Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (589)

Search Parameters:
Keywords = butyrate supplementation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1019 KiB  
Article
Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
by Janhvi Mishra Rawat, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj and Debasis Mitra
Bacteria 2025, 4(3), 38; https://doi.org/10.3390/bacteria4030038 - 1 Aug 2025
Viewed by 127
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In this study, a simple, reproducible protocol for in vitro propagation of N. jatamansi was established using shoot tip explants, cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators, including N6-benzylaminopurine, thidiazuron (TDZ), and naphthalene acetic acid (NAA). MS media supplemented with 2.0 μM TDZ and 0.5 µM NAA created a significant shoot induction with an average of 6.2 shoots per explant. These aseptically excised individual shoots produced roots on MS medium supplemented with Indole Butyric Acid or NAA within 14 days of the transfer. The PGPR, viz., Bacillus subtilis and Pseudomonas corrugata, inoculation resulted in improved growth, higher chlorophyll content, and survival of in vitro-rooted plants (94.6%) after transfer to the soil. Moreover, the PGPRs depicted a two-fold higher total phenolics (45.87 mg GAE/g DW) in plants. These results clearly demonstrate the beneficial effects of P. corrugata and B. subtilis on the growth, survival, and phytochemical content of N. jatamansi. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

26 pages, 2591 KiB  
Systematic Review
Effect of Polyphenol-Rich Interventions on Gut Microbiota and Inflammatory or Oxidative Stress Markers in Adults Who Are Overweight or Obese: A Systematic Review and Meta-Analysis
by Álvaro González-Gómez, Martina Cantone, Ana María García-Muñoz, Desirée Victoria-Montesinos, Carmen Lucas-Abellán, Ana Serrano-Martínez, Alejandro M. Muñoz-Morillas and Juana M. Morillas-Ruiz
Nutrients 2025, 17(15), 2468; https://doi.org/10.3390/nu17152468 - 29 Jul 2025
Viewed by 450
Abstract
Background/Objectives: Being overweight and obesity are major public health concerns that demand effective nutritional strategies for weight and body composition management. Beyond excess weight, these conditions are closely linked to chronic inflammation, oxidative stress, and gut dysbiosis, all of which contribute to cardiometabolic [...] Read more.
Background/Objectives: Being overweight and obesity are major public health concerns that demand effective nutritional strategies for weight and body composition management. Beyond excess weight, these conditions are closely linked to chronic inflammation, oxidative stress, and gut dysbiosis, all of which contribute to cardiometabolic risk. Polyphenols—bioactive compounds in plant-based foods—may support improvements in body composition and metabolic health by modulating gut microbiota, reducing oxidative stress, and suppressing inflammation. This systematic review and meta-analysis aimed to evaluate the effects of polyphenol-rich interventions on gut microbiota composition, in combination with either oxidative stress or inflammatory biomarkers, and their potential impact on body composition in overweight or obese adults. Methods: A systematic search of PubMed, Scopus, Cochrane, and Web of Science was conducted through May 2025. Eligible randomized controlled trials included adults (BMI ≥ 25 kg/m2) receiving polyphenol-rich interventions, with reported outcomes on gut microbiota and at least one inflammatory or oxidative stress biomarker. Standardized mean differences (SMDs) were pooled using a random-effects model. Results: Thirteen trials (n = 670) met inclusion criteria. Polyphenol supplementation significantly reduced circulating lipopolysaccharides (LPSs; SMD = −0.56; 95% CI: −1.10 to −0.02; p < 0.04), indicating improved gut barrier function. Effects on cytokines (IL-6, TNF-α) and CRP were inconsistent. Catalase activity improved significantly (SMD = 0.79; 95% CI: 0.30 to 1.28; p < 0.001), indicating enhanced antioxidant defense. Gut microbiota analysis revealed increased butyrate (SMD = 0.57; 95% CI: 0.18 to 0.96; p < 0.001) and acetate (SMD = 0.42; 95% CI: 0.09 to 0.75; p < 0.01), supporting prebiotic effects. However, no significant changes were observed in BMI or body weight. Conclusions: Polyphenol supplementation in overweight or obese adults may reduce metabolic endotoxemia, boost antioxidant activity, and promote SCFAs production. Effects on inflammation and body weight remain unclear. Further long-term trials are needed. Full article
(This article belongs to the Special Issue Dietary Assessments for Weight Management)
Show Figures

