing materials. Consequently, this review aims to highlight the key limitations of various endodontic materials, primarily focusing on calcium silicate, calcium phosphate, and bioactive glass-based materials, which are the most abundantly used materials in dentistry. Based on the literature, bioceramic materials in endodontics have significantly improved over recent years, with different combinations of materials and technology compared to earlier generations while preserving many of their original properties, with some having affordable costs. This review also identified key innovations that could shape the future of endodontic materials, highlighting the ongoing evolution and advancements in endodontic treatments. Full article
(This article belongs to the Special Issue Endodontics and Restorative Sciences: 2nd Edition)
Show Figures

Figure 1

32 pages, 2253 KiB  
Article
The Effect of Different pH and Temperature Values on Ca2+, F, PO43−, OH, Si, and Sr2+ Release from Different Bioactive Restorative Dental Materials: An In Vitro Study
by Angelo Aliberti, Fabiana Di Duca, Maria Triassi, Paolo Montuori, Stefano Scippa, Mirko Piscopo and Pietro Ausiello
Polymers 2025, 17(5), 640; https://doi.org/10.3390/polym17050640 - 27 Feb 2025
Cited by 3 | Viewed by 780
Abstract
Bioactive restorative materials are crucial for promoting remineralization and protecting dental tissues through ion release. This study examines how pH and temperature influence the short- and long-term ion (F, Ca2+, Sr2+, OH, Si, and PO [...] Read more.
Bioactive restorative materials are crucial for promoting remineralization and protecting dental tissues through ion release. This study examines how pH and temperature influence the short- and long-term ion (F, Ca2+, Sr2+, OH, Si, and PO43−) release from seven commercial materials: Cention Forte Filling Material, Cention Primer, Stela Self Cure, Riva Light Cure HV, Riva Self Cure, Equia Forte HT Fil, and Fuji IX GP Fast. Disks were prepared according to the manufacturers’ instructions; immersed in buffer solutions at pH 4.8, 6.8, and 8.8; and stored at 37 °C and 44 °C. Ion release was measured after 1, 7, and 28 days using ion chromatography and mass spectrometry. Results revealed that ion release was significantly affected by pH, temperature, and exposure time. The highest fluoride (40.14 ± 0.32 mg/L) and calcium (74.23 ± 0.37 mg/L) releases were observed in Riva Light Cure at pH 4.8 and 44 °C after 28 days, with the highest strontium release (5.87 ± 0.06 mg/L) occurring under the same conditions. In contrast, silicon release peaked in Cention Forte Filling (31.72 ± 0.68 mg/L) at pH 4.8 and 37 °C. These findings highlight the impact of environmental factors on material performance, assisting clinicians in selecting optimal restorative materials for long-term dental health. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

16 pages, 1939 KiB  
Review
Impact of Incorporating Nanoparticles to Adhesive Resin on the Demineralization of Enamel: A Systematic Review
by Naif Almosa
Dent. J. 2025, 13(3), 89; https://doi.org/10.3390/dj13030089 - 20 Feb 2025
Viewed by 1039
Abstract
Background/Objective: Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to [...] Read more.
Background/Objective: Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to better summarize the existing additions of nanoparticles to dental adhesive systems in order to improve their performance and properties, evaluate their quality, and examine the results that have been published. Materials and methods: The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed central, Cochrane collaboration, Science direct and Scopus scientific engines. Selected MeSH keywords (nanoparticles, adhesive resin, enamel demineralization) were used for data extraction. A total of 13 full-text original articles were included in the final analysis, and these articles were based on adding nanoparticles to the adhesive resin to evaluate their effects on enamel demineralization. Results: The literature search resulted in a total of 13 original studies/articles up until November 2024. The text articles comprised in vitro studies with robust inclusion and exclusion criteria. The review included various types of adhesives and nanoparticles, with amorphous calcium phosphate (ACP) being the most common. Other nanoparticles included polydopamine–Ag, bioactive glass, and silver. Most studies assessed the effects of nanoparticles on adhesive shear bond strength (SBS), microbial growth, and microhardness. Only three studies investigated the effects of nanoparticles on microhardness using Vickers tests. Conclusions: The review found that adding nanoparticles to orthodontic dental adhesives enhances their antibacterial and anticariogenic properties without affecting the shear bond strength. This could prevent enamel demineralization during orthodontic therapy. Future research could benefit from these positive properties, necessitating an interdisciplinary approach. Full article
Show Figures

