Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Morphology of MAO Coatings
3.2. Phase Composition
3.3. Porosity and Pore Size
3.4. Coating Thickness (Cross-Sectional SEM)
3.5. Surface Roughness
3.6. Corrosion Behavior
3.7. Tribological Performance
3.8. Wettability (Water Contact Angle)
3.9. Cytotoxicity and Surface Stability in Cell Culture
Group | Shapiro–Wilk Test with Royston’s Correction | Normal Distribution Law of the Variable |
---|---|---|
MAO 1 | SW = 0.94, p = 0.13 | yes |
MAO 2 | SW = 0.66, p < 0.001 | no |
Group | Cytotoxicity Index Values, % of Control, Me (Q1; Q3) | Pairwise Comparison, Brunner–Munzel Test |
---|---|---|
MAO 1 | 3 (−2; 10) | Brunner–Munzel Test Statistic = 17.63 p < 0.001 |
MAO 2 | 81 (76; 84) |
Group | n | Cytotoxicity Index Values, % of Control (X ± SD) | Multiple Comparison, Welch’s ANOVA | Pairwise Comparison, Games–Howell Test |
---|---|---|---|---|
Sample 31 | 5 | 10 ± 7 | F = 7.21 p = 0.0054 | p31–32 = 0.0067 p31–33 = 0.99 p31–34 = 0.28 p31–35 = 0.99 p32–33 = 0.0091 p32–34 = 0.099 p32–35 = 0.0095 p33–34 = 0.39 p33–35 = 0.99 p34–35 = 0.41 |
Sample 32 | 5 | −15.80 ± 8.82 | ||
Sample 33 | 5 | 8.80 ± 7.19 | ||
Sample 34 | 5 | −0.2 ± 7.82 | ||
Sample 35 | 5 | 8.6 ± 7.16 |
Group | n | Cytotoxicity Index Values, % of Control (X ± SD) | Multiple Comparison, Welch’s ANOVA | Pairwise Comparison, Games–Howell Test |
---|---|---|---|---|
Sample 21 | 5 | 80.60 ± 1.67 | F = 201.47 p < 0.001 | p21–22 < 0.001 p21–23 = 0.042 p21–24 = 0.071 p21–25 < 0.001 p22–23 < 0.001 p22–24 < 0.001 p22–25 < 0.001 p23–24 = 0.0014 p23–25 < 0.001 p24–25 < 0.001 |
Sample 22 | 5 | 90.80 ± 0.84 | ||
Sample 23 | 5 | 84 ± 1.23 | ||
Sample 24 | 5 | 77 ± 1.87 | ||
Sample 25 | 5 | 11.80 ± 6.61 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akshaya, S.; Rowlo, P.K.; Dukle, A.; Nathanael, A.J. Antibacterial coatings for titanium implants: Recent trends and future perspectives. Antibiotics 2022, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Besisa, N.H.A.; Yajima, T. Titanium-Based Alloys: Classification and Diverse. Titan.-Based Alloys-Charact. Appl. 2024, 125. [Google Scholar]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018, 79, 1–22. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Ramakrishna, S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol. J. 2021, 16, 2000116. [Google Scholar] [CrossRef]
- Kengesbekov, A.B.; Serikbaykyzy, A.; Bayandinova, M.B.; Batanov, E.E.; Bazarov, N.E.; Askhatov, A.N. Development of biocompatible coatings for orthopedic joint implants. Phys. Sci. Technol. 2025, 12, 84–94. [Google Scholar] [CrossRef]
- Ben Arbia, M.; Helal, H.; Comini, E. Recent advances in low-dimensional metal oxides via sol-gel method for gas detection. Nanomaterials 2024, 14, 359. [Google Scholar] [CrossRef]
- Prasad, K.N.; Syed, I.; Subbu, S.K. Laser dimple texturing–applications, process, challenges, and recent developments: A review. Aust. J. Mech. Eng. 2022, 20, 316–331. [Google Scholar] [CrossRef]
- Roccaforte, F.; Giannazzo, F.; Greco, G. Ion implantation doping in silicon carbide and gallium nitride electronic devices. Micro 2022, 2, 23–53. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, C.; Waite, T.D. Hydroxyl radicals in anodic oxidation systems: Generation, identification and quantification. Water Res. 2022, 217, 118425. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Attarilar, S.; Liu, S.; Liu, J.; Song, X.; Li, L.; Tang, Y. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review. Front. Bioeng. Biotechnol. 2020, 8, 603072. [Google Scholar] [CrossRef] [PubMed]
