Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = calcium phosphate coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2677 KB  
Article
In Vivo Study of Osseointegrable Bone Calcium Phosphate (CaP) Implants Coated with a Vanillin Derivative
by Serena Medaglia, Patricia Bernabé-Quispe, Julia Tomás-Chenoll, María Cebriá-Mendoza, María Ángeles Tormo-Mas, Víctor Javier Primo-Capella, Andrea Bernardos, María Dolores Marcos, José Luis Peris-Serra, Elena Aznar and Ramón Martínez-Máñez
Pharmaceuticals 2026, 19(1), 91; https://doi.org/10.3390/ph19010091 - 3 Jan 2026
Viewed by 234
Abstract
Background/Objectives: Orthopaedic infections associated with implant surgery remain a major public health concern, often caused by bacterial colonization of implant surfaces. Staphylococcus epidermidis is among the most common pathogens involved. Developing antimicrobial bone implants that prevent infection without compromising bone regeneration is [...] Read more.
Background/Objectives: Orthopaedic infections associated with implant surgery remain a major public health concern, often caused by bacterial colonization of implant surfaces. Staphylococcus epidermidis is among the most common pathogens involved. Developing antimicrobial bone implants that prevent infection without compromising bone regeneration is therefore essential. This study investigates the antimicrobial and osteointegrative performance of calcium phosphate (CaP) materials functionalized with vanillin, an essential oil component with known antimicrobial properties. Methods: Commercial CaP regenerative materials were covalently coated with vanillin. Antibacterial activity was evaluated against Staphylococcus epidermidis RP62A using viability assays. In vivo osseointegration was assessed in New Zealand female rabbits implanted with vanillin-coated and uncoated CaP scaffolds. Results: Vanillin-functionalized CaP scaffolds exhibited strong bactericidal activity at 24 h and bacteriostatic effects at 48 h at a concentration of 10 mg/mL. In vivo analyses showed no significant differences in osseointegration between vanillin-coated implants and control CaP materials. Conclusions: Vanillin-functionalized CaP materials maintain a high safety profile without impairing bone integration, supporting their potential use in clinical applications. Full article
Show Figures

Graphical abstract

14 pages, 4845 KB  
Article
Elaboration of Natural Hydroxyapatite Coating by Plasma Spraying
by Maya Kebaili, Amina Ghedjemis, Lilia Benchikh, Yazid Aitferhat, Ilyes Abacha, Kamel Hebbache, Cherif Belebchouche and El Hadj Kadri
Physchem 2025, 5(4), 57; https://doi.org/10.3390/physchem5040057 - 17 Dec 2025
Viewed by 242
Abstract
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development [...] Read more.
Metallic implants used in orthopedics, such as titanium alloys, possess excellent mechanical strength but suffer from corrosion and poor bio-integration, often necessitating revision surgeries. Bioactive coatings, particularly hydroxyapatite, can enhance implant osteoconductivity, but high-purity synthetic hydroxyapatite is costly. This study investigates the development and characterization of a low-cost, biocompatible coating using hydroxyapatite derived from an unconventional natural source dromedary bone applied onto a titanium substrate via plasma spraying. Hydroxyapatite powder was synthesized from dromedary femurs through a thermal treatment process at 1000 °C. The resulting powder was then deposited onto a sandblasted titanium dioxide substrate using an atmospheric plasma spray technique. The physicochemical, structural, and morphological properties of both the source powder and the final coating were comprehensively analyzed using Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, and Fourier-Transform Infrared Spectroscopy. Characterization of the powder confirmed the successful synthesis of pure, crystalline hydroxyapatite, with Fourier-Transform Infrared Spectroscopy analysis verifying the complete removal of organic matter. The plasma-sprayed coating exhibited good adhesion and a homogenous, lamellar microstructure typical of thermal spray processes, with an average thickness of approximately 95 μm. X-ray Diffraction analysis of the coating revealed that while hydroxyapatite remained the primary phase, partial decomposition occurred during spraying, leading to the formation of secondary phases, including tricalcium phosphate and calcium oxide. Scanning Electron Microscopy imaging showed a porous surface composed of fully and partially melted particles, a feature potentially beneficial for bone integration. The findings demonstrate that dromedary bone is a viable and low-cost precursor for producing bioactive hydroxyapatite coatings for orthopedic implants. The plasma spray method successfully creates a well-adhered, porous coating, though process-induced phase changes must be considered for biomedical applications. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