Graphical abstract

19 pages, 13401 KiB  
Article
ShenQiGan Extract Repairs Intestinal Barrier in Weaning-Stressed Piglets by Modulating Inflammatory Factors, Immunoglobulins, and Short-Chain Fatty Acids
by Rongxia Guo, Chenghui Jiang, Yanlong Niu, Chun Niu, Baoxia Chen, Ziwen Yuan, Yongli Hua and Yanming Wei
Animals 2025, 15(15), 2218; https://doi.org/10.3390/ani15152218 - 28 Jul 2025
Viewed by 253
Abstract
Weaning stress damages the intestines and disrupts the intestinal barrier in piglets, which significantly impacts the pig farming industry’s economy. We aimed to examine the effects of ShenQiGan extract (CAG) on intestinal barrier function and explore the underlying molecular mechanisms in stress-challenged weaned [...] Read more.
Weaning stress damages the intestines and disrupts the intestinal barrier in piglets, which significantly impacts the pig farming industry’s economy. We aimed to examine the effects of ShenQiGan extract (CAG) on intestinal barrier function and explore the underlying molecular mechanisms in stress-challenged weaned piglets. The experimental design involved 80 weaned piglets aged 28 days (with an average body weight of 7.78 ± 0.074 kg) that were randomly allocated into four groups: Control, LCAG (0.1% CAG), MCAG (0.5% CAG), and HCAG (1.0% CAG). After a 28-day trial period, the growth performance and incidence of diarrhea in piglets were evaluated. CAG increased the average daily gain of weaned piglets, reduced the feed-to-gain ratio, and decreased the incidence of diarrhea. It significantly lowered serum inflammatory cytokine levels while elevating immunoglobulin levels. The supplement notably enhanced concentrations of acetic acid, propionic acid, butyric acid, and isobutyric acid. Furthermore, CAG demonstrated intestinal morphology restoration and upregulation of tight junction proteins and MUC2 protein expression in jejunum. At the mRNA level, it significantly upregulated the expression of Occludin, Claudin1, and MUC2 genes. CAG improves growth performance and mitigates diarrhea in weaned piglets by enhancing intestinal barrier integrity, modulating systemic inflammatory responses, elevating immunoglobulin levels, and promoting short-chain fatty acids (SCFAs) production in the cecum. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

15 pages, 6009 KiB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 252
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

14 pages, 3308 KiB  
Article
Dietary Sodium Butyrate Supplementation Enhances Silkworm Silk Yield by Simultaneously Promoting Larval Growth and Silk Gland Development
by Xiaoxiao Ren, Xingjiang He, Zhanfeng Ye, Zhuo Qing, Wanjun Yang, Chaobin Luo and Dan Xing
Insects 2025, 16(8), 761; https://doi.org/10.3390/insects16080761 - 24 Jul 2025
Viewed by 308
Abstract
Silk yield enhancement in sericulture has plateaued. Sodium butyrate (NaB) is known to improve production performance in livestock and poultry, yet its effects on silkworm silk yield remain uncharacterized. Here, we evaluated the impact of dietary NaB supplementation on silkworm growth, silk gland [...] Read more.
Silk yield enhancement in sericulture has plateaued. Sodium butyrate (NaB) is known to improve production performance in livestock and poultry, yet its effects on silkworm silk yield remain uncharacterized. Here, we evaluated the impact of dietary NaB supplementation on silkworm growth, silk gland development, and cocoon output. Mulberry leaves were immersed in NaB solutions at concentrations of 0, 2.5, 5, 10, 20, 40, or 80 mM, and subsequently provided as feed to third- to fifth-instar larvae. Among these, 10 mM NaB treatment most effectively promoted larval and pupal weight gain and increased food intake. Phenotypic and economic trait analyses revealed that 10 mM NaB treatment significantly enlarged the silk gland and boosted overall silk yield. Mechanistically, NaB enhanced body growth by increasing feeding intake and influencing the juvenile hormone and ecdysteroid signaling pathways; moreover, it promoted DNA replication in silk gland cells, thereby influencing silk gland development. Taken together, our findings demonstrate that dietary supplementation with an appropriate concentration of NaB concurrently enhances body growth and silk gland development, leading to higher silk production, and underscore the potential of short-chain fatty acid salts in advancing sericulture. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