- Alontseva, D.; Safarova, Y.; Voinarovych, S.; Obrosov, A.; Yamanoglu, R.; Khoshnaw, F.; Weiß, S. Biocompatibility and corrosion of microplasma-sprayed titanium and tantalum coatings versus titanium alloy. Coatings 2024, 14, 206. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Huang, T.Y.; Zhai, D.J.; Wang, H.B.; Feng, K.Q.; Xiang, L. Study on strontium doped bioactive coatings on titanium alloys surfaces by micro-arc oxidation. Surf. Coat. Technol. 2022, 451, 129045. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Y.; Xi, F.; Zhang, X.; Kang, Y. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Front. Bioeng. Biotechnol. 2023, 11, 1282590. [Google Scholar] [CrossRef]
- Wang, R.; Ni, S.; Ma, L.; Li, M. Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Front. Bioeng. Biotechnol. 2022, 10, 973297. [Google Scholar] [CrossRef]
- Manisekaran, R.; Chettiar, A.D.R.; Marasamy, L.; Arthikala, M.K.; Kandasamy, G.; Ibarra, V.C.; Rathore, H.S. Copper, Zinc, and Titanium-Based Semiconductor Nanomaterials for Antimicrobial Coatings and Their Mechanisms. Nano Select 2025, 6, e202400155. [Google Scholar] [CrossRef]
- Rezić, I.; Meštrović, E. Characterization of Nanoparticles in Antimicrobial Coatings for Medical Applications—A Review. Coatings 2023, 13, 1830. [Google Scholar] [CrossRef]
- Parham, S.; Wicaksono, D.H.; Bagherbaigi, S.; Lee, S.L.; Nur, H. Antimicrobial treatment of different metal oxide nanoparticles: A critical review. J. Chin. Chem. Soc. 2016, 63, 385–393. [Google Scholar] [CrossRef]
- Vera, M.L.; Traid, H.D.; Dwojak, A.N.; Rosenberger, M.R.; Schvezov, C.E. Advances in nanostructured TiO2 coatings for industrial applications. In Industrial Applications of Nanoparticles; CRC Press: Boca Raton, FL, USA, 2023; pp. 228–255. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Zhassulan, A.; Ormanbekov, K.; Shynarbek, A.; Baizhan, D.; Aldabergenova, T. Surface Modification and Tribological Performance of Calcium Phosphate Coatings with TiO2 Nanoparticles on VT1-0 Titanium by Micro-Arc Oxidation. Crystals 2024, 14, 945. [Google Scholar] [CrossRef]
- Kengesbekov, A.; Sagdoldina, Z.; Torebek, K.; Baizhan, D.; Kambarov, Y.; Yermolenko, M.; Maulet, M. Synthesis and Formation Mechanism of Metal Oxide Compounds. Coatings 2022, 12, 1511. [Google Scholar] [CrossRef]
- Abbasi-Oshaghi, E.; Mirzaei, F.; Pourjafar, M. NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: In vivo and in vitro study. Int. J. Nanomed. 2019, 14, 1919–1936. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, N.; Maitra, S.S. In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 2017, 7, 243–256. [Google Scholar] [CrossRef]
- Ajdary, M.; Moosavi, M.A.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Varma, R.S. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials 2018, 8, 634. [Google Scholar] [CrossRef]