19 pages, 6315 KB  
Article
Organic Acid-Based Anodization Process to Produce Bioactive Oxides on Titanium Implants
by Arunendu Ettuthaiyil Sambasivan, Amisha Parekh, Amol V. Janorkar and Michael D. Roach
Materials 2025, 18(22), 5190; https://doi.org/10.3390/ma18225190 - 15 Nov 2025
Viewed by 496
Abstract
Titanium implants are widely used in medicine because of their favorable mechanical properties and biocompatibility; however, the rapidly forming titanium oxide coatings do not provide an ideal bioactive surface to stimulate osseointegration. This study aims to enhance titanium implant osseointegration through anodization processes [...] Read more.
Titanium implants are widely used in medicine because of their favorable mechanical properties and biocompatibility; however, the rapidly forming titanium oxide coatings do not provide an ideal bioactive surface to stimulate osseointegration. This study aims to enhance titanium implant osseointegration through anodization processes designed to incorporate elements and compounds present within human bone into the surface oxides. Commercially pure titanium grade 4 (CPTi) discs were anodized in either oxalic, malic, or ascorbic acid-based electrolytes. Each resulting oxide exhibited complex surface topographies. EDS analyses revealed that Ca, P, and Mg bone chemistry dopant elements were incorporated into each of the oxide coatings. X-ray diffraction analyses revealed combinations of anatase and calcium titanate compounds present in each oxide. Additionally, two of the anodized oxides showed calcium oxide formation, and one oxide also revealed tricalcium phosphate (α-TCP) and hydroxyapatite (HA) formation. Subsequent FTIR spectroscopy analyses revealed carbonate substitution peaks to be present in two of the oxides. This finding indicated that the TCP and HA compounds shown in the XRD analyses of one oxide represented the formation of bone-like carbonated calcium phosphate compounds. A 21-day cell culture study showed favorable cell culture responses for each of the organic-acid-based anodized oxides. Moreover, two of the oxides showed good cytocompatibility and early osteogenic differentiation compared to non-anodized titanium controls. Thus, the organic acid anodization processes developed in this study show promise to enhance future titanium implant clinical outcomes. Full article
Show Figures