15 pages, 1576 KiB  
Article
Interactive Effects of Sulfide Addition and Heat Pretreatment on Hydrogen Production via Dark Fermentation
by Tae-Hoon Kim, Yun-Ju Jeon, Sungjin Park, Ji-Hye Ahn, Junsu Park and Yeo-Myeong Yun
Fermentation 2025, 11(7), 418; https://doi.org/10.3390/fermentation11070418 - 20 Jul 2025
Viewed by 461
Abstract
Despite being recognized as toxic in anaerobic systems, sulfide’s potential to enhance hydrogen fermentation via microbial modulation remains underexplored. This study evaluated the combined effects of sulfide concentration (0–800 mg S/L) and heat pretreatment on hydrogen production during dark fermentation (DF). Without pretreatment, [...] Read more.
Despite being recognized as toxic in anaerobic systems, sulfide’s potential to enhance hydrogen fermentation via microbial modulation remains underexplored. This study evaluated the combined effects of sulfide concentration (0–800 mg S/L) and heat pretreatment on hydrogen production during dark fermentation (DF). Without pretreatment, hydrogen yield reached 83 ± 2 mL/g COD at 0 mg S/L but declined with increasing sulfide, becoming negligible at 800 mg S/L. In contrast, heat-pretreated inocula showed markedly improved performance: peak cumulative production (4628 ± 17 mL) and yield (231 ± 1 mL/g COD) were attained at 200 mg S/L, while the maximum production rate (1462 ± 64 mL/h) occurred at 400 mg S/L. These enhancements coincided with elevated acetic and butyric acids, indicating a metabolic shift toward hydrogen-producing pathways. The microbial analysis of heat-pretreated samples revealed an enrichment of Clostridium butyricum (from 73.1% to 87.5%) and Clostridium perfringens, which peaked at 13.5% at 400 mg S/L. This species contributed to butyric acid synthesis. At 800 mg S/L, Clostridium perfringens declined sharply to 0.6%, while non-hydrogenogenic Levilinea saccharolytica proliferated, correlating with reduced butyric acid and hydrogen output. These findings indicate that sulfide supplementation, when combined with heat pretreatment, selectively restructures microbial communities and metabolic pathways, enhancing DF performance. Full article
(This article belongs to the Special Issue Fermentative Biohydrogen Production, 2nd Edition)
Show Figures

Figure 1

17 pages, 7840 KiB  
Article
Systemic and Retinal Protective Effects of Butyrate in Early Type 2 Diabetes via Gut Microbiota–Lipid Metabolism Interaction
by Haijun Gong, Haoyu Zuo, Keling Wu, Xinbo Gao, Yuqing Lan and Ling Zhao
Nutrients 2025, 17(14), 2363; https://doi.org/10.3390/nu17142363 - 18 Jul 2025
Viewed by 449
Abstract
Background: Early neurovascular unit (NVU) impairment plays a critical role in the pathogenesis of diabetic retinopathy (DR), often preceding clinically detectable changes. Butyrate, a short-chain fatty acid (SCFA) derived from gut microbiota, has shown promising metabolic and anti-inflammatory effects. Methods: This study [...] Read more.
Background: Early neurovascular unit (NVU) impairment plays a critical role in the pathogenesis of diabetic retinopathy (DR), often preceding clinically detectable changes. Butyrate, a short-chain fatty acid (SCFA) derived from gut microbiota, has shown promising metabolic and anti-inflammatory effects. Methods: This study investigated the protective potential of oral butyrate supplementation in a mouse model of early type 2 diabetes mellitus (T2DM) induced by a high-fat diet and streptozotocin. Mice (C57BL/6J) received sodium butyrate (5 g/L in drinking water) for 12 weeks. Retinal NVU integrity was assessed using widefield swept-source optical coherence tomography angiography (WF SS-OCTA), alongside evaluations of systemic glucose and lipid metabolism, hepatic steatosis, visual function, and gut microbiota composition via 16S rRNA sequencing. Results: Butyrate supplementation significantly reduced body weight, fasting glucose, serum cholesterol, and hepatic lipid accumulation. Microbiome analysis demonstrated a partial reversal of gut dysbiosis, characterized by increased SCFA-producing taxa (Ruminococcaceae, Oscillibacter, Lachnospiraceae) and decreased pro-inflammatory, lipid-metabolism-related genera (Rikenella, Ileibacterium). KEGG pathway analysis further revealed enrichment in microbial lipid metabolism functions (fabG, ABC.CD.A, and transketolase). Retinal vascular and neurodegenerative alterations—including reduced vessel density and retinal thinning—were markedly attenuated by butyrate, as revealed by WF SS-OCTA. OKN testing indicated partial improvement in visual function, despite unchanged ERG amplitudes. Conclusions: Butyrate supplementation mitigates early NVU damage in the diabetic retina by improving glucose and lipid metabolism and partially restoring gut microbial balance. This study also underscores the utility of WF SS-OCTA as a powerful noninvasive tool for detecting early neurovascular changes in DR. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