- Salama, B.; Alzahrani, K.J.; Alghamdi, K.S.; Al-Amer, O.; Hassan, K.E.; Elhefny, M.A.; Fathalla, A.S. Silver nanoparticles enhance oxidative stress, inflammation, and apoptosis in liver and kidney tissues: Potential protective role of thymoquinone. Biol. Trace Elem. Res. 2023, 201, 2942–2954. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, W.; Xi, W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: A research review. Front. Chem. 2024, 12, 1353950. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Fu, J.; Zhao, L.; Chu, P.K.; Huo, K. Biofunctional elements incorporated nano/microstructured coatings on titanium implants with enhanced osteogenic and antibacterial performance. Adv. Healthc. Mater. 2020, 9, 2000681. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Wu, Y.; Zhang, Z.; Li, Y. Micro-arc oxidation in titanium and its alloys: Development and potential of implants. Coatings 2023, 13, 2064. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Zhassulan, A.; Baizhan, D.; Shynarbek, A.; Ormanbekov, K.; Aldabergenova, T. The effect of the electrolyte composition on the microstructure and properties of coatings formed on a titanium substrate by microarc oxidation. AIMS Mater. Sci. 2024, 11, 547–564. [Google Scholar] [CrossRef]
- Bayatanova, L.B.; Zhassulankyzy, A.Z.; Magazov, N.M.; Rakhadilov, B.K.; Muktanova, N.; Uazyrkhanova, G.K. Effect of plasma-electrolytic oxidation on mechanical properties of titanium coatings. Bull. Karaganda Univ. Phys. Ser. 2023, 111, 65–74. [Google Scholar] [CrossRef]
- Kashin, A.D.; Sedelnikova, M.B.; Uvarkin, P.V.; Ugodchikova, A.V.; Luginin, N.A.; Sharkeev, Y.P.; Bakina, O.V. Functionalizing diatomite-based micro-arc coatings for orthopedic implants: Influence of TiO2 addition. Biomimetics 2023, 8, 280. [Google Scholar] [CrossRef]
- Makurat-Kasprolewicz, B.; Wekwejt, M.; Ronowska, A.; Gajowiec, G.; Grodzicka, M.; Dzionk, S.; Ossowska, A. Influence of Ultrasound on the characteristics of CaP Coatings Generated Via the micro-arc oxidation process in relation to Biomedical Engineering. ACS Biomater. Sci. Eng. 2024, 10, 2100–2115. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Wang, P.; Wei, X.W.; Cao, W.J.; Tang, Y.T.; Wang, Y.; Gong, Z.Y.; Zu, X.T. Effect of TiO2 nanoparticles on the characteristics of MAO coatings. Int. J. Electrochem. Sci. 2019, 14, 9311–9325. [Google Scholar] [CrossRef]
- Woo, S.R.; Sung, Y.M. Enhanced photoelectrochemical water splitting of micro-arc oxidized TiO2 via anatase/rutile phase control and nitrogen doping. J. Electrochem. Soc. 2016, 163, H278. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surf. Coat. Technol. 2000, 130, 195–206. [Google Scholar] [CrossRef]
- Ceriani, F.; Casanova, L.; Massimini, L.; Brenna, A.; Ormellese, M. TiO2 microparticles incorporation in coatings produced by plasma electrolytic oxidation (PEO) on Titanium. Coatings 2023, 13, 1718. [Google Scholar] [CrossRef]
- Erfanifar, E.; Aliofkhazraei, M.; Nabavi, H.F.; Rouhaghdam, A.S. Growth kinetics and morphology of microarc oxidation coating on titanium. Surf. Coat. Technol. 2017, 315, 567–576. [Google Scholar] [CrossRef]
- Zhang, P.; Zuo, Y.; Nie, G. The pore structure and properties of microarc oxidation films on 2024 aluminum alloy prepared in electrolytes with oxide nanoparticles. J. Alloys Compd. 2020, 816, 152520. [Google Scholar] [CrossRef]
- Jin, F.; Chu, P.K.; Tong, H.; Zhao, J. Improvement of surface porosity and properties of alumina films by incorporation of Fe micrograins in micro-arc oxidation. Appl. Surf. Sci. 2006, 253, 863–868. [Google Scholar] [CrossRef]
- Li, Z.; Cai, Z.B.; Cui, X.J.; Liu, R.R.; Yang, Z.B.; Zhu, M.H. Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy. Surf. Coat. Technol. 2021, 410, 126949. [Google Scholar] [CrossRef]