Figure 1

18 pages, 8857 KB  
Article
Biomimetic Porous Coatings on a Biocompatible Ti-15Mo Alloy as a Platform for Local Delivery of Anticancer Drugs to Patient Tissues
by Svetlana Gatina, Ruzil Farrakhov, Alfiz Gareev, Azat Sabitov, Nariman A. Enikeev, Natalia Anisimova and Mikhail Kiselevskiy
Biomedicines 2025, 13(11), 2779; https://doi.org/10.3390/biomedicines13112779 - 14 Nov 2025
Viewed by 534
Abstract
Background and Objectives: Currently, the development of local drug delivery systems for the treatment of cancer patients is a pressing issue. Such systems allow for the targeted delivery of anticancer drugs directly to the tumor site, ensuring prolonged drug release or reducing the [...] Read more.
Background and Objectives: Currently, the development of local drug delivery systems for the treatment of cancer patients is a pressing issue. Such systems allow for the targeted delivery of anticancer drugs directly to the tumor site, ensuring prolonged drug release or reducing the risk of recurrence after tumor removal, minimizing the impact on healthy tissues and thereby reducing the overall toxic load on the body. This work is devoted to evaluating the prospects of using scaffolds based on low-modulus titanium Ti-15Mo alloy with a biomimetic coating as a platform for the local administration of the cytostatic drug cisplatin into the patient’s body. Methods: Porous coatings were obtained by plasma electrolytic oxidation in an aqueous solution of sodium phosphate and calcium acetate with the addition of various components. The influence of coating parameters on the corrosion resistance of samples and on the antiproliferative effect of cisplatin-loaded scaffolds was evaluated. Human K562 hemoblastosis, HT116 intestinal cancer, and SKOV3 ovarian cancer cell lines were used as cell models. Results: It was shown that the addition of sodium phosphate (the PS type electrolyte) provides the formation of a coating with a developed system of interconnected pores characterized by an attractive combination of parameters: high porosity (17%), high pore size (3.9 μm), and considerable thickness (17.4 μm). This coating demonstrated the best corrosion resistance in a Ringer solution as compared to the other tested states. In addition, the PS coating loaded with cisplatin exhibited a pronounced cytotoxic effect on cancer cells. This effect was attributed to its ability to fix cisplatin on the surface, which slows down its release into the extracellular environment, increasing the time of its action, thereby contributing to a more effective (by more than 3 times) suppression of tumor cell proliferation compared to the action of the standard form of the drug in the form of a solution when changing the growth medium and subsequent incubation for 48 h. Conclusions: PS scaffolds made of low-modulus titanium alloy Ti-15Mo with a biomimetic surface in an electrolyte based on an aqueous solution of sodium phosphate and calcium acetate with the addition of sodium silicate can be used as an advanced platform for the local delivery of the cytostatic drug cisplatin, which makes them promising for application in orthopedic oncology. Full article
Show Figures

Figure 1

15 pages, 8375 KB  
Article
Femtosecond Laser-Processed, Copper-Coated Stainless Steel Implants Promoting In Situ Calcium Phosphate Crystallization for Orthopedic Application
by Albena Daskalova, Maja Dutour Sikirić, Liliya Angelova, Tihomir Car, Ana-Marija Milisav, Stuart Neil and Abeer Shaalan
Crystals 2025, 15(11), 954; https://doi.org/10.3390/cryst15110954 - 5 Nov 2025
Viewed by 480
Abstract
Today, the engineering of load-bearing bone tissue after severe trauma still relies on metal-based (Ti, CoCrMo alloys or stainless steel) permanent implants. Such artificial scaffolds are typically applied in the body and come into direct contact with the recipient’s cells, whose adhesion affects [...] Read more.
Today, the engineering of load-bearing bone tissue after severe trauma still relies on metal-based (Ti, CoCrMo alloys or stainless steel) permanent implants. Such artificial scaffolds are typically applied in the body and come into direct contact with the recipient’s cells, whose adhesion affects the patient’s implant acceptance or rejection. The present study aims to create a nano-rough texture by means of ultra-short femtosecond laser (fs)-induced periodicity in the form of laser induced periodic surface structures (LIPSS) on the surface of a stainless steel implant model, which is additionally functionalized via magnetron-sputtering with a thin Cu layer, thus providing the as-created implants with a stable antimicrobial interface. Calcium phosphate (CaP) crystal growth was additionally applied due to the strong bioactive interface bond that CaPs provide to the bone connective tissue, as well as for the strong interface bond they create between the artificial implant and the surrounding bone tissue, thereby stabilizing the implanted structure within the body. The bioactive properties in the as-created antimicrobial hybrid topographical design, achieved through femtosecond laser-induced nanoscale surface structuring and micro-sized CaP crystal growth, have the potential for subsequent practical applications in bone tissue engineering. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 5772 KB  
Article
Electrochemical Evaluation of Ag–CaP–ZrO2 Composite Coatings on Ti6Al4V for Enhanced Corrosion Resistance in Dental Implants
by Mohamed Aissi, Azzedine Er-ramly and Nadia Merzouk
Prosthesis 2025, 7(6), 141; https://doi.org/10.3390/prosthesis7060141 - 4 Nov 2025
Viewed by 609
Abstract
Objective: The Ti6Al4V titanium alloy is widely used for dental implants because of its excellent mechanical properties, corrosion resistance, and biocompatibility. However, its bioinert surface limits both osseointegration and resistance to bacterial colonization. Methods: To address these challenges, this study develops a composite [...] Read more.
Objective: The Ti6Al4V titanium alloy is widely used for dental implants because of its excellent mechanical properties, corrosion resistance, and biocompatibility. However, its bioinert surface limits both osseointegration and resistance to bacterial colonization. Methods: To address these challenges, this study develops a composite coating based on calcium phosphate (CaP) and silver (Ag), reinforced with zirconium oxide (ZrO2). The coating was deposited on Ti6Al4V using an immersion technique to improve the surface properties of the alloy. Electrochemical analyses (OCP, EIS, and potentiodynamic polarization) were performed in simulated physiological conditions to evaluate the corrosion behavior, while SEM/EDS was used to characterize the surface morphology and composition. Results: The Ag- and Zr-containing CaP coatings significantly improved the corrosion resistance of Ti6Al4V compared with uncoated and CaP-coated samples. Conclusions: This approach provides a promising strategy to enhance the electrochemical stability and long-term durability of titanium dental implants, thereby contributing to their reliable performance in the oral environment. Full article
(This article belongs to the Section Bioengineering and Biomaterials)
Show Figures