Figure 1

13 pages, 4085 KiB  
Article
Efficient Bioactive Surface Coatings with Calcium Minerals: Step-Wise Biomimetic Transformation of Vaterite to Carbonated Apatite
by Dong Hyun Kim, Ki Ha Min and Seung Pil Pack
Biomimetics 2024, 9(7), 402; https://doi.org/10.3390/biomimetics9070402 - 2 Jul 2024
Cited by 8 | Viewed by 1885
Abstract
Carbonated apatite (CAp), known as the main mineral that makes up human bone, can be utilized in conjunction with scaffolds to increase their bioactivity. Various methods (e.g., co-precipitation, hydrothermal, and biomimetic coatings) have been used to provide bioactivity by forming CAp on surfaces [...] Read more.
Carbonated apatite (CAp), known as the main mineral that makes up human bone, can be utilized in conjunction with scaffolds to increase their bioactivity. Various methods (e.g., co-precipitation, hydrothermal, and biomimetic coatings) have been used to provide bioactivity by forming CAp on surfaces similar to bone minerals. Among them, the use of simulated body fluids (SBF) is the most popular biomimetic method for generating CAp, as it can provide a mimetic environment. However, coating methods using SBF require at least a week for CAp formation. The long time it takes to coat biomimetic scaffolds is a point of improvement in a field that requires rapid regeneration. Here, we report a step-wise biomimetic coating method to form CAp using calcium carbonate vaterite (CCV) as a precursor. We can manufacture CCV-transformed CAp (V-CAp) on the surface in 4 h at least by immersing CCV in a phosphate solution. The V-CAp deposited surface was analyzed using scanning electron microscopy (SEM) images according to the type of phosphate solutions to optimize the reaction conditions. X-ray diffraction (XRD) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis validated the conversion of CCV to V-CAp on surfaces. In addition, the bioactivity of V-CAp coating was analyzed by the proliferation and differentiation of osteoblasts in vitro. V-CAp showed 2.3-folded higher cell proliferation and 1.4-fold higher ALP activity than the glass surface. The step-wise method of CCV-transformed CAp is a biocompatible method that allows the environment of bone regeneration and has the potential to confer bioactivity to biomaterial surfaces, such as imparting bioactivity to non-bioactive metal or scaffold surfaces within one day. It can rapidly form carbonated apatite, which can greatly improve time efficiency in research and industrial applications. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 3rd Edition)
Show Figures

Figure 1

15 pages, 13143 KiB  
Article
The Effect of Iron Oxide Insertion on the In Vitro Bioactivity, and Antibacterial Properties of the 45S5 Bioactive Glass
by Imen Hammami, Suresh Kumar Jakka, Isabel Sá-Nogueira, João Paulo Borges and Manuel Pedro Fernandes Graça
Biomimetics 2024, 9(6), 325; https://doi.org/10.3390/biomimetics9060325 - 29 May 2024
Cited by 1 | Viewed by 1694
Abstract
The aging population and increasing incidence of trauma among younger age groups have heightened the increasing demand for reliable implant materials. Effective implant materials must demonstrate rapid osseointegration and strong antibacterial properties to ensure optimal patient outcomes and decrease the chance of implant [...] Read more.
The aging population and increasing incidence of trauma among younger age groups have heightened the increasing demand for reliable implant materials. Effective implant materials must demonstrate rapid osseointegration and strong antibacterial properties to ensure optimal patient outcomes and decrease the chance of implant rejection. This study aims to enhance the bone–implant interface by utilizing 45S5 bioglass modified with various concentrations of Fe3O4 as a coating material. The effect of the insertion of Fe3O4 into the bioglass structure was studied using Raman spectroscopy which shows that with the increase in Fe3O4 concentration, new vibration bands associated with Fe-related structural units appeared within the sample. The bioactivity of the prepared glasses was evaluated using immersion tests in simulated body fluid, revealing the formation of a calcium phosphate-rich layer within 24 h on the samples, indicating their potential for enhanced tissue integration. However, the sample modified with 8 mol% of Fe3O4 showed low reactivity, developing a calcium phosphate-rich layer within 96 h. All the bioglasses showed antibacterial activity against the Gram-positive and Gram-negative bacteria. The modified bioglass did not present significant antibacterial properties compared to the bioglass base. Full article
(This article belongs to the Special Issue Advances in Bioceramics for Bone Regeneration)
Show Figures

