Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (327)

Search Parameters:
Keywords = cabernet sauvignon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 24657 KiB  
Article
Identification and Genetic Analysis of Downy Mildew Resistance in Intraspecific Hybrids of Vitis vinifera L.
by Xing Han, Yihan Li, Zhilei Wang, Zebin Li, Nanyang Li, Hua Li and Xinyao Duan
Plants 2025, 14(15), 2415; https://doi.org/10.3390/plants14152415 - 4 Aug 2025
Abstract
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance [...] Read more.
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance and high quality. To assess the potential of intraspecific recurrent selection in V. vinifera (IRSV) in improving grapevine resistance to downy mildew and to analyze the pattern of disease resistance inheritance, the disease-resistant variety Ecolly was selected as one of the parents and crossed with Cabernet Sauvignon, Marselan, and Dunkelfelder, respectively, creating three reciprocal combinations, resulting in 1657 hybrid F1 progenies. The primary results are as follows: (1) significant differences in disease resistance among grape varieties and, significant differences in disease resistance between different vintages of the same variety were found; (2) the leaf downy mildew resistance levels of F1 progeny of different hybrid combinations conformed to a skewed normal distribution and showed some maternal dominance; (3) the degree of leaf bulbous elevation was negatively correlated with the level of leaf downy mildew resistance, and the correlation coefficient with the level of field resistance was higher; (4) five progenies with higher levels of both field and in vitro disease resistance were obtained. Intraspecific hybridization can improve the disease resistance of offspring through super-parent genetic effects, and Ecolly can be used as breeding material for recurrent hybridization to obtain highly resistant varieties. Full article
Show Figures

Figure 1

20 pages, 1664 KiB  
Article
Phenolic Evolution During Industrial Red Wine Fermentations with Different Sequential Air Injection Regimes
by Paula A. Peña-Martínez, Alvaro Peña-Neira and V. Felipe Laurie
Fermentation 2025, 11(8), 446; https://doi.org/10.3390/fermentation11080446 - 31 Jul 2025
Viewed by 234
Abstract
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases [...] Read more.
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases have gained popularity, despite the limited scientific information regarding the outcomes of their use. This trial aimed to evaluate the composition of wine during industrial red wine fermentations using an automatic sequential air injection system (i.e., AirMixing MITM). Fourteen lots of Cabernet Sauvignon grapes were fermented using four air injection regimes, where the intensity and daily frequency of air injections were set to either low or high. As expected, the treatment combining high-intensity and high-frequency air injection produced the largest dissolved oxygen peaks reaching up to 1.9 mg L−1 per cycle, compared to 0.1 mg L−1 in the low-intensity and low-frequency treatment. Yet, in all cases, little to no accumulation of oxygen overtime was observed. Regarding phenolics, the highest intensity and frequency of air injections led to the fastest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration, although compositional differences among treatments equilibrate by the end of fermentation. The main differences in phenolic compounds observed during fermentation were mediated by temperature variation among wine tanks. Based on these findings, it is advisable to keep the characterizing kinetics of phenolic extraction and expand the study to the aroma evolution of wines fermented with this technology. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 131
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