Figure 1

20 pages, 6891 KB  
Article
Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response
by Ainur Zhassulan, Bauyrzhan Rakhadilov, Daryn Baizhan, Aidar Kengesbekov, Dauir Kakimzhanov and Nazira Musataeva
Coatings 2025, 15(10), 1142; https://doi.org/10.3390/coatings15101142 - 2 Oct 2025
Cited by 2 | Viewed by 1189
Abstract
Titanium and its alloys are widely used in biomedical implants due to their favorable mechanical properties and corrosion resistance; however, their natural surface lacks sufficient bioactivity and antibacterial performance. Micro-arc oxidation is a promising approach to producing bioactive coatings, and the incorporation of [...] Read more.
Titanium and its alloys are widely used in biomedical implants due to their favorable mechanical properties and corrosion resistance; however, their natural surface lacks sufficient bioactivity and antibacterial performance. Micro-arc oxidation is a promising approach to producing bioactive coatings, and the incorporation of nanoparticles such as TiO2 may further improve their functionality. This study aimed to determine the optimal TiO2 nanoparticle concentration in the micro-arc oxidation electrolyte that ensures coating stability and biological safety. Calcium–phosphate coatings were fabricated on commercially pure titanium using micro-arc oxidation with two TiO2 concentrations: 0.5 wt.% (MAO 1) and 1 wt.% (MAO 2). Surface morphology, porosity, and phase composition were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Corrosion resistance was evaluated via potentiodynamic polarization in NaCl and Ringer’s solutions, while biocompatibility was assessed in vitro using HOS human osteosarcoma cells and MTT assays. Increasing the TiO2 content to 1% decreased coating porosity (13.7% vs. 26.3% for MAO 1), enhanced corrosion protection, and reduced the friction coefficient compared to bare titanium. However, MAO 2 exhibited high cytotoxicity (81% cell death) and partial structural degradation in the biological medium. MAO 1 maintained integrity and showed no toxic effects (3% cell death). These results suggest that 0.5% TiO2 is the optimal concentration, providing a balance between corrosion resistance, mechanical stability, and biocompatibility, supporting the development of safer implant coatings. Full article
Show Figures

Figure 1

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Cited by 1 | Viewed by 901
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