25 pages, 4595 KiB  
Article
Probiotic Potentials and Protective Effects of Ligilactobacillus animalis LA-1 Against High-Fat Diet-Induced Obesity in Mice
by Qingya Wang, Yuyin Huang, Kun Meng, Haiou Zhang, Yunsheng Han, Rui Zhang, Xiling Han, Guohua Liu, Hongying Cai and Peilong Yang
Nutrients 2025, 17(14), 2346; https://doi.org/10.3390/nu17142346 - 17 Jul 2025
Viewed by 550
Abstract
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This [...] Read more.
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This study aimed to isolate and characterize a novel probiotic strain, Ligilactobacillus animalis LA-1, and evaluate its anti-obesity effects and underlying mechanisms using a high-fat diet (HFD)-induced obese mouse model. Methods: LA-1 was isolated from the feces of a healthy dog and assessed for probiotic potential in vitro, including gastrointestinal tolerance, bile salt hydrolase activity, cholesterol-lowering capacity, and fatty acid absorption. Male C57BL/6J mice were fed either a standard chow diet or an HFD for 16 weeks, with HFD mice receiving oral LA-1 supplementation (2 × 109 CFU/day). Multi-omics analyses, including 16S rRNA gene sequencing, short-chain fatty acid (SCFA) quantification, and untargeted liver metabolomics, were employed to investigate the effects of LA-1 on gut microbiota composition, metabolic pathways, and obesity-related phenotypes. Results: LA-1 supplementation significantly alleviated HFD-induced weight gain, hepatic lipid accumulation, and adipose tissue hypertrophy, without affecting food intake. It improved serum lipid profiles, reduced liver injury markers, and partially restored gut microbiota composition, decreasing the Firmicutes/Bacteroidetes ratio and enriching SCFA-producing genera. Total SCFA levels, particularly acetate, propionate, and butyrate, increased following LA-1 treatment. Liver metabolomics revealed that LA-1 modulated pathways involved in lipid and amino acid metabolism, resulting in decreased levels of acetyl-CoA, triglycerides, and bile acids. Conclusions: L. animalis LA-1 exerts anti-obesity effects via gut microbiota modulation, enhanced SCFA production, and hepatic metabolic reprogramming. These findings highlight its potential as a targeted probiotic intervention for obesity and metabolic disorders. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 380
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

15 pages, 3249 KiB  
Article
Optimizing Anaerobic Acidogenesis: Synergistic Effects of Thermal Pretreatment of Composting, Oxygen Regulation, and Additive Supplementation
by Dongmei Jiang, Yalin Wang, Zhenzhen Guo, Xiaoxia Hao, Hanyu Yu and Lin Bai
Sustainability 2025, 17(14), 6494; https://doi.org/10.3390/su17146494 - 16 Jul 2025
Viewed by 278
Abstract
Anaerobic acidogenic fermentation presents a promising approach for sustainable carbon emission mitigation in livestock waste management, addressing critical environmental challenges in agriculture. This study systematically investigated the synergistic effects of composting-assisted pretreatment coupled with micro-aeration and methanogenesis suppression to enhance volatile fatty acid [...] Read more.
Anaerobic acidogenic fermentation presents a promising approach for sustainable carbon emission mitigation in livestock waste management, addressing critical environmental challenges in agriculture. This study systematically investigated the synergistic effects of composting-assisted pretreatment coupled with micro-aeration and methanogenesis suppression to enhance volatile fatty acid (VFA) production from swine manure supplemented with wheat straw, valorizing agricultural waste while reducing greenhouse gas emissions. The experimental protocol involved sequential optimization of pretreatment conditions (12 h composting followed by 10 min thermal pretreatment at 85 °C), operational parameters (300 mL micro-aeration and 30 mmol/L 2-bromoethanesulfonate (BES) supplementation), and their synergistic integration. The combined strategy achieved peak VFA production (5895.92 mg/L, p < 0.05), with butyric acid constituting the dominant fraction (2004.42 mg/L, p < 0.05). Enzymatic analysis demonstrated significantly higher activities of key hydrolytic enzymes (protease, α-glucosidase) and acidogenic enzymes (butyrate kinase, acetate kinase) in the synergistic treatment group compared to individual BES-supplemented or micro-aeration-only groups (p < 0.05). This integrated approach provides a technically feasible and environmentally sustainable pathway for circular resource recovery, contributing to low-carbon agriculture and waste-to-value conversion. Full article
Show Figures