Figure 1

14 pages, 17634 KiB  
Article
Design of Multi-Functional Bio-Safe Dental Resin Composites with Mineralization and Anti-Biofilm Properties
by Jiaojiao Yun, Michael F. Burrow, Jukka P. Matinlinna, Hao Ding, Sin Man (Rosalind) Chan, James K. H. Tsoi and Yan Wang
J. Funct. Biomater. 2024, 15(5), 120; https://doi.org/10.3390/jfb15050120 - 30 Apr 2024
Cited by 7 | Viewed by 2373
Abstract
This study aims to develop multi-functional bio-safe dental resin composites with capabilities for mineralization, high in vitro biocompatibility, and anti-biofilm properties. To address this issue, experimental resin composites consisting of UDMA/TEGDMA-based dental resins and low quantities (1.9, 3.8, and 7.7 vol%) of 45S5 [...] Read more.
This study aims to develop multi-functional bio-safe dental resin composites with capabilities for mineralization, high in vitro biocompatibility, and anti-biofilm properties. To address this issue, experimental resin composites consisting of UDMA/TEGDMA-based dental resins and low quantities (1.9, 3.8, and 7.7 vol%) of 45S5 bioactive glass (BAG) particles were developed. To evaluate cellular responses of resin composites, MC3T3-E1 cells were (1) exposed to the original composites extracts, (2) cultured directly on the freshly cured resin composites, or (3) cultured on preconditioned composites that have been soaked in deionized water (DI water), a cell culture medium (MEM), or a simple HEPES-containing artificial remineralization promotion (SHARP) solution for 14 days. Cell adhesion, cell viability, and cell differentiation were, respectively, assessed. In addition, the anti-biofilm properties of BAG-loaded resin composites regarding bacterial viability, biofilm thickness, and biofilm morphology, were assessed for the first time. In vitro biological results demonstrated that cell metabolic activity and ALP expression were significantly diminished when subjected to composite extracts or direct contact with the resin composites containing BAG fillers. However, after the preconditioning treatments in MEM and SHARP solutions, the biomimetic calcium phosphate minerals on 7.7 vol% BAG-loaded composites revealed unimpaired or even better cellular processes, including cell adhesion, cell proliferation, and early cell differentiation. Furthermore, resin composites with 1.9, 3.8, and 7.7 vol% BAG could not only reduce cell viability in S. mutans biofilm on the composite surface but also reduce the biofilm thickness and bacterial aggregations. This phenomenon was more evident in BAG7.7 due to the high ionic osmotic pressure and alkaline microenvironment caused by BAG dissolution. This study concludes that multi-functional bio-safe resin composites with mineralization and anti-biofilm properties can be achieved by adding low quantities of BAG into the resin system, which offers promising abilities to mineralize as well as prevent caries without sacrificing biological activity. Full article
(This article belongs to the Special Issue Functional Materials for Dental Restorations—2nd Edition)
Show Figures