18 pages, 5554 KiB  
Article
High-Vigor Rootstock Exacerbates Herbaceous Notes in Vitis vinifera L. cv. Cabernet Sauvignon Berries and Wines Under Humid Climates
by Xiao Han, Haocheng Lu, Xia Wang, Yu Wang, Weikai Chen, Xuanxuan Pei, Fei He, Changqing Duan and Jun Wang
Foods 2025, 14(15), 2695; https://doi.org/10.3390/foods14152695 - 31 Jul 2025
Viewed by 186
Abstract
Rootstocks are widely used in viticulture as an agronomic measure to cope with biotic and abiotic stresses. In winegrapes, the aroma is one of the major factors defining the quality of grape berries and wines. In the present work, the grape aroma and [...] Read more.
Rootstocks are widely used in viticulture as an agronomic measure to cope with biotic and abiotic stresses. In winegrapes, the aroma is one of the major factors defining the quality of grape berries and wines. In the present work, the grape aroma and wine aroma of Cabernet Sauvignon (CS) grafted on three rootstocks were investigated to inform the selection of rootstocks to utilize. 1103P, 5A, and SO4 altered the composition of aromatic volatiles in CS grapes and wines. Among them, 5A and SO4 had less effect on green leaf volatiles in the berries and wines, while 1103P increased green leaf volatile concentrations, up-regulating VvADH2 expression in both vintages. VvLOXA, VvLOXC, VvHPL1, VvADH1, VvADH2, and VvAAT were co-regulated by vintage and rootstock. Orthogonal partial least squares regression analysis (OPLS-DA) showed that the differential compounds in CS/1103P and CS berries were dominated by green leaf volatiles. Furthermore, the concentrations of 1-hexanol in the CS/1103P wines were significantly higher than in the other treatments in the two vintages. 1103P altered the expression of genes in the LOX-HPL pathway and increased the concentration of grape green leaf volatiles such as 1-hexanol and 1-hexanal, while vine vigor also affected green leaf volatile concentrations, the combination of which altered the aromatic composition of the wine and gave it more green flavors. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

18 pages, 589 KiB  
Article
Circular Model for the Valorization of Black Grape Pomace for Producing Pasteurized Red Must Enriched in Health-Promoting Phenolic Compounds
by Victoria Artem, Arina Oana Antoce, Elisabeta Irina Geana, Ancuta Nechita, Georgeta Tudor, Petronela Anca Onache and Aurora Ranca
Sustainability 2025, 17(14), 6633; https://doi.org/10.3390/su17146633 - 21 Jul 2025
Viewed by 407
Abstract
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive [...] Read more.
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive compounds from the black grape pomace and obtain a new food product, namely pasteurized red must with improved health-promoting properties. The study was conducted on four grape varieties for red wines—Fetească Neagră, Cabernet Sauvignon, Blauer Zweigelt, and Arcaș—each coming from a certain recognized Romanian vineyard, as follows: Murfatlar, Dealu Mare, Ștefănești-Argeș, and Iași, respectively. Both the must and the pomace extract used for each product were from the same variety and region. The recovery of polyphenols was achieved by macerating the pomace at ambient temperature, using solutions of ethanol in concentrations of 25%, 50%, and 75%. The results showed that the most efficient method of polyphenol recovery was obtained by using the ethanolic solution of 50%, which was selected for the subsequent stages of the study. The selected hydroalcoholic extract was concentrated by eliminating the solvent by roto evaporation and used as a source of supplementary bioactive compounds for the pasteurized must. The phenolic profiles of the musts enriched with phenolic extracts were determined by liquid chromatography, UHPLS-HRMS, revealing significant increases in the content of individual phenolic acids and other polyphenols. The phenolic extract recovered from the pomace significantly optimized the phenolic quality of the pasteurized must, thus contributing to the improvement of its nutritional value. The new product has a phenolic profile close to that of a red wine, but does not contain alcohol. Also, this technology is a sustainable method to convert grape waste into a safe, antioxidant-rich grape juice with potential health benefits. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

19 pages, 3887 KiB  
Systematic Review
Systematic Review and Meta-Analysis of Melatonin Quantification in Wine
by Sandra A. V. Eremia, Gabriel Lucian Radu and Camelia Albu
Appl. Sci. 2025, 15(14), 7755; https://doi.org/10.3390/app15147755 - 10 Jul 2025
Viewed by 276
Abstract
The identification of melatonin in grapes has led to the publication of numerous studies on melatonin in wines, and the aim of this study was to perform a systematic review and meta-analysis of published data on melatonin concentrations in wines. In this context, [...] Read more.
The identification of melatonin in grapes has led to the publication of numerous studies on melatonin in wines, and the aim of this study was to perform a systematic review and meta-analysis of published data on melatonin concentrations in wines. In this context, international databases such as Scopus, Web of Science and PubMed were searched for relevant articles (437) up to 29 March 2025. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used. A total of 15 studies from eight countries, involving various wine types and analytical methods, were included in the meta-analysis. Considerable analytical variation was observed across studies, and high-performance liquid chromatography (HPLC) coupled with either mass spectrometry (MS) or fluorescence (FL) detection was shown to be the most accurate and sensitive method for quantifying melatonin. The highest concentrations were found in Spanish red Tempranillo wine, Romanian white Noah wine, and Romanian rosé Lidia wine. Red wines, particularly those produced from Cabernet Sauvignon (CS) grapes, were the most frequently studied. The results of this work provide a clearer picture of melatonin levels in wine. Further research is needed to explore the implications of melatonin content in wine for human health and the wine industry. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