Figure 1

17 pages, 1865 KiB  
Article
Transcriptomic Insights into the Protective Effects of Apigenin and Sodium Butyrate on Jejunal Oxidative Stress in Ducks
by Ning Zhou, Hanxue Sun, Yong Tian, Heng Zhang, Xuemei Xian, Hui Yu, Lingyan Zhao, Yong Chen, Mingkun Sun, Yiqian Zhang, Ting Meng and Lizhi Lu
Vet. Sci. 2025, 12(7), 655; https://doi.org/10.3390/vetsci12070655 - 11 Jul 2025
Viewed by 370
Abstract
Apigenin and sodium butyrate have been reported to help alleviate oxidative stress. This study evaluated the jejunal transcriptomic responses in ducks receiving apigenin and sodium butyrate supplementation under oxidative stress. In total, 200 healthy 300-day-old female Jinyun Ma ducks (1.53 kg ± 0.15) [...] Read more.
Apigenin and sodium butyrate have been reported to help alleviate oxidative stress. This study evaluated the jejunal transcriptomic responses in ducks receiving apigenin and sodium butyrate supplementation under oxidative stress. In total, 200 healthy 300-day-old female Jinyun Ma ducks (1.53 kg ± 0.15) were randomly divided into four groups, with five replicates per group. The groups were as follows: a control group (CON): ducks were fed a basal diet with sterile saline injection; a diquat-injection (DIQ) group: ducks were fed a basal diet with diquat injection; an apigenin plus diquat group (API): ducks were fed a basal diet containing apigenin (500 mg/kg) with diquat injection; and a sodium butyrate plus diquat group (SB): ducks were fed a basal diet containing sodium butyrate (500 mg/kg) with diquat injection. The injection dose of diquat is 8 mg/kg body weight. Analysis revealed that the dietary supplementation of apigenin and sodium butyrate reduced malondialdehyde (MDA) levels and increased total antioxidant capacity (T-AOC) (p < 0.05). Compared to the DIQ group, sodium butyrate supplementation during oxidative stress elevated jejunal villus height and villus height/crypt depth ratio in ducks (p < 0.05). The study identified that some candidate genes, including solute carrier family 4 member 3 (SLC4A3), ADAM metallopeptidase domain 12 (ADAM12), and B-cell lymphoma 2-associated-athanogene 3 (BAG3), were significantly upregulated, whereas claudin 23 (CLDN23) and glucose-6-phosphatase catalytic subunit 1 (G6PC1) were markedly downregulated in the API group in comparison with that in the DIQ group (p < 0.05). Collectively, our findings provide molecular evidence for the beneficial effects of apigenin and sodium butyrate against oxidative stress in the jejunum of ducks. Full article
Show Figures