- Kumar, K.; Bhadauria, S.S.; Singh, A.P. Effect of post-coating heat treatment on corrosion and stress corrosion behaviors of NiCr/TiO2-coated 316L stainless steel. Arab. J. Sci. Eng. 2023, 48, 3893–3908. [Google Scholar] [CrossRef]
- Chen, X.W.; Song, H.; Pu, H.; Zheng, R.; Zhang, M.; Zhang, D. Study of wear and corrosion resistance of ATO nanoparticle–doped micro-arc oxide film layers. Int. J. Appl. Ceram. Technol. 2024, 21, 1078–1093. [Google Scholar] [CrossRef]
- Steel, J.P. The Treatment of Certain Mental Diseases by Ringer-Locke Solution. Br. Med. J. 1927, 2, 1177. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, G.; Li, J.J. Advances in implant surface modifications to improve osseointegration. Mater. Adv. 2021, 2, 6901–6927. [Google Scholar] [CrossRef]
- Suthar, J.K.; Rakesh, B.; Vaidya, A.; Ravindran, S. Comprehensive Analysis of Titanium Oxide Nanoparticle Size and Surface Properties on Neuronal PC-12 Cells: Unraveling Cytotoxicity, Dopaminergic Gene Expression, and Acetylcholinesterase Inhibition. J. Xenobiotics 2023, 13, 662–684. [Google Scholar] [CrossRef]
- Line, F.C. Titanium Dioxide Nanoparticle (TiO2 NP) Induces Toxic Effects on LA-9 Mouse Fibroblast Cell Line. Cell. Physiol. Biochem. 2023, 57, 63–81. [Google Scholar] [CrossRef]
- Mohammadalipour, Z.; Rahmati, M.; Khataee, A.; Moosavi, M.A. Different concentrations of titanium dioxide nanoparticles induce autophagy followed by growth inhibition or cell death in A375 melanoma cells. J. Skin Stem Cell 2017, 4, e63994. [Google Scholar] [CrossRef]
- Jin, C.Y.; Zhu, B.S.; Wang, X.F.; Lu, Q.H. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem. Res. Toxicol. 2008, 21, 1871–1877. [Google Scholar] [CrossRef]
- Mamaeva, A.; Kenzhegulov, A.; Panichkin, A.; Abdulvaliyev, R.; Fischer, D.; Bakhytuly, N.; Toiynbaeva, N. Influence of Current Duty Cycle and Voltage of Micro-Arc Oxidation on the Microstructure and Composition of Calcium Phosphate Coating. Coatings 2024, 14, 766. [Google Scholar] [CrossRef]
Group | Roughness Ra, µm |
---|---|
Initial | 3.55 ± 1.5 |
MAO 0 | 3.96 ± 1.2 |
MAO 1 | 3.05 ± 0.4 |
MAO 2 | 2.98 ± 0.7 |
Element MAO 1 | Weight, % | Element MAO 2 | Weight, % |
---|---|---|---|
O | 38.24 | O | 41.72 |
P | 30.12 | P | 23.68 |
Ti | 10.17 | Ti | 7.24 |
Ca | 15.31 | Ca | 20.18 |
C | 6.16 | C | 7.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhassulan, A.; Rakhadilov, B.; Baizhan, D.; Kengesbekov, A.; Kakimzhanov, D.; Musataeva, N. Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response. Coatings 2025, 15, 1142. https://doi.org/10.3390/coatings15101142
Zhassulan A, Rakhadilov B, Baizhan D, Kengesbekov A, Kakimzhanov D, Musataeva N. Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response. Coatings. 2025; 15(10):1142. https://doi.org/10.3390/coatings15101142
Chicago/Turabian StyleZhassulan, Ainur, Bauyrzhan Rakhadilov, Daryn Baizhan, Aidar Kengesbekov, Dauir Kakimzhanov, and Nazira Musataeva. 2025. "Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response" Coatings 15, no. 10: 1142. https://doi.org/10.3390/coatings15101142
APA StyleZhassulan, A., Rakhadilov, B., Baizhan, D., Kengesbekov, A., Kakimzhanov, D., & Musataeva, N. (2025). Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response. Coatings, 15(10), 1142. https://doi.org/10.3390/coatings15101142