Transcriptomic Insights into the Protective Effects of Apigenin and Sodium Butyrate on Jejunal Oxidative Stress in Ducks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Feeding
2.2. Sample Collection
2.3. Detection of Oxidative Stress Markers in the Jejunum
2.4. Jejunal Morphology Analysis
2.5. RNA Extraction, Library Preparation, and Sequencing
2.6. Quality Control, Quantification, and Differential Expression Analysis
2.7. Quantitative Real-Time PCR (qRT-PCR) Validation
2.8. Statistical Analysis
3. Results
3.1. The Effect of Diquat on Jejunal Oxidative Stress
3.2. Jejunal Morphology
3.3. Overview of Sequence Reads
3.4. Differential Gene Expression Analysis
3.5. Functional Enrichment Analysis
3.6. qRT-PCR Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SOD | Superoxide dismutase |
MDA | Malondialdehyde |
CAT | Catalase |
T-AOC | Total antioxidant capacity |
SLC4A3 | Solute carrier family 4 member 3 |
ADAM12 | ADAM metallopeptidase domain 12 |
BAG3 | B-cell lymphoma 2-associated-athanogene 3 |
CLDN23 | Claudin 23 |
G6PC1 | Glucose-6-phosphatase catalytic subunit 1 |
ADAMTS4 | ADAM metallopeptidase with thrombospondin type 1 motif 4 |
HSPA8 | Heat shock protein family A (Hsp70) member 8 |
TLR1-A | Toll-like receptor 1 |
FBXO32 | F-box protein 32 |
ST13 | Suppression of tumorigenicity 13 |
References
- Zhang, H.; Chen, F.; Liang, Z.; Wu, Y.; Pi, J. Isolation, culture, and identification of duck intestinal epithelial cells and oxidative stress model constructed. In Vitro Cell. Dev. Biol.-Anim. 2019, 55, 733–740. [Google Scholar] [CrossRef]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through pi3k/akt-mediated nrf2 signaling pathway. Oxidative Med. Cell. Longev. 2019, 2019, 7591840. [Google Scholar] [CrossRef]
- Xiao, L.; Cao, W.; Liu, G.; Fang, T.; Wu, X.; Jia, G.; Chen, X.; Zhao, H.; Wang, J.; Wu, C.; et al. Arginine, n-carbamylglutamate, and glutamine exert protective effects against oxidative stress in rat intestine. Anim. Nutr. 2016, 2, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C. ‘Gut health’: A new objective in medicine? BMC Med. 2011, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef]
- Peng, W.; Gao, M.; Yao, X.; Tong, Y.; Zhang, H.; He, X. Magnolol supplementation alleviates diquat-induced oxidative stress via pi3k-akt in broiler chickens. Anim. Sci. J. 2023, 94, e13891. [Google Scholar] [CrossRef]
- Zhou, N.; Cao, Y.; Luo, Y.; Wang, L.; Li, R.; Di, H.; Gu, T.; Cao, Y.; Zeng, T.; Zhu, J.; et al. The effects of resveratrol and apigenin on jejunal oxidative injury in ducks and on immortalized duck intestinal epithelial cells exposed to H2O2. Antioxidants 2024, 13, 611. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Wang, F.; Liu, Y.; Han, S.; Liu, S.; Zhang, Z.; Chen, B. Dietary curcumin supplementation alleviates diquat-induced oxidative stress in the liver of broilers. Poult. Sci. 2023, 102, 103132. [Google Scholar] [CrossRef]
- Liang, C.; Ren, Y.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Yu, B. Dietary glutathione supplementation attenuates oxidative stress and improves intestinal barrier in diquat-treated weaned piglets. Arch. Anim. Nutr. 2023, 77, 141–154. [Google Scholar] [CrossRef]
- Ding, K.; Lu, M.; Guo, Y.; Liang, S.; Mou, R.; He, Y.; Tang, L. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the nrf2-keap1 signaling pathway. Ecotoxicol. Environ. Saf. 2023, 249, 114411. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, H.; Miao, D.; Wang, H.; Liu, Y.; Xing, L.; Bao, J.; Li, J. Dietary resveratrol supplementation alleviates cold exposure-induced pyroptosis and inflammation in broiler heart by modulating oxidative stress and endoplasmic reticulum stress. Poult. Sci. 2024, 103, 104203. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.; Guo, B.; Chen, C.; Hu, P.; Lee, T. Apigenin ameliorates hepatic lipid accumulation by activating the autophagy-mitochondria pathway. J. Food Drug Anal. 2021, 29, 240–254. [Google Scholar] [CrossRef]
- Singh, D.; Khan, M.A.; Akhtar, K.; Arjmand, F.; Siddique, H.R. Apigenin alleviates cancer drug sorafenib induced multiple toxic effects in swiss albino mice via anti-oxidative stress. Toxicol. Appl. Pharmacol. 2022, 447, 116072. [Google Scholar] [CrossRef]
- Ghahri, A.; Saboji, M.; Hatami, H.; Ranjbar, A.; Salimi, A.; Seydi, E. Apigenin ameliorates petrol vapors-induced oxidative stress as occupational and environmental pollutants in rats: An in vivo study. Arch. Environ. Occup. Health 2024, 79, 143–151. [Google Scholar] [CrossRef]
- Noorian, M.; Chamani, E.; Salmani, F.; Rezaei, Z.; Khorsandi, K. Effects of doxorubicin and apigenin on chronic myeloid leukemia cells (k562) in vitro: Anti-proliferative and apoptosis induction assessments. Nat. Prod. Res. 2023, 37, 3335–3343. [Google Scholar] [CrossRef]
- Chumsakul, O.; Wakayama, K.; Tsuhako, A.; Baba, Y.; Takai, Y.; Kurose, T.; Honma, Y.; Watanabe, S. Apigenin regulates activation of microglia and counteracts retinal degeneration. J. Ocular Pharmacol. Ther. 2020, 36, 311–319. [Google Scholar] [CrossRef]
- Gaur, K.; Siddique, Y.H. Effect of apigenin on neurodegenerative diseases. CNS Neurol. Disord.-Drug Targets 2024, 23, 468–475. [Google Scholar] [CrossRef]
- Hua, X.; Zhang, J.; Chen, J.; Feng, R.; Zhang, L.; Chen, X.; Jiang, Q.; Yang, C.; Liang, C. Sodium butyrate alleviates experimental autoimmune prostatitis by inhibiting oxidative stress and nlrp3 inflammasome activation via the nrf2/ho-1 pathway. Prostate 2024, 84, 666–681. [Google Scholar] [CrossRef]
- Chen, H.; Qian, Y.; Jiang, C.; Tang, L.; Yu, J.; Zhang, L.; Dai, Y.; Jiang, G. Butyrate ameliorated ferroptosis in ulcerative colitis through modulating nrf2/gpx4 signal pathway and improving intestinal barrier. Biochim. Biophys. Acta-Mol. Basis Dis. 2024, 1870, 166984. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, X.; Guo, Y.; Li, Z.; Zhou, Z. Coated sodium butyrate and vitamin d(3) supplementation improve gut health through influencing intestinal immunity, barrier, and microflora in early-stage broilers. J. Sci. Food. Agric. 2024, 104, 4058–4069. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, Y.; Yu, X.; Chen, J.; Guo, X.; Cao, H.; Hu, G.; Zhuang, Y. Sodium butyrate alleviates free fatty acid-induced steatosis in primary chicken hepatocytes via regulating the ros/gpx4/ferroptosis pathway. Antioxidants 2024, 13, 140. [Google Scholar] [CrossRef]
- Yang, X.; Kui, L.; Tang, M.; Li, D.; Wei, K.; Chen, W.; Miao, J.; Dong, Y. High-throughput transcriptome profiling in drug and biomarker discovery. Front. Genet. 2020, 11, 19. [Google Scholar] [CrossRef]
- Zhai, M.; Guo, Y.; Su, A.; Tian, H.; Sun, G.; Kang, X.; Li, K.; Yan, F. Identification of genes related to dexamethasone-induced immunosuppression in chicken thymus using transcriptome analysis. Res. Vet. Sci. 2020, 132, 318–327. [Google Scholar] [CrossRef]
- Kövesi, B.; Worlanyo, A.P.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Zándoki, E.; Mézes, M.; Balogh, K. Curcumin mitigates ochratoxin A-induced oxidative stress and alters gene expression in broiler chicken liver and kidney. Acta Vet Hung. 2024, 72, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, H.; Huo, H.; Li, X.; Zhu, H.; Zhao, L.; Liao, J.; Tang, Z.; Guo, J. Effects of terbuthylazine on myocardial oxidative stress and ferroptosis via Nrf2/HO-1 signaling pathway in broilers. Pestic Biochem Physiol. 2023, 197, 105698. [Google Scholar] [CrossRef]
- Roberts, A.; Trapnell, C.; Donaghey, J.; Rinn, J.L.; Pachter, L. Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol. 2011, 12, R22. [Google Scholar] [CrossRef] [PubMed]
- Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, 317–325. [Google Scholar] [CrossRef]
- Ruan, T.; Li, L.; Lyu, Y.; Luo, Q.; Wu, B. Effect of methionine deficiency on oxidative stress and apoptosis in the small intestine of broilers. Acta Vet. Hung. 2018, 66, 52–65. [Google Scholar] [CrossRef]
- Jones, G.M.; Vale, J.A. Mechanisms of toxicity, clinical features, and management of diquat poisoning: A review. J. Toxicol. Clin. Toxicol. 2000, 38, 123–128. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, S.; Wang, W.; Jian, T.; Kan, B.; Jian, X. Kidney and lung injury in rats following acute diquat exposure. Exp. Ther. Med. 2022, 23, 275. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Ou, R.; Rao, G.; Zhao, Z.; Xu, N.; Zhou, M. Protective effect and mechanism of quercetin on acute liver injury induced by diquat poisoning in mice. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2024, 36, 604–608. [Google Scholar] [PubMed]
- Zhao, Y.; Zhang, X.; Zhang, N.; Zhou, Q.; Fan, D.; Wang, M. Lipophilized apigenin derivatives produced during the frying process as novel antioxidants. Food Chem. 2022, 379, 132178. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, X.; Chang, Z.; Xiao, C.; Najafi, M. Boosting anti-tumour immunity using adjuvant apigenin. Anti-Cancer Agents Med. Chem. 2023, 23, 266–277. [Google Scholar]
- Zhou, N.; Tian, Y.; Liu, W.; Tu, B.; Xu, W.; Gu, T.; Zou, K.; Lu, L. Protective effects of resveratrol and apigenin dietary supplementation on serum antioxidative parameters and mrnas expression in the small intestines of diquat-challenged pullets. Front. Vet. Sci. 2022, 9, 850769. [Google Scholar] [CrossRef]
- Weng, X.; Luo, X.; Dai, X.; Lv, Y.; Zhang, S.; Bai, X.; Bao, X.; Wang, Y.; Zhao, C.; Zeng, M.; et al. Apigenin inhibits macrophage pyroptosis through regulation of oxidative stress and the nf-kappab pathway and ameliorates atherosclerosis. Phytother. Res. 2023, 37, 5300–5314. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, Z.; An, X.; Zhou, X.; Zhang, R.; Zhan, X.; Zhang, W.; Zhou, J. Apigenin ameliorates H2O2-induced oxidative damage in melanocytes through nuclear factor-e2-related factor 2 (nrf2) and phosphatidylinositol 3-kinase (pi3k)/protein kinase b (akt)/mammalian target of rapamycin (mtor) pathways and reducing the generation of reactive oxygen species (ros) in zebrafish. Pharmaceuticals 2024, 17, 1302. [Google Scholar]
- Li, X.; Wang, C.; Zhu, J.; Lin, Q.; Yu, M.; Wen, J.; Feng, J.; Hu, C. Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through ampk-mitophagy pathway. Oxidative Med. Cell. Longev. 2022, 2022, 3745135. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Ji, J.; Qu, H.; Wang, J.; Shu, D.M.; Wang, Y.; Liu, T.F.; Li, Y.; Luo, C.L. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult. Sci. 2019, 98, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Cheng, Y.; Pang, T.; Kuai, Y.; An, Y.; Wu, K.; Li, Y.; Lai, M.; Wang, B.; Wang, S. Sodium butyrate alleviates deoxynivalenol-induced porcine intestinal barrier disruption by promoting mitochondrial homeostasis via pck2 signaling. J. Hazard. Mater. 2023, 459, 132013. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, Y.; Zhu, X.; Shen, L.; Chen, L.; Niu, L.; Gan, M.; Zhang, S.; Zhang, M.; Jiang, J.; et al. Sodium butyrate protects against rotavirus-induced intestinal epithelial barrier damage by activating ampk-nrf2 signaling pathway in ipec-j2 cells. Int. J. Biol. Macromol. 2023, 228, 186–196. [Google Scholar] [CrossRef]
- Tao, Z.; Ma, T. Sodium butyrate protect bone mass in lipopolysaccharide-treated rats by reducing oxidative stress and inflammatory. Redox Rep. 2024, 29, 2398891. [Google Scholar] [CrossRef]
- Cao, S.; Wang, C.; Yan, J.; Li, X.; Wen, J.; Hu, C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting parkin dependent mitophagy through ampk-tfeb signal pathway. Free. Radic. Biol. Med. 2020, 147, 8–22. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Zheng, Z.; Li, N.; Mu, S.; Ma, Y.; Zhou, Z.; Yan, J.; Lu, C.; Wang, W.; et al. Effects of L-theanine on intestinal morphology, barrier function, and MAPK signaling pathways in diquat-challenged piglets. Anim Biotechnol. 2023, 34, 1112–1119. [Google Scholar] [CrossRef]
- Xun, W.; Fu, Q.; Shi, L.; Cao, T.; Jiang, H.; Ma, Z. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. Int Immunopharmacol. 2021, 99, 107989. [Google Scholar] [CrossRef]
- Ji, Z.Q.; Hao, Y.S.; Wang, Y.T.; Zhang, B.; Tang, J.; Huang, W.; Zhang, Q.; Hou, S.S.; Xie, M. Effects of coated sodium butyrate on growth performance, intestinal morphology, and caecal short-chain fatty acids of growing pekin ducks. Br. Poult. Sci. 2023, 64, 529–533. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, Z.; An, W.; Dong, Y.; Zhang, B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS ONE 2018, 13, e0197762. [Google Scholar] [CrossRef]
- Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a modulator of ppargamma, attenuates hfd-induced nafld by regulating hepatocyte lipid metabolism and oxidative stress via nrf2 activation. Biochem. Pharmacol. 2017, 136, 136–149. [Google Scholar] [CrossRef]
- Ding, J.; Liu, J.; Chen, J.; Cheng, X.; Cao, H.; Guo, X.; Hu, G.; Zhuang, Y. Sodium butyrate alleviates free fatty acid-induced steatosis in primary chicken hepatocytes via the ampk/pparalpha pathway. Poult. Sci. 2024, 103, 103482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tong, Y.; Kang, Y.; Qiu, Z.; Li, Q.; Xu, C.; Wu, G.; Jia, W.; Wang, P. Sodium butyrate (sb) ameliorated inflammation of copd induced by cigarette smoke through activating the gpr43 to inhibit nf-kappab/mapks signaling pathways. Mol. Immunol. 2023, 163, 224–234. [Google Scholar] [CrossRef]
- Moon, H.; Yun, J. Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of nf-kappab p65 in human monocytes. Nutr. Res. Pract. 2023, 17, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Schumann, T.; Konig, J.; Henke, C.; Willmes, D.M.; Bornstein, S.R.; Jordan, J.; Fromm, M.F.; Birkenfeld, A