Figure 1

16 pages, 609 KiB  
Article
Comparison of Food Compound Intake Between Food-Allergic Individuals and the General Population
by Meike E. Vos, Marie Y. Meima, Sabina Bijlsma, W. Marty Blom, Thuy-My Le, André C. Knulst and Geert F. Houben
Nutrients 2025, 17(14), 2297; https://doi.org/10.3390/nu17142297 - 11 Jul 2025
Viewed by 378
Abstract
Background: Individuals with food allergies typically need to avoid specific allergens, leading to distinct dietary choices. Their food product intake may therefore vary from that of the general population, potentially leading to differences in their intake of nutrients and other food compounds. Methods: [...] Read more.
Background: Individuals with food allergies typically need to avoid specific allergens, leading to distinct dietary choices. Their food product intake may therefore vary from that of the general population, potentially leading to differences in their intake of nutrients and other food compounds. Methods: We compared food compound and nutrient group intakes between the general Dutch adult population (n = 415) and food allergic Dutch adult patients with either milk and/or egg allergies (n = 16), peanut and/or tree nut allergies (n = 35) or a combination of milk/egg and peanut/tree nut allergies (n = 22). We translated 24-hour dietary recall data into food compound intake values. We used a mixed effects ANOVA model and considered compound intakes statistically significantly different at FDR-corrected p < 0.05. Additionally, compounds with uncorrected p < 0.01 were explored for potential relevance. Results: A total of 489 compounds or nutrient groups were included in the statistical analysis. Milk/egg and mixed allergic patients had significantly lower intakes of beta-lactose, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, myristoleic acid, conjugated linoleic acid, and remainder saturated fatty acids (p < 0.05, FDR corrected), with mean intake factors of 1.6–3.2 and 1.3–2.9 lower, respectively, than the general population. In addition, 36 other compounds showed intake differences with a p < 0.01 without FDR correction. There were no statistically significant differences between the peanut/tree nut allergy group and the general population. Conclusions: Our study shows significantly lower intakes of 10 mainly dairy-derived compounds by the milk/egg and mixed-allergic patients, presenting the potential for long-term health consequences and the need for supplementation a relevant consideration, warranting further research. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure A1

22 pages, 3719 KiB  
Article
Influence of Triploid Musa spp. Genome Background and Exogenous Growth Regulators on In Vitro Regeneration in Plantains and Bananas
by Labode Hospice Stevenson Naitchede, Onyinye C. Ihearahu, Kishan Saha, David O. Igwe, Supriyo Ray and George Ude
Plants 2025, 14(14), 2109; https://doi.org/10.3390/plants14142109 - 9 Jul 2025
Viewed by 932
Abstract
Bananas and plantains, belonging to the Musa genus, are important food crops that sustain the livelihoods of countless smallholder farmers globally. However, their production is hindered by various challenges, including abiotic and biotic stresses, climate change, and poor access to clean planting materials, [...] Read more.
Bananas and plantains, belonging to the Musa genus, are important food crops that sustain the livelihoods of countless smallholder farmers globally. However, their production is hindered by various challenges, including abiotic and biotic stresses, climate change, and poor access to clean planting materials, which negatively impact their yields. Addressing these constraints is essential for improving production and ensuring food security. This study investigated the influence of triploid genome background and exogenous growth regulators on the regeneration of Musa cultivars [Gros Michel (AAA genome), Obino l’Ewai and Silk (AAB genome), and Poteau Naine (ABB genome)]. Shoot tip explants of the AAA, AAB, and ABB triploid genomes were cultured in Murashige and Skoog (MS) media supplemented with varying 6-benzylaminopurine (BAP) and indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), or naphthaleneacetic acid (NAA) hormones. Shoot induction was successfully achieved within 21.50 ± 2.00 days, with AAA exhibiting the highest shoot induction frequencies ranging from 30.00 ± 1.57% to 100% and shoot numbers per explant ranging from 3.00 ± 0.50 to 8.80 ± 0.80, followed by the ABB genome ranging from 20.00 ± 3.45% to 100% and from 2.00 ± 0.55 to 5.60 ± 0.50 shoots, and the AAB genome ranging from 17.50 ± 5.01% to 100% and from 2.00 ± 0.04 to 6.60 ± 0.25 shoots, respectively, in media amended with 1.2 to 6.0 mg.L−1 BAP and 0.1 mg.L−1 IAA. The highest rooting rate of 100% was recorded in all three genomes in media containing 1.4 mg.L−1 IBA and 0.5 mg.L−1 IAA, with the AAA genome producing the maximum number of 14.8 roots per explant. The results indicate the positive influence of the AAA genome background on in vitro regeneration and its potential utilization for genomic editing transformation protocols Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