16 pages, 3071 KiB  
Article
Xylem Sap Mycobiota in Grapevine Naturally Infected with Xylella fastidiosa: A Case Study: Interaction of Xylella fastidiosa with Sclerotinia sclerotiorum
by Analía Perelló, Antonia Romero-Munar, Sergio I. Martinez, Antonio Busquets, María Cañellas, Bárbara M. Quetglas, Rafael Bosch, Jaume Vadell, Catalina Cabot and Marga Gomila
Plants 2025, 14(13), 1976; https://doi.org/10.3390/plants14131976 - 27 Jun 2025
Viewed by 491
Abstract
Grapevine (Vitis vinifera) is a key crop in Mediterranean agriculture, now increasingly threatened by Xylella fastidiosa subsp. Fastidiosa (Xff), the causal agent of Pierce’s disease. This study investigated: (1) the diversity of culturable fungal endophytes in the xylem sap [...] Read more.
Grapevine (Vitis vinifera) is a key crop in Mediterranean agriculture, now increasingly threatened by Xylella fastidiosa subsp. Fastidiosa (Xff), the causal agent of Pierce’s disease. This study investigated: (1) the diversity of culturable fungal endophytes in the xylem sap of naturally Xff-infected grapevines, and (2) the interaction between Xff and the pathogenic fungus Sclerotinia sclerotiorum identified in the sap. The xylem sap was collected from Cabernet Sauvignon vines in Mallorca, Spain, and fungal communities were characterized using culture-dependent methods. Both beneficial fungi (e.g., Aureobasidium pullulans, Rhodotorula mucilaginosa) and pathogenic species (e.g., S. sclerotiorum, Cladosporium sp., Alternaria alternata, and the Phoma complex) were isolated from both Xff-positive and Xff-negative plants, indicating similar community profiles. Although limited by small sample size, these findings offer preliminary evidence of complex ecological interactions between Xff and the xylem-associated mycobiota, with potential implications for grapevine health and disease development under varying environmental and management conditions. Further experiments under controlled conditions revealed that grapevines co-inoculated with Xff and S. sclerotiorum showed increased disease severity, suggesting a synergistic interaction. These preliminary results highlight the complex interplay between Xff and the fungal endophytic microbiome, which may modulate grapevine susceptibility depending on environmental and management conditions. Full article
Show Figures

