Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = byproducts of seed-used pumpkin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 358
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

12 pages, 2422 KiB  
Article
Optimized Biodiesel Production from Pumpkin (Cucurbita pepo L.) Seed Oil: A Response Surface Methodology for Microwave-Assisted Transesterification
by Mehmet Recai Durgut
Processes 2025, 13(2), 572; https://doi.org/10.3390/pr13020572 - 18 Feb 2025
Cited by 3 | Viewed by 978
Abstract
The acceptance of biodiesel, specifically fatty acid methyl esters, as an alternative to petroleum diesel has increased significantly. Traditional feedstocks used to produce biodiesel include various seed oils and used frying oils, but there is growing interest in low-cost alternatives like pumpkin seed [...] Read more.
The acceptance of biodiesel, specifically fatty acid methyl esters, as an alternative to petroleum diesel has increased significantly. Traditional feedstocks used to produce biodiesel include various seed oils and used frying oils, but there is growing interest in low-cost alternatives like pumpkin seed oil. As a byproduct of cucurbits processing, a significant number of seeds often remains with a high oil content suitable for biodiesel production. In the search for new low-cost alternative feedstocks for biodiesel production, the evaluation of pumpkin seed oil was emphasized. Using a modified microwave oven for transesterification, this study optimized the key parameters of reaction temperature, catalyst concentration (KOH), and reaction time using a Box–Behnken design. The results showed a maximum biodiesel yield of 91.5%. Microwave irradiation significantly accelerated the process, reducing reaction times from an hour to minutes. The biodiesel produced met international physicochemical standards, demonstrating the potential of pumpkin seed oil as a sustainable biodiesel source. Full article
Show Figures

Figure 1

21 pages, 1340 KiB  
Article
Effects of Hot Air, Vacuum, and Conductive Drying on the Fatty Acid Profile of Cucurbita maxima Pulp and Its Processing By-Products
by Antonela Ninčević Grassino, Sven Karlović, Filip Dujmić, Suzana Rimac Brnčić, Marija Badanjak Sabolović and Mladen Brnčić
Foods 2025, 14(1), 57; https://doi.org/10.3390/foods14010057 - 28 Dec 2024
Viewed by 1587
Abstract
Considering the short shelf life of fresh pumpkin due to its high water content and the extensive use of dried pumpkin in the food industry, it is necessary to find an efficient drying method that minimizes water activity and preserves nutritional properties. In [...] Read more.
Considering the short shelf life of fresh pumpkin due to its high water content and the extensive use of dried pumpkin in the food industry, it is necessary to find an efficient drying method that minimizes water activity and preserves nutritional properties. In this study, the effects of hot air drying (HAD), vacuum drying (VAD), and conductive drying (CD) at 50, 60, and 70 °C on fatty acid profiles were investigated to determine optimal drying conditions that preserve fatty acid (FA) quality and associated nutritional benefits. Results showed that drying methods had a significant effect (p < 0.05) on fatty acid composition and yield, resulting in different amounts of palmitic, oleic, linoleic, and linolenic acids as major FAs compared to fresh pulp. The saturated FA content was higher in CD pulp (up to 42.37%), followed by HAD and VAD. Oleic acid, as the most important representative of monounsaturated FAs, came from VAD (up to 30.64%). Linoleic and linolenic acid, as the most important polyunsaturated FAs of the omega-6 and omega-3 fatty acids, were found in higher proportions in CD pulp at 50 and 60 °C (up to 31.12%) and HAD pulp at 60 and 70 °C with an airflow velocity of 1.5 m/s (up to 39.70%). In addition, the peel and seeds, the by-products resulting from the processing of the fruit pulp, were also evaluated with regard to the fatty acid profile. Two fractions also contained the four major FAs in representative amounts, indicating their valuable reuse. Full article
Show Figures

Figure 1

14 pages, 2693 KiB  
Article
Thermal Properties of Seed Cake Biomasses and Their Valorisation by Torrefaction
by Elena Butnaru, Elena Stoleru, Daniela Ioniță and Mihai Brebu
Polymers 2024, 16(20), 2872; https://doi.org/10.3390/polym16202872 - 11 Oct 2024
Cited by 2 | Viewed by 1456
Abstract
Seed cakes, by-products from the cold press extraction of vegetable oils, are valuable animal feed supplements due to their high content of proteins, carbohydrates, and minerals. However, the presence of anti-nutrients, as well as the rancidification and development of aflatoxins, can impede their [...] Read more.
Seed cakes, by-products from the cold press extraction of vegetable oils, are valuable animal feed supplements due to their high content of proteins, carbohydrates, and minerals. However, the presence of anti-nutrients, as well as the rancidification and development of aflatoxins, can impede their intended use, requiring alternative treatment and valorisation methods. Thermal treatment as a procedure for the conversion of seed cakes from walnuts, hemp, pumpkin, flax, and sunflower into valuable products or energy has been investigated in this paper. Thermogravimetry shows the particular behaviour of seed cakes, with several degradation stages at around 230–280 and 340–390 °C, before and after the typical degradation of cellulose. These are related to the volatilisation of fatty acids, which are either free or bonded as triglycerides, and with the thermal degradation of proteins. Torrefaction at 250 °C produced ~75–82 wt% solids, with high calorific values of 24–26 kJ/g and an energy yield above 90%. The liquid products have a complex composition, with most parts of the compounds partitioning between the aqueous phase (strongly dominant) and the oily one (present in traces). The structural components of seed cakes (hemicelluloses, cellulose, and lignin) produce acetic acid, hydroxy ketones, furans, and phenols. In addition to these, most compounds are nitrogen-containing aromatic compounds from the degradation of protein components, which are highly present in seed cakes. Full article
(This article belongs to the Special Issue Thermal Properties Analysis of Polymers)
Show Figures

Figure 1

14 pages, 6380 KiB  
Article
Extrusion-Cooking Aspects and Physical Characteristics of Snacks Pellets with Addition of Selected Plant Pomace
by Jakub Soja, Maciej Combrzyński, Tomasz Oniszczuk, Marek Gancarz and Anna Oniszczuk
Appl. Sci. 2024, 14(19), 8754; https://doi.org/10.3390/app14198754 - 27 Sep 2024
Cited by 5 | Viewed by 1614
Abstract
The article presents the possibilities of using by-products from the agri-food industry in the form of fruit and vegetable pomace as a supplementary ingredient to extruded food products in the form of snack pellets. In the recipe based on potato starch, pomace from [...] Read more.
The article presents the possibilities of using by-products from the agri-food industry in the form of fruit and vegetable pomace as a supplementary ingredient to extruded food products in the form of snack pellets. In the recipe based on potato starch, pomace from apples, chokeberries, pumpkin, nigella seed and flaxseed were added in amounts of 10%, 20% and 30%. The prepared raw material blends were processed using a single-screw extruder-cooker with a plastification system L/D = 20 and variable screw speed. The aim of the research was to determine the effect of pomace addition on the extrusion-cooking process, i.e., efficiency and energy consumption, as well as on selected physical properties of the obtained food pellets, such as expansion index, bulk density and durability. The addition of selected pomace influenced the extrusion-cooking process and the physical properties of the extrudates. A percentage contribution ranging from 10 to 20% can optimize the extrusion-cooking process and improve the quality characteristics of the final product, while simultaneously utilizing by-products from the agri-food industry and reducing their negative environmental impact. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 13141 KiB  
Article
Optimization of the Process for Obtaining Antioxidant Protein Hydrolysates from Pumpkin Seed Oil Cake Using Response Surface Methodology
by Svetla Dyankova, Maria Doneva, Margarita Terziyska, Petya Metodieva and Iliana Nacheva
Appl. Sci. 2024, 14(5), 1967; https://doi.org/10.3390/app14051967 - 28 Feb 2024
Cited by 9 | Viewed by 2000
Abstract
Pumpkin seed cake, a byproduct of cold-pressed oil production, represents a food waste material with a great potential for valorization. The objective of the present study is to optimize the papain enzymatic hydrolysis process of pumpkin seed cold-pressed oil cake (CPC) to obtain [...] Read more.
Pumpkin seed cake, a byproduct of cold-pressed oil production, represents a food waste material with a great potential for valorization. The objective of the present study is to optimize the papain enzymatic hydrolysis process of pumpkin seed cold-pressed oil cake (CPC) to obtain protein hydrolysates with the highest antioxidant activity. Box–Behnken Response Surface Methodology (RSM) was used to optimize the simultaneous effects of an enzyme concentration of papain, a temperature, and a reaction time on the process of enzymatic hydrolysis on pumpkin seed cold-pressed oil cake (CPC). For these three input factors, different values are used—1, 2, and 3% for papain concentration, 20, 30, and 40 °C for temperature, and 60, 120, and 180 min for hydrolysis time. Thus, the design generated a total of 21 experimental runs. The aim is to obtain protein hydrolysates with the highest antioxidant activity. The responses DPPH and ABTS were calculated and the determined regression models were statistically analyzed and validated. The results revealed that optimal conditions included a papain concentration of 1.0%, a temperature of 40 °C, and a hydrolysis time of 60 min to retrieve the highest level of bioactive compounds. Full article
Show Figures

Figure 1

10 pages, 603 KiB  
Article
Tenebrio molitor (Linnaeus, 1758): Microbiological Screening of Feed for a Safe Food Choice
by Barbara Pöllinger-Zierler, Andrea Lienhard, Chiara Mayer, Simon Berner, René Rehorska, Angela Schöpfer and Monika Grasser
Foods 2023, 12(11), 2139; https://doi.org/10.3390/foods12112139 - 25 May 2023
Cited by 9 | Viewed by 3266
Abstract
As a result of the increasing focus on alternative protein sources which are ideally still sustainable, the yellow mealworm, Tenebrio molitor, has come into focus. To verify its suitability as a food source in relation to human health, an analysis of the [...] Read more.
As a result of the increasing focus on alternative protein sources which are ideally still sustainable, the yellow mealworm, Tenebrio molitor, has come into focus. To verify its suitability as a food source in relation to human health, an analysis of the microbiome of larvae of T. molitor is pertinent. Subsequently, the focus of this study was, on the one hand, to analyze the influence of the substrate on the microbial load of the larvae microbiome, and, on the other hand, to determine which processing methods ensure the risk-free consumption of mealworms. For this purpose, mealworms were grown on 10 different substrates derived from by-products of food production (malt residual pellets, corn germ meal, chestnut breakage and meal, wheat bran, bread remains, draff, nettle, hemp seed oil cake, oyster mushrooms with coffee grounds, pumpkin seed oil cake) and microbial loads were analyzed using different selective media. Further starvation/defecation and heating (850 W for 10 min) methods were used to investigate how the reduction of microorganisms is enabled by these methods. The results showed that there was no significant relationship between the microbial load of the substrate and the mealworm. Starvation and defecation led to a lower stock of microorganisms. Heating led to a significant microbial reduction in non-defecated mealworms. The group of defecated and heated mealworms showed no detectable microbial load. In conclusion, firstly, the choice of substrate showed no effect on the microbial load of larvae of Tenebrio molitor and secondly, heating and starvation allow risk-free consumption. This study makes an important contribution for evaluating the safety of mealworms as a sustainable protein source in human nutrition. Full article
Show Figures

Figure 1

15 pages, 2675 KiB  
Article
A New Approach for the Development and Optimization of Gluten-Free Noodles Using Flours from Byproducts of Cold-Pressed Okra and Pumpkin Seeds
by Ebru Aydin, Sebahattin Serhat Turgut, Sedef Aydin, Serife Cevik, Ayse Ozcelik, Mehmet Aksu, Muhammed Mustafa Ozcelik and Gulcan Ozkan
Foods 2023, 12(10), 2018; https://doi.org/10.3390/foods12102018 - 16 May 2023
Cited by 19 | Viewed by 4131
Abstract
The significant protein and dietary fiber content of cold-pressed pumpkin (PSF) and okra (OSF) seed byproducts are well-known. However, their impact on noodles’ nutritional quality has never been studied. For the first time, noodle formulation was developed employing a genetic algorithm in the [...] Read more.
The significant protein and dietary fiber content of cold-pressed pumpkin (PSF) and okra (OSF) seed byproducts are well-known. However, their impact on noodles’ nutritional quality has never been studied. For the first time, noodle formulation was developed employing a genetic algorithm in the R programming language to achieve the most optimal sensory attributes as well as nutritional composition, color, cooking, and textural properties. The optimized noodle formulation was detected for OSF, PSF, gluten-free flour, salt, and egg with the following amounts: 11.5 g, 87.0 g, 0.9 g, 0.6 g, and 40 g, respectively, with 10.5 mL of water. The total protein (TP%), total fat (TF%), total carbohydrate (TC%), total dietary fiber content (TDF%), ash (%), total phenolic content (TPC mg GAE/100 g), and ABTS (%) of PSF were found to be 39%, 17%, 7%, 18%, 3%, 19%, and 48%, respectively, whereas for OSF, 33%, 8%, 21%, 32%, 5%, 16%, and 38%, respectively, were detected. In addition, TP (42.88%), TF (15.6%), ash (5.68%), TDF (40.48%), TPC (25.5 mg GAE/100 g), and ABTS (70%) values were obtained for the noodles. Consequently, the valorization of the cold oil press industry’s byproducts may be used as ingredients that add high value to gluten-free protein and fiber-rich noodle production, and they may gain interest from both processors and consumers. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

19 pages, 877 KiB  
Review
Cold-Pressed Oilseed Cakes as Alternative and Sustainable Feed Ingredients: A Review
by Slađana Rakita, Bojana Kokić, Michele Manoni, Sharon Mazzoleni, Peng Lin, Alice Luciano, Matteo Ottoboni, Federica Cheli and Luciano Pinotti
Foods 2023, 12(3), 432; https://doi.org/10.3390/foods12030432 - 17 Jan 2023
Cited by 50 | Viewed by 8127
Abstract
Due to the increasing demand for alternative protein feed ingredients, the utilization of oilseed by-products in animal nutrition has been sought as a promising solution to ensure cheap and environmentally sustainable feedstuffs. This review aimed to summarize the nutritional value of six cold-pressed [...] Read more.
Due to the increasing demand for alternative protein feed ingredients, the utilization of oilseed by-products in animal nutrition has been sought as a promising solution to ensure cheap and environmentally sustainable feedstuffs. This review aimed to summarize the nutritional value of six cold-pressed cakes (rapeseed, hempseed, linseed, sunflower seed, camelina seed, and pumpkin seed) and the effects of their inclusion in diet for ruminant, pig, and poultry on nutrient digestibility, growth and productive performance, and quality of the products. The presented results indicated that these unconventional feed ingredients are a good protein and lipid source and have a balanced amino acid and fatty acid profile. However, contradictory results of animal production performances can be found in the literature depending on the cake type and chemical composition, dietary inclusion level, animal category, and trial duration. Due to the substantial amount of essential fatty acid, these cakes can be efficiently used in the production of animal products rich in n-3 and n-6 polyunsaturated fatty acids. However, the utilization of cakes in pig and poultry nutrition is limited because of the presence of antinutritive factors that can deteriorate feed intake and nutrient utilization. Full article
(This article belongs to the Special Issue Foods: 10th Anniversary)
Show Figures

Figure 1

11 pages, 1123 KiB  
Review
Carotenoid Content and Profiles of Pumpkin Products and By-Products
by Antonela Ninčević Grassino, Suzana Rimac Brnčić, Marija Badanjak Sabolović, Jana Šic Žlabur, Roko Marović and Mladen Brnčić
Molecules 2023, 28(2), 858; https://doi.org/10.3390/molecules28020858 - 15 Jan 2023
Cited by 41 | Viewed by 6920
Abstract
The goal of this review is to provide an overview of the current findings on the major carotenoids and their content in pumpkin products and by-products. The content of total carotenoids and the composition of carotenoids in pumpkins depend mainly on the species [...] Read more.
The goal of this review is to provide an overview of the current findings on the major carotenoids and their content in pumpkin products and by-products. The content of total carotenoids and the composition of carotenoids in pumpkins depend mainly on the species and cultivar, pedoclimatic conditions, the part of the plant (pulp, peel or seed), extraction procedures and the type of solvent used for extraction. The major carotenoids identified in pumpkins were β-carotene, α-carotene, lutein and zeaxanthin. β-Carotene is the major carotenoid in most pumpkin species. The number and content of total carotenoids are higher when minor carotenoids and ester forms are considered. The use of carotenoids in the development of functional foods has been the topic of many versatile studies in recent years, as they add significant value to foods associated with numerous health benefits. In view of this, pumpkin and pumpkin by-products can serve as a valuable source of carotenoids. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Green Chemistry)
Show Figures

Graphical abstract

15 pages, 818 KiB  
Article
Biological Activity of Pumpkin Byproducts: Antimicrobial and Antioxidant Properties
by Maria G. Leichtweis, Adriana K. Molina, Tânia C. S. Pires, Maria Inês Dias, Ricardo Calhelha, Khaldoun Bachari, Borhane E. C. Ziani, M. Beatriz P. P. Oliveira, Carla Pereira and Lillian Barros
Molecules 2022, 27(23), 8366; https://doi.org/10.3390/molecules27238366 - 30 Nov 2022
Cited by 31 | Viewed by 6299
Abstract
Pumpkin fruits are widely appreciated and consumed worldwide. In addition to their balanced nutritional profile, pumpkin species also present valuable bioactive compounds that confer biological and pharmacological properties to them. However, the seeds, peels, and fibrous strands resulting from pumpkin processing are still [...] Read more.
Pumpkin fruits are widely appreciated and consumed worldwide. In addition to their balanced nutritional profile, pumpkin species also present valuable bioactive compounds that confer biological and pharmacological properties to them. However, the seeds, peels, and fibrous strands resulting from pumpkin processing are still poorly explored by the food industry. The current study used those fruit components from the genotypes of pumpkin that are economically significant in Portugal and Algeria to produce bioactive extracts. In order to support their usage as preservatives, their phenolic content (HPLC-DAD-ESI/MS) and antioxidant (OxHLIA and TBARS) and antimicrobial properties (against eight bacterial and two fungal strains) were assessed. In terms of phenolic profile, the peel of the Portuguese ‘Common Pumpkin’ showed the most diversified profile and also the highest concentration of total phenolic compounds, with considerable concentrations of (-)-epicatechin. Regarding the antioxidant capacity, the seeds of ‘Butternut Squash’ from both countries stood out, while the fibrous strands of Portuguese ‘Butternut Squash’ and the seeds of Algerian ‘Gold Nugget Pumpkin’ revealed the strongest antimicrobial activity. The bioactive compounds identified in the pumpkin byproducts may validate their enormous potential as a source of bio-based preservatives that may enhance consumers’ health and promote a circular economy. Full article
(This article belongs to the Special Issue Biological and Pharmacological Significance of Natural Products)
Show Figures

Figure 1

14 pages, 532 KiB  
Article
Associations of Protein Molecular Structures with Their Nutrient Supply and Biodegradation Characteristics in Different Byproducts of Seed-Used Pumpkin
by Yang Li, Qinghua Wu, Jingyi Lv, Xiaoman Jia, Jianxu Gao, Yonggen Zhang and Liang Wang
Animals 2022, 12(8), 956; https://doi.org/10.3390/ani12080956 - 7 Apr 2022
Cited by 12 | Viewed by 2641
Abstract
The purpose of this experiment was to explore the relationship of protein functional groups (including amide I, amide II, α-helix, and β-sheet) in byproducts of seed-used pumpkin (pumpkin seed cake, pumpkin seed coat, and seed-used pumpkin flesh) with their nutrient profiles and biodegradation [...] Read more.
The purpose of this experiment was to explore the relationship of protein functional groups (including amide I, amide II, α-helix, and β-sheet) in byproducts of seed-used pumpkin (pumpkin seed cake, pumpkin seed coat, and seed-used pumpkin flesh) with their nutrient profiles and biodegradation characteristics. The experiment was designed to use conventional chemical analysis, combining the Cornell Net Carbohydrate and Protein System (CNCPS) and nylon bag technology to assess the nutritional value and biodegradation characteristics of seed-used pumpkin byproducts. Fourier transform infrared spectroscopy (FTIR) was used to analyze the protein molecular structure properties of byproducts of seed-used pumpkin. In this study, we also applied correlation and regression analysis. The results showed that different byproducts of seed-used pumpkin had different in situ biodegradation, nutrient supplies, and spectral structures in the protein region. Among the byproducts of seed-used pumpkin, acid detergent-insoluble crude protein (ADICP) and neutral detergent-insoluble crude protein (NDICP) contents of the pumpkin seed coat were the highest, resulting in the lowest effective degradabilities (EDs) of dry matter and crude protein. The crude protein (CP) ED values were ranked as follows: pumpkin seed cake > seed-used pumpkin flesh > pumpkin seed coat. Significant differences were observed in the peak areas of amide I and amide II and the corresponding peak heights in the two peak areas in the molecular structure of the protein. The peak areas of amide I and amide II and the corresponding peak heights were at the highest levels for pumpkin seed cake, whereas there was no significant difference between the pumpkin seed coat and seed-used pumpkin flesh. Similarly, the peak heights of α-helices and β-sheets were highest for pumpkin seed cake. Correlation and regression results indicated that amide I and amide II area and height, α-helix and β-sheet heights, and area ratios of amide I: amide II, as well as the height ratios of amide I: amide II, and α-helices: β-sheets effectively estimated nutrient supply and that the height ratio of α-helices: β-sheets was mostly sensitive to biodegradation characteristics in different byproducts of seed-used pumpkin. There were significant differences in CP chemical composition and digestibility of different byproducts of seed-used pumpkin that were strongly related to the changes in protein molecular structures. Full article
(This article belongs to the Special Issue Feed Evaluation for Animal Health and Product Quality)
Show Figures

Figure 1

23 pages, 4175 KiB  
Article
The Potential Use of Cold-Pressed Pumpkin Seed Oil By-Products in a Low-Fat Salad Dressing: The Effect on Rheological, Microstructural, Recoverable Properties, and Emulsion and Oxidative Stability
by Zeynep Hazal Tekin-Cakmak, Ilker Atik and Salih Karasu
Foods 2021, 10(11), 2759; https://doi.org/10.3390/foods10112759 - 10 Nov 2021
Cited by 12 | Viewed by 3314
Abstract
The cold-pressed pumpkin seed oil by-product (POB) was evaluated for its application as a natural fat substitute and stabilizer in the reduced-fat salad dressings. For this aim, the samples were prepared by combining the xanthan gum (0.2–0.4 g/100 g), POB (1.0–5.0 g/100 g), [...] Read more.
The cold-pressed pumpkin seed oil by-product (POB) was evaluated for its application as a natural fat substitute and stabilizer in the reduced-fat salad dressings. For this aim, the samples were prepared by combining the xanthan gum (0.2–0.4 g/100 g), POB (1.0–5.0 g/100 g), egg yolk powder (3 g/100 g), and sunflower oil (10–30 g/100 g) in 17 different formulations. The optimization was carried out using response surface methodology (RSM) and full factorial central composite design (CCD). Results showed that all samples presented the shear-thinning (or pseudoplastic) flow behavior with 3.75–16.11 Pa·sn and 0.18–0.30, K and n values, respectively. The flow behavior rheological data were fitted to a power-law model (R2 > 0.99). The samples with high POB and low oil content showed similar K and n values compared to high oil content samples. Additionally, the dynamic rheological properties and three interval thixotropic test (3-ITT) were determined. The G′ value was larger than G″ in all frequency ranges, indicating viscoelastic solid characteristics in all samples. The optimum formulation was determined as 0.384% XG, 10% oil, and 3.04% POB. The samples prepared with the optimum formulation (POBLF-SD) were compared to low-fat (LF-SD), and high-fat (HF-SD) control salad dressing samples based on the rheological properties, emulsion stability, oxidative stability, zeta potential, and particle size. The oxidation kinetic parameters namely, IP, Ea, ΔS++, and ΔG++ showed that the oxidative stability of salad dressing samples could be improved by enriched by POB. The results of the present study demonstrated that POB could be considerably utilized as a natural fat substitute and stabilizer in salad dressing type emulsions. Full article
Show Figures

Figure 1

18 pages, 3592 KiB  
Article
Evaluation of Fatty Acid Compositions, Antioxidant, and Pharmacological Activities of Pumpkin (Cucurbita moschata) Seed Oil from Aqueous Enzymatic Extraction
by Adchara Prommaban, Ratthida Kuanchoom, Natthidaporn Seepuan and Wantida Chaiyana
Plants 2021, 10(8), 1582; https://doi.org/10.3390/plants10081582 - 31 Jul 2021
Cited by 41 | Viewed by 7150
Abstract
Pumpkin seed oil is a by-product, abundant in nutrients and bioactive components that promote several health benefits. This study aimed to compare chemical compositions, antioxidant, and pharmacological activities of pumpkin seed oils extracted from Cucurbita moschata Duch. Ex Poir. (PSO1) and Cucurbita moschata [...] Read more.
Pumpkin seed oil is a by-product, abundant in nutrients and bioactive components that promote several health benefits. This study aimed to compare chemical compositions, antioxidant, and pharmacological activities of pumpkin seed oils extracted from Cucurbita moschata Duch. Ex Poir. (PSO1) and Cucurbita moschata (Japanese pumpkin) (PSO2) by aqueous enzymatic extraction. An enzyme mixture consisting of pectinase, cellulase, and protease (1:1:1) was used in the enzymatic extraction process. Fatty acid composition of the oils was determined using fatty acid methyl ester/gas chromatographic-mass spectrometry. Antioxidant activity assays were measured by using stable free radical diphenylpicrylhydrazyl, radical cation 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate, ferric reducing/antioxidant power, and ferric thiocyanate assay. Inhibition of enzymes involving skin aging and whitening process was investigated. Linoleic acid was a major component of all pumpkin seed oils. Additionally, there was also a significant amount of oleic acid, palmitic acid, and stearic acid detected. PSO2 possessed the highest antioxidant activities compared to PSO1 and commercial pumpkin seed oils (COM1 and COM2). Both PSO1 and PSO2 exhibited higher inhibitory effects on hyaluronidase, collagenase, and tyrosinase than the commercials. Therefore, aqueous enzymatic extraction could yield pumpkin seed oils with higher antioxidant, anti-aging, and whitening activities. This is beneficial for further pharmacological studies and can be used as a functional food for skin benefits. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants II)
Show Figures

Graphical abstract

14 pages, 1186 KiB  
Article
Effect of Seed Meals on Weed Control and Soil Physical Properties in Direct-Seeded Pumpkin
by Rupinder Saini, Atinderpal Singh and Sanjit K. Deb
Sustainability 2020, 12(14), 5811; https://doi.org/10.3390/su12145811 - 19 Jul 2020
Cited by 4 | Viewed by 2848
Abstract
Mustard (Brassica sp.) seed meal (MSM) and sunflower (Helianthus annuus L.) seed meal (SSM) are the byproducts of the seed oil extraction process. They release biologically active allelochemicals that can provide a resource for supplemental nutrients and weed suppression in [...] Read more.
Mustard (Brassica sp.) seed meal (MSM) and sunflower (Helianthus annuus L.) seed meal (SSM) are the byproducts of the seed oil extraction process. They release biologically active allelochemicals that can provide a resource for supplemental nutrients and weed suppression in vegetable cropping systems. Our field experiment aimed to assess the phytotoxic impact of MSM and SSM on weeds and seedling establishment of direct-seeded pumpkin under semi-arid conditions and to study the impact of MSM and SSM on soil physical properties and soil water retention characteristics. The meals were incorporated into the soil 2 weeks before pumpkin planting at two rates (1150 and 2250 kg ha−1). MSM at both rates reduced early season grass and broadleaf weeds by 75 to 82% and 69 to 76%, respectively, as compared to the untreated control. However, SSM at both rates provided 59 to 65% and 54 to 59% controls of narrow and broadleaf weeds, respectively. Both MSM and SSM provided significantly better weed control and pumpkin yield as compared to the untreated control, but higher pumpkin yield was recorded with a lower rate of MSM. In addition, soils amended by both the seed meals had higher saturated hydraulic conductivity, soil water content, and lower bulk density than the untreated control. Overall, our findings suggest that the use of both MSM and SSM as an organic adjuvant is effective in controlling weeds and improving soil physical properties; however, additional research is required to further evaluate these findings and improve the reliability of MSM and SSM for weed suppression following application to agricultural soils. Full article
Show Figures

Figure 1

Back to TopTop