21 pages, 506 KiB  
Article
Fermented Milk Supplemented with Sodium Butyrate and Inulin: Physicochemical Characterization and Probiotic Viability Under In Vitro Simulated Gastrointestinal Digestion
by Katarzyna Szajnar, Małgorzata Pawlos, Magdalena Kowalczyk, Julita Drobniak and Agata Znamirowska-Piotrowska
Nutrients 2025, 17(13), 2249; https://doi.org/10.3390/nu17132249 - 7 Jul 2025
Viewed by 614
Abstract
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate [...] Read more.
Background/Objectives: Probiotics are increasingly recognized for their role in managing gastrointestinal disorders through modulation of gut microbiota. Restoring microbial balance remains a therapeutic challenge. Recent strategies combine probiotics, inulin, and sodium butyrate as synergistic agents for gut health. This study aimed to evaluate the effects of milk supplementation with inulin and sodium butyrate on physicochemical properties, sensory characteristics, and the survival of selected probiotic strains during in vitro simulated gastrointestinal digestion. Methods: Fermented milk samples were analyzed for color, pH, titratable acidity, and syneresis. A trained sensory panel evaluated aroma, texture, and acceptability. Samples underwent a standardized in vitro digestion simulating oral, gastric, and intestinal phases. Viable probiotic cells were counted before digestion and at each stage, and survival rates were calculated. Results: Physicochemical and sensory attributes varied depending on probiotic strain and supplementation. Inulin and the inulin–sodium butyrate combination influenced syneresis and acidity. Lacticaseibacillus casei 431 and Lactobacillus johnsonii LJ samples showed the highest viable counts before digestion. Two-way ANOVA confirmed that probiotic strain, supplementation type, and their interactions significantly affected bacterial survival during digestion (p < 0.05). Conclusions: The addition of inulin and sodium butyrate did not impair probiotic viability under simulated gastrointestinal conditions. The effects on product characteristics were strain-dependent (Bifidobacterium animalis subsp. lactis BB-12, L. casei 431, L. paracasei L26, L. acidophilus LA-5, L. johnsonii LJ). These findings support the use of inulin–butyrate fortification in dairy matrices to enhance the functional potential of probiotic foods targeting gut health. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

22 pages, 3591 KiB  
Article
Dietary Supplementation with Encapsulated or Non-Encapsulated Sodium Butyrate Enhances Growth, Antioxidant Defense, Immunity, and Gut Health in Largemouth Bass (Micropterus salmoides)
by Minghui He, Zhiwei Zou, Wanjia Zhu, Haipeng Li, Ting Liang, Liwei Liu and Jianmei Su
Microorganisms 2025, 13(7), 1594; https://doi.org/10.3390/microorganisms13071594 - 6 Jul 2025
Viewed by 473
Abstract
This study aimed to evaluate the effects of dietary supplementation with sodium butyrate (SB) in different forms on the growth performance, antioxidant capacity, immune response, and intestinal health of largemouth bass (Micropterus salmoides). Five diets were formulated: a basal diet (SB0), [...] Read more.
This study aimed to evaluate the effects of dietary supplementation with sodium butyrate (SB) in different forms on the growth performance, antioxidant capacity, immune response, and intestinal health of largemouth bass (Micropterus salmoides). Five diets were formulated: a basal diet (SB0), diets with 1000 (ESB1), 1500 (ESB2), and 2000 mg/kg encapsulated SB (ESB3), and a diet with 2000 mg/kg raw powder sodium butyrate (RSB, non-encapsulated). After 49 days of feeding trials, the ESB2 group exhibited significantly higher weight gain and specific growth rates and a lower feed coefficient than those of the SB0 group (p < 0.05). Compared with the SB0 group, proximal intestinal villus length and width were significantly increased in the ESB1, ESB2, and ESB3 groups (p < 0.05). The expressions of tight junction genes zo-1, claudin-1, and claudin-4 were up-regulated in these SB-supplemented groups and most pronounced in the ESB2 group (p < 0.05). Compared with the SB0 group, antioxidant enzyme activities (catalase and superoxide dismutase) and their gene expressions increased in the ESB1, ESB2, and RSB groups (p < 0.05). Immune-related genes il-10 and tgf-β1 were up-regulated in the ESB1 and ESB2 groups, while their il-8, il-1β, and tnf-α were down-regulated (p < 0.05). The ESB2 group had higher intestinal abundance of Firmicutes and Lactobacillus. In conclusion, dietary supplementation with 1500 mg/kg encapsulated SB (ESB2) improved growth, antioxidant capacity, immunity, and gut health in largemouth bass. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

Back to TopTop