24 pages, 4152 KB  
Article
Feasibility Study of Strontium-Containing Calcium Phosphate Coatings on Micro-Arc Oxidized AZ31
by Satish S. Singh, John Ohodnicki, Abhijit Roy, Mitali Patil, Boeun Lee and Prashant N. Kumta
Materials 2025, 18(19), 4509; https://doi.org/10.3390/ma18194509 - 28 Sep 2025
Viewed by 538
Abstract
Calcium phosphate coatings are known for their osteoconductive prowess. In this work, calcium phosphate coatings were studied on a model biodegradable magnesium alloy of AZ31, primarily to provide improved corrosion protection and, more importantly, to confer in vitro cytocompatibility to the AZ31 alloy. [...] Read more.
Calcium phosphate coatings are known for their osteoconductive prowess. In this work, calcium phosphate coatings were studied on a model biodegradable magnesium alloy of AZ31, primarily to provide improved corrosion protection and, more importantly, to confer in vitro cytocompatibility to the AZ31 alloy. Correspondingly, an aqueous-based approach was developed to deposit Sr2+-substituted calcium phosphates on micro-arc oxidized AZ31. Micro-arc oxidation was used mainly as a pretreatment technique due to improved homogeneity and adhesion strength in comparison to the coatings formed by the traditionally used alkaline and acidic pretreatment. Calcium phosphate coatings with up to 11.5 mol. % Sr were formed on micro-arc oxidized AZ31 substrates. Despite observation of greater than the intended 10 mol. % Sr to the calcium phosphate coatings as measured within the measurement error, biphasic mixtures of dicalcium phosphate dihydrate and poorly crystalline hydroxyapatite were formed. Micro-arc oxidation treatment, nevertheless, provided a slight improvement in corrosion protection compared to uncoated AZ31. However, much-improved corrosion protection was provided by the calcium phosphate coatings prepared either with or without Sr2+. The calcium phosphate coatings prepared with Sr2+ were also observed to support improved MC3T3-E1 murine pre-osteoblast cell proliferation compared to the calcium phosphate coated substrates prepared without Sr2+. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Graphical abstract

27 pages, 1365 KB  
Systematic Review
Enhancing Osseointegration of Zirconia Implants Using Calcium Phosphate Coatings: A Systematic Review
by Jacek Matys, Ryszard Rygus, Julia Kensy, Krystyna Okoniewska, Wojciech Zakrzewski, Agnieszka Kotela, Natalia Struzik, Hanna Gerber, Magdalena Fast and Maciej Dobrzyński
Materials 2025, 18(19), 4501; https://doi.org/10.3390/ma18194501 - 27 Sep 2025
Cited by 1 | Viewed by 1245
Abstract
Objective: Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a variant of zirconia (ZrO2), has attracted interest as a substitute for titanium in dental and orthopedic implants, valued for its biocompatibility and aesthetics that resemble natural teeth. However, its bioinert surface limits osseointegration, making [...] Read more.
Objective: Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a variant of zirconia (ZrO2), has attracted interest as a substitute for titanium in dental and orthopedic implants, valued for its biocompatibility and aesthetics that resemble natural teeth. However, its bioinert surface limits osseointegration, making surface modifications such as calcium phosphate (CaP) coatings highly relevant. Materials and methods: The review process adhered to the PRISMA guidelines. Electronic searches of PubMed, Scopus, Web of Science, Embase, and Cochrane Library (July 2025) identified studies evaluating CaP-coated zirconia implants. Eligible studies included in vitro, in vivo, and preclinical investigations with a control group. Data on coating type, deposition method, and biological outcomes were extracted and analyzed. Results: A total of 27 studies were analyzed, featuring different calcium phosphate (CaP) coatings including β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), octacalcium phosphate (OCP), and various composites. These coatings were applied using diverse techniques such as RF magnetron sputtering, sol–gel processing, biomimetic methods, and laser-based approaches. In multiple investigations, calcium phosphate coatings enhanced osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression, and bone-to-implant contact (BIC) relative to unmodified zirconia surfaces. Multifunctional coatings incorporating growth factors, antibiotics, or nanoparticles showed additional benefits. Conclusion: CaP coatings enhance the bioactivity of zirconia implants and represent a promising strategy to overcome their inertness. Further standardized approaches and long-term studies are essential to verify their translational relevance. Full article
(This article belongs to the Special Issue Calcium Phosphate Biomaterials with Medical Applications)
Show Figures