Figure 1

21 pages, 3112 KiB  
Article
Effects of Temperature Fluctuations on Cabernet Sauvignon Branches and Wine Grape Appellation Yields: An Analysis Based on the Standardized Temperature Adaptation Index
by Yunlong Ma, Jinyue Yang, Ping Wang, Guoli Cheng and Qinming Sun
Plants 2025, 14(12), 1886; https://doi.org/10.3390/plants14121886 - 19 Jun 2025
Viewed by 373
Abstract
Climate fluctuations due to global warming significantly impact the wine grape industry. This study introduces the Standardized Temperature Adaptation Index (STAI), which is specifically designed to isolate temperature trends and quantify the effects of temperature fluctuations on low-temperature stress affecting Cabernet Sauvignon branches [...] Read more.
Climate fluctuations due to global warming significantly impact the wine grape industry. This study introduces the Standardized Temperature Adaptation Index (STAI), which is specifically designed to isolate temperature trends and quantify the effects of temperature fluctuations on low-temperature stress affecting Cabernet Sauvignon branches and yields in the wine grape production regions of Xinjiang. A low-temperature fluctuation experiment was conducted on Cabernet Sauvignon branches to simulate the temperature conditions and fluctuations experienced by wine grapes during the overwintering period. The treated branches then underwent recovery growth experiments, during which key physiological stress parameters were measured to assess the impact of temperature fluctuations on grape growth and development during overwintering. The results indicated that under identical low-temperature conditions, increased temperature fluctuations led to a 62% reduction in the budding rate of Cabernet Sauvignon branches, a 6% increase in relative conductivity, and elevated levels of proline, malondialdehyde, and soluble proteins. Additionally, the activities of superoxide dismutase, peroxidase, and catalase initially rose and then declined, indicating that temperature fluctuations intensified low-temperature stress. Data analysis from four wine grape production regions in Xinjiang between 2000 and 2020 revealed that temperature fluctuations corresponded with the peaks and troughs of yield fitting curves, demonstrating a negative correlation. As temperature fluctuations increased, yields decreased. The STAI introduced in this study is a straightforward, standardized measure that accurately reflects the effects of temperature fluctuations on grapes and is a valuable tool for future research on temperature variability and its impacts. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 1642 KiB  
Article
Composition Divergence and Synergistic Mechanisms in Microbial Communities During Multi-Varietal Wine Co-Fermentation
by Yuhan Zhang, Jiao Yang and Yuxi Yan
Fermentation 2025, 11(6), 349; https://doi.org/10.3390/fermentation11060349 - 16 Jun 2025
Viewed by 556
Abstract
The bacterial microbial community composition during wine fermentation is a key contributor to wine quality and flavor. However, studies on the regulatory effects of different grape varieties and co-fermentation processes on the microbial community structure and their synergistic mechanisms remain limited. In this [...] Read more.
The bacterial microbial community composition during wine fermentation is a key contributor to wine quality and flavor. However, studies on the regulatory effects of different grape varieties and co-fermentation processes on the microbial community structure and their synergistic mechanisms remain limited. In this study, Cabernet Sauvignon (CS) was subjected to single-variety fermentation and used as the base wine for co-fermentation with three other grape varieties—Marselan (CSMN), Merlot (CSMT), and Cabernet Gernischt (CSCG)—to systematically compare the differences in the microbial community composition and their effects on the production of metabolic compounds. The results showed that, compared with single-variety fermentation, co-fermentation significantly increased the α-diversity of microbial communities (the Shannon index increased) and exhibited significant differences in β-diversity (PERMANOVA analysis, R2 = 0.421, p < 0.001). A neutral model analysis indicated that co-fermentation had a significant impact on microbial community assembly mechanisms, with the contribution of neutral processes to community assembly increasing from 45.5% (in the CSCG process) to 62.3% (in the CSMT process). A microbial co-occurrence network analysis revealed that co-fermentation enhanced the network complexity of microbial communities and strengthened the synergistic interactions between microbial taxa. A metabolic compound analysis revealed that co-fermentation significantly enhanced the production of key aroma compounds, resulting in increased concentrations of isoamyl acetate, ethyl hexanoate, linalool, and geraniol. These findings highlight the differences in microbial communities and their synergistic mechanisms among co-fermented grape varieties, providing theoretical guidance and practical insights for optimizing co-fermentation processes and improving wine quality. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

25 pages, 1341 KiB  
Article
Phenological Performance, Thermal Demand, and Qualitative Potential of Wine Grape Cultivars Under Double Pruning
by Carolina Ragoni Maniero, Marco Antonio Tecchio, Harleson Sidney Almeida Monteiro, Camilo André Pereira Contreras Sánchez, Giuliano Elias Pereira, Juliane Barreto de Oliveira, Sinara de Nazaré Santana Brito, Francisco José Domingues Neto, Sarita Leonel, Marcelo de Souza Silva, Ricardo Figueira and Pricila Veiga dos Santos
Agriculture 2025, 15(12), 1241; https://doi.org/10.3390/agriculture15121241 - 6 Jun 2025
Viewed by 630
Abstract
The production of winter wines in Southeastern Brazil represents a relatively recent but expanding viticultural approach, with increasing adoption across diverse wine-growing regions. This system relies on the double-pruning technique, which allows for the harvest of grapes during the dry and cooler winter [...] Read more.
The production of winter wines in Southeastern Brazil represents a relatively recent but expanding viticultural approach, with increasing adoption across diverse wine-growing regions. This system relies on the double-pruning technique, which allows for the harvest of grapes during the dry and cooler winter season, favoring a greater accumulation of sugars, acids, and phenolic compounds. This study aimed to characterize the phenological stages, thermal requirements, yield, and fruit quality of the fine wine grape cultivars ‘Sauvignon Blanc’, ‘Merlot’, ‘Tannat’, ‘Pinot Noir’, ‘Malbec’, and ‘Cabernet Sauvignon’ under double-pruning management in a subtropical climate. The vineyard was established in 2020, and two production cycles were evaluated (2022/2023 and 2023/2024). Significant differences in the duration of phenological stages were observed among cultivars, ranging from 146 to 172 days from pruning to harvest. The accumulated thermal demand was higher in the first cycle, with a mean of 1476.9 growing degree days (GDD) across cultivars. The results demonstrate the potential of Vitis vinifera L. cultivars managed with double pruning for high-quality wine production under subtropical conditions, supporting the viability of expanding viticulture in the state of São Paulo. ‘Cabernet Sauvignon’ and ‘Sauvignon Blanc’ showed the highest yields, reaching 3.03 and 2.75 kg per plant, respectively, with productivity values of up to 10.8 t ha−1. ‘Tannat’ stood out for its high sugar accumulation (23.4 °Brix), while ‘Merlot’ exhibited the highest phenolic (234.9 mg 100 g−1) and flavonoid (15.3 mg 100 g−1) contents. These results highlight the enological potential of the evaluated cultivars and confirm the efficiency of the double-pruning system in improving grape composition and wine quality in non-traditional viticultural regions. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Figure 1

12 pages, 235 KiB  
Article
Varietal Authentication of Brunello di Montalcino Wine Using a Minimal Panel of DNA Markers
by Maxwell K. Kibor, Monica Scali and Rita Vignani
Beverages 2025, 11(3), 81; https://doi.org/10.3390/beverages11030081 - 3 Jun 2025
Viewed by 2582
Abstract
Wine DNA fingerprinting (WDF), retrieved from the amplification of a wider panel of Simple Sequence Repeat (SSR) marker mappings in the Vitis vinifera L. genome, was used to assess the monovarietal nature of Brunello di Montalcino wine. The reliability of the varietal assessment [...] Read more.
Wine DNA fingerprinting (WDF), retrieved from the amplification of a wider panel of Simple Sequence Repeat (SSR) marker mappings in the Vitis vinifera L. genome, was used to assess the monovarietal nature of Brunello di Montalcino wine. The reliability of the varietal assessment was carried out by estimating the PI values associated with resolutive unrooted dendrograms depicting the correct varietal nature of different wines. As few as five SSR DNA markers associated with a PI value of one over a million or less, PI ≤ 10−6, can identify the purity of Sangiovese against Merlot, Pinot Noir, Cabernet Sauvignon, Primitivo (Zinfandel), and genetic variants of the Sangiovese as plant references. WDF was used on other monovarietal wines obtained from Cabernet Sauvignon, Merlot, Chardonnay, and Pinot Noir to test the feasibility of the method. In blended wines, the test was able to trace the main varietal component in a three-variety blend, keeping the varietal fingerprint detectable when the main variety was at least 75% (v/v). The data confirm how local genetic variants of Sangiovese can be tracked in commercial wines, becoming, at wine makers’ demand, part of an evidence synthesis of geographical origin. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Graphical abstract

22 pages, 5581 KiB  
Article
The Effect of Varying Durations of Post-Harvest Cryogenic Treatments on the Quality of Cabernet Sauvignon Wines
by Zhihao Deng, Guo Cheng, Wangze Li, Pengfei Yang, Kekun Zhang, Keqin Chen and Yulin Fang
Foods 2025, 14(11), 1972; https://doi.org/10.3390/foods14111972 - 2 Jun 2025
Viewed by 454
Abstract
While cold chain transportation facilitates the utilization of wine grapes grown in remote mountainous areas, there is currently a lack of research on the impacts of different post-harvest temperatures on the quality of wine grapes. Therefore, three temperatures—room temperature (20 °C), chilled (4 [...] Read more.
While cold chain transportation facilitates the utilization of wine grapes grown in remote mountainous areas, there is currently a lack of research on the impacts of different post-harvest temperatures on the quality of wine grapes. Therefore, three temperatures—room temperature (20 °C), chilled (4 °C), and frozen (−20 °C)—were selected to study the effects of post-harvest low-temperature treatments. The results indicated that the contents of tartaric acid and total polyphenols in the resulting wines were higher after the grapes underwent freezing, while the opposite trend was observed for those stored at room temperature. The changes in color lightness of wines were inversely correlated with the changes in color saturation and red chromaticity, while the yellow chromaticity of wines fermented after storage exhibited a slight increase. Rutin and ferulic acid were identified as the characteristic monophenols that decreased post-storage, and heptanal emerged as the volatile compound that decreased similarly. Furthermore, the tannin contents of the resulting wines demonstrated a strong correlation with temperature: when grapes were chilled, they reached the highest level, presenting a decreasing trend over time. For low-temperature storage, 1-hexanol, ethyl caprylate, isopentyl acetate, and (Z)-2-heptenal were identified as characteristic volatile compounds under the different treatments. Overall, the choice of an appropriate chilling temperature for the post-harvest storage of grapes can ensure the quality characteristics of the produced wine. This study confirms the potential value of cold chain transportation for the effective utilization of wine grapes grown in remote areas. Full article
(This article belongs to the Special Issue Nutritional and Flavor Compounds in Fruit Wines)
Show Figures

Figure 1

18 pages, 1806 KiB  
Article
Flavonoid Profiling of Aglianico and Cabernet Sauvignon Cultivars from Campania, Sicily, and Molise, Three Regions of Southern Italy
by Francesca Coppola, Angelita Gambuti, Bruno Testa, Mariantonietta Succi, Alessandra Luciano, Luigi Picariello and Massimo Iorizzo
Fermentation 2025, 11(5), 283; https://doi.org/10.3390/fermentation11050283 - 14 May 2025
Viewed by 583
Abstract
In the 2020 and 2021 vintages, some chemical and phytochemical parameters of the Aglianico and Cabernet Sauvignon cultivars grown in three regions of Southern Italy (Campania, Molise, and Sicily) were determined. In particular, the aim of this study was the investigation of flavanol, [...] Read more.
In the 2020 and 2021 vintages, some chemical and phytochemical parameters of the Aglianico and Cabernet Sauvignon cultivars grown in three regions of Southern Italy (Campania, Molise, and Sicily) were determined. In particular, the aim of this study was the investigation of flavanol, monomeric anthocyanin, and pigment contents in grapes and wines. The data collected showed that the main chemical parameters and flavonoids analyzed in the grapes and wines were influenced by the vintage, grape variety, and geographical location. Specifically, in the Aglianico grapes, the latitude and vintage highly influenced the titratable acidity and flavonoids in terms of richness in flavanols, compared to Cabernet Sauvignon. On the other hand, the location of the vineyard influenced monomeric anthocyanins in both varieties, highlighting a relationship of these phytochemicals with soil fertility and availability of certain chemical elements such as nitrogen and iron. All results support the idea that the interaction between grape variety, soil type, and geographical origin plays a decisive role in shaping the characteristics of wine. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

17 pages, 6326 KiB  
Article
Functional Characterization of Grapevine VviMYC4 in Regulating Drought Tolerance by Mediating Flavonol Biosynthesis
by Yiting Tan, Wenjuan Wang, Wenbo Tian, Beibei Wang, Qifeng Zhao, Jinjun Liang, Wei Zhao and Pengfei Wen
Plants 2025, 14(10), 1409; https://doi.org/10.3390/plants14101409 - 8 May 2025
Viewed by 615
Abstract
Drought ranks among the key abiotic stresses that limit the growth and yield of grapevines (Vitis vinifera L.). Flavonols, a class of antioxidants commonly found in grapevines, play a crucial role in combating drought stress. In this study, we characterized the function [...] Read more.
Drought ranks among the key abiotic stresses that limit the growth and yield of grapevines (Vitis vinifera L.). Flavonols, a class of antioxidants commonly found in grapevines, play a crucial role in combating drought stress. In this study, we characterized the function and regulatory mechanism of the grapevine VviMYC4 in mediating flavonol biosynthesis in response to drought stress. VviMYC4 encodes a protein of 468 amino acids with conserved bHLH-MYC_N and bHLH domains. Phylogenetic analysis confirmed its homology with the grapevine VviMYC2 and similarity in function. The expression of VviMYC4 in ‘Cabernet Sauvignon’ grapevine seedling leaves increased initially and then decreased during prolonged drought stress. The homologous and heterologous transformation of VviMYC4 in grape suspension cells, Arabidopsis plants, tobacco leaves, and grapevine leaves demonstrated its ability to positively regulate flavonol biosynthesis and accumulation by promoting the expression of flavonol-related genes, thereby enhancing the drought tolerance of transgenic plants. Furthermore, VviMYC4 could bind to specific E-box sites on the promoters of VviF3H and VviFLS to improve their activities. This study highlights VviMYC4 as a pivotal positive regulator of drought tolerance in grapevines and proposes that VviMYC4 enhances the antioxidant and reactive oxygen species (ROS) scavenging abilities of grapevines in challenging environments and improves their stress resilience by mediating flavonol biosynthesis. Our findings offer crucial candidate genes and valuable insights for the molecular breeding of grapevine drought resistance. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants, 2nd Edition)
Show Figures

Figure 1

15 pages, 929 KiB  
Article
Assessing Wine Grape Cultivar Susceptibility to Spotted Wing Drosophila and Melanogaster-Type Drosophila in Hungarian Vineyards: Effects of Berry Integrity and Insights into Larval Interactions
by Abir Ibn Amor, Ágnes Kukorellyné Szénási, Csaba Németh, Ferenc Deutsch and Balázs Kiss
Insects 2025, 16(5), 497; https://doi.org/10.3390/insects16050497 - 5 May 2025
Viewed by 659
Abstract
The invasive spotted wing Drosophila (SWD) represents new challenges for European and North American fruit producers. The aim of our study was to examine wine grape cultivar susceptibility to this pest and melanogaster-type Drosophila (MTD) by surveying drosophilid populations using field traps and [...] Read more.
The invasive spotted wing Drosophila (SWD) represents new challenges for European and North American fruit producers. The aim of our study was to examine wine grape cultivar susceptibility to this pest and melanogaster-type Drosophila (MTD) by surveying drosophilid populations using field traps and conducting emergence tests. We assessed fly development from intact and artificially injured berries collected from four cultivars. Berries were incubated individually and in pooled samples to evaluate infestation patterns and potential larval interactions. Although grapes are generally considered less favorable hosts for SWD, the pest was consistently present across all vineyard plots. Infestation levels differed significantly among cultivars, with the Hungarian white cultivar Furmint being the most susceptible, while French-origin red cultivars Cabernet Franc and Cabernet Sauvignon, along with the other Hungarian cultivar Rózsakő, were less susceptible. Berry integrity played a crucial role: intact berries showed minimal infestation, whereas physical injuries led to a substantial and significant increase in infestation rates and fly emergence. In contrast to SWD-dominated trap catches and the nearly equal proportions of SWD and MTD observed in intact berries, injured berries were predominantly colonized by MTD. This dominance became even more pronounced in pooled samples, suggesting that larval competition in shared environments favors MTD over SWD. These findings underscore the importance of grape cultivar traits and berry condition in shaping Drosophila infestation dynamics. Further research into the chemical and ecological drivers of host selection and interspecific interactions is warranted to improve vineyard pest management strategies. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

Back to TopTop