Figure 1

21 pages, 5147 KiB  
Article
Investigating Bioactive-Glass-Infused Gels for Enamel Remineralization: An In Vitro Study
by Zbigniew Raszewski, Katarzyna Chojnacka and Marcin Mikulewicz
J. Funct. Biomater. 2024, 15(5), 119; https://doi.org/10.3390/jfb15050119 - 29 Apr 2024
Cited by 7 | Viewed by 2799
Abstract
Objective: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. Methods: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin [...] Read more.
Objective: Dental hypersensitivity remains widespread, underscoring the need for materials that can effectively seal dental tubules. This study evaluated the potential of bioactive-glass-infused hydroxyethyl cellulose gels in this context. Methods: Five gels were synthesized, each containing 20% bioactive glass (specifically, 45S5, S53P4, Biomin F, and Biomin C), with an additional blank gel serving as a control. Subjected to two months of accelerated aging at 37 ± 2 °C, these gels were assessed for key properties: viscosity, water disintegration time, pH level, consistency, adhesion to glass, and element release capability. Results: Across the board, the gels facilitated the release of calcium, phosphate, and silicon ions, raising the pH from 9.00 ± 0.10 to 9.7 ± 0.0—a range conducive to remineralization. Dissolution in water occurred within 30–50 min post-application. Viscosity readings showed variability, with 45S5 reaching 6337 ± 24 mPa/s and Biomin F at 3269 ± 18 mPa/s after two months. Initial adhesion for the blank gel was measured at 0.27 ± 0.04 Pa, increasing to 0.73 ± 0.06 Pa for the others over time. Gels can release elements upon contact with water (Ca Biomin C 104.8 ± 15.7 mg/L; Na Biomin F 76.30 ± 11.44 mg/L; P Biomin C 2.623 ± 0.393 mg/L; Si 45S5-45.15 ± 6.77mg/L, F Biomin F 3.256 ± 0.651mg/L; Cl Biomin C 135.5 ± 20.3 mg/L after 45 min). Conclusions: These findings highlight the gels’ capacity to kickstart the remineralization process by delivering critical ions needed for enamel layer reconstruction. Further exploration in more dynamic, real-world conditions is recommended to fully ascertain their practical utility. Full article
Show Figures

Figure 1

26 pages, 3537 KiB  
Review
Advancements in Biomedical Applications of Calcium Phosphate Glass and Glass-Based Devices—A Review
by Jawad T. Pandayil, Nadia G. Boetti and Davide Janner
J. Funct. Biomater. 2024, 15(3), 79; https://doi.org/10.3390/jfb15030079 - 21 Mar 2024
Cited by 16 | Viewed by 3755
Abstract
Calcium phosphate (CaP) glass has recently gained popularity as a promising material for a wide range of biomedical applications. Recent developments have seen CaP glasses moving from a passive implant material to an active degradable material, particularly as a major constituent of bioresorbable [...] Read more.
Calcium phosphate (CaP) glass has recently gained popularity as a promising material for a wide range of biomedical applications. Recent developments have seen CaP glasses moving from a passive implant material to an active degradable material, particularly as a major constituent of bioresorbable photonic devices. This holds great promise in advanced biomedical applications, since the main constituents of CaP glasses are present in the human body. In this review, the progressive advancements in the biomedical applications of calcium phosphate glass-based devices over the past 50 years are discussed. An overview of their role as reinforcing agents and the studies on doping their matrices for ion releasing and drug and gene delivery are reviewed. Recent applications of CaP glass and fibers in soft-tissue engineering and their potential for optical quality bioresorbable devices are then discussed along with the current challenges and potential future directions, emphasizing the promising role of CaP glass in the next generation of biomaterials. Considering their progress and potential in performing several biomedical functionalities over time, CaP glass-based devices hold promise for becoming enabling tools as an implantable, bioresorbable, multifunctional class of devices in future biomedicine. Full article
(This article belongs to the Special Issue Bioactive Glasses in Medical Applications)
Show Figures

Figure 1

31 pages, 948 KiB  
Review
Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction
by Argyrios Periferakis, Aristodemos-Theodoros Periferakis, Lamprini Troumpata, Serban Dragosloveanu, Iosif-Aliodor Timofticiuc, Spyrangelos Georgatos-Garcia, Andreea-Elena Scheau, Konstantinos Periferakis, Ana Caruntu, Ioana Anca Badarau, Cristian Scheau and Constantin Caruntu
Biomimetics 2024, 9(3), 154; https://doi.org/10.3390/biomimetics9030154 - 1 Mar 2024
Cited by 25 | Viewed by 4562
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for [...] Read more.
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account. Full article
Show Figures

Figure 1

Back to TopTop