Graphical abstract

20 pages, 5964 KB  
Article
Synthesis and Characterization of Bioactive Coatings with Bone Regeneration Potential and Anti-Resorptive Effect
by Maxim V. Maximov, Lea Sleiman, Oana Cristina Maximov, Roxana Doina Trușcă, Ludmila Motelica, Angela Spoială, Denisa Ficai, Anton Ficai and Sorina Dinescu
Coatings 2025, 15(10), 1120; https://doi.org/10.3390/coatings15101120 - 26 Sep 2025
Viewed by 691
Abstract
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine [...] Read more.
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine through spraying. This strategy integrates three components: a metallic substrate as a stable and inexpensive support, a bioactive glass layer with well-known osteogenic potential, and a superficial organic layer of benfotiamine, a lipid-soluble analog of vitamin B1 with higher bioavailability. Samarium doping was selected based on previously reported antimicrobial potential against clinically relevant staphylococci, while the rationale for benfotiamine functionalization derives from literature describing vitamin B1 derivatives with anti-resorptive and osteogenic activity. The coatings were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) microscopy. Bioactivity was assessed by immersion in simulated body fluid (SBF), where phosphate bands indicated the formation of calcium phosphate phases (CaPs). Wettability tests showed a reduced contact angle after benfotiamine functionalization. Cytocompatibility was evaluated by LDH and MTT assays with MC3T3-E1 cells, suggesting overall biocompatibility and enhanced cell viability after 7 days for the benfotiamine-functionalized coatings. The present findings support a simple and cost-effective route to multifunctional coatings with potential relevance for future orthopedic applications. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

24 pages, 815 KB  
Review
Porous Structures, Surface Modifications, and Smart Technologies for Total Ankle Arthroplasty: A Narrative Review
by Joshua M. Tennyson, Michael O. Sohn, Arun K. Movva, Kishen Mitra, Conor N. O’Neill, Albert T. Anastasio and Samuel B. Adams
Bioengineering 2025, 12(9), 955; https://doi.org/10.3390/bioengineering12090955 - 5 Sep 2025
Cited by 1 | Viewed by 1433
Abstract
Surface engineering and architectural design represent key frontiers in total ankle arthroplasty (TAA) implant development. This narrative review examines biointegration strategies, focusing on porous structures, surface modification techniques, and emerging smart technologies. Optimal porous architectures with 300–600 µm pore sizes facilitate bone ingrowth [...] Read more.
Surface engineering and architectural design represent key frontiers in total ankle arthroplasty (TAA) implant development. This narrative review examines biointegration strategies, focusing on porous structures, surface modification techniques, and emerging smart technologies. Optimal porous architectures with 300–600 µm pore sizes facilitate bone ingrowth and osseointegration, while functionally graded structures address regional biomechanical demands. Surface modification encompasses bioactive treatments (such as calcium phosphate coatings), topographical modifications (including micro/nanotexturing), antimicrobial approaches (utilizing metallic ions or antibiotic incorporation), and wear-resistant technologies (such as diamond-like carbon coatings). Multifunctional approaches combine strategies to simultaneously address infection prevention, enhance osseointegration, and improve wear resistance. Emerging technologies include biodegradable scaffolds, biomimetic surface nanotechnology, and intelligent sensor-based monitoring systems. While many innovations remain in the research stage, they demonstrate the potential to establish TAA as a comprehensive alternative to arthrodesis. Successful implant design requires integrated surface engineering tailored to the ankle joint’s demanding biomechanical and biological environment Full article
Show Figures

Graphical abstract

9 pages, 2532 KB  
Article
Effect of Calcium Nitrate on Microstructure and Anti-Corrosion Properties of Zinc Phosphate Coatings on Stainless Steel
by Xian Zhang, Hong-Hong Zhang, Kang Wu, Yan Zhang, Zhong-Nian Yang and Yu Chen
Coatings 2025, 15(9), 1018; https://doi.org/10.3390/coatings15091018 - 1 Sep 2025
Viewed by 684
Abstract
Hopeite (Zn3(PO4)2·4H2O) coatings, fabricated via zinc phosphate chemical conversion (ZPCC), have attracted considerable interest in biomedical applications owing to their excellent corrosion resistance and biocompatibility. However, the influence of calcium nitrate (CN) on coating properties [...] Read more.
Hopeite (Zn3(PO4)2·4H2O) coatings, fabricated via zinc phosphate chemical conversion (ZPCC), have attracted considerable interest in biomedical applications owing to their excellent corrosion resistance and biocompatibility. However, the influence of calcium nitrate (CN) on coating properties remains poorly understood. This study systematically investigates the effect of CN concentration on the microstructure and corrosion behavior of ZPCC coatings deposited on stainless steel (SS). The phase composition, surface morphology, and elemental distribution were characterized using X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). Electrochemical corrosion performance was assessed via potentiodynamic polarization in a 0.9 wt.% NaCl solution. The results indicate that CN concentration critically influences coating morphology, with higher concentrations leading to reduced crystal size and increased coating mass. Notably, the coating prepared with 6 g/L CN exhibited a dense, uniform, and fine-grained microstructure, resulting in superior corrosion resistance. Additionally, the optimized coating demonstrated strong interfacial adhesion, with a shear strength of 10.05 ± 1.2 MPa. Full article
(This article belongs to the Special Issue Advanced Functional Coatings for Corrosion Protection)
Show Figures

Figure 1

38 pages, 3471 KB  
Review
State of Art and Perspective of Calcium Phosphate-Based Coatings Coupled with Bioactive Compounds for Orthopedic Applications
by Matteo Montesissa, Viviana Tommasini, Katia Rubini, Marco Boi, Nicola Baldini and Elisa Boanini
Nanomaterials 2025, 15(15), 1199; https://doi.org/10.3390/nano15151199 - 5 Aug 2025
Cited by 2 | Viewed by 2228
Abstract
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of [...] Read more.
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of implanted devices is an effective strategy to increase their osteoinductive and osseointegrative properties. Several coating fabrication technologies are presented, including chemical deposition and physical methods. The application of bioactive molecules in combination with calcium phosphate coatings may improve their osteointegrative, antibacterial, and antitumor properties, therefore increasing the performance of implantable devices. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

18 pages, 10471 KB  
Article
Biocompatible Hybrid Surface Layers on Porous Magnesium Structures Fabricated by Spark Sintering
by Konstantine V. Nadaraia, Anastasia A. Golysheva, Evgeniy A. Belov, Dmitry A. Lyapin, Mariia S. Gerasimenko, Maria A. Nadaraia, Arina I. Pleshkova, Igor M. Imshinetskiy, Oleg O. Shichalin, Anton A. Belov, Eugeniy K. Papynov, Sergey S. Atarshchikov and Dmitry V. Mashtalyar
J. Funct. Biomater. 2025, 16(8), 269; https://doi.org/10.3390/jfb16080269 - 22 Jul 2025
Viewed by 1046
Abstract
In this study, 3D Mg scaffolds were obtained by the spark plasma sintering (SPS), and a calcium phosphate coating was then obtained on the samples by the plasma electrolytic oxidation. A hybrid coating with vancomycin, zoledronic acid, and menaquinone MK-7 was formed to [...] Read more.
In this study, 3D Mg scaffolds were obtained by the spark plasma sintering (SPS), and a calcium phosphate coating was then obtained on the samples by the plasma electrolytic oxidation. A hybrid coating with vancomycin, zoledronic acid, and menaquinone MK-7 was formed to improve biocompatibility. The mechanical properties of the formed specimens were studied. According to XRD, XRF, SEM, EDS, and OSP studies obtained scaffolds have developed morphology and contain hydroxyapatite as well as bioactive substances. Formation of coatings improves the wettability of samples (contact angle decreases from 123.8 ± 3.1° to 26.9 ± 4.1°) and increases the surface roughness by more than 3 times. This makes them promising for use as a new generation of implantation materials. The results are important for the development of personalized implants with improved functional characteristics. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

Back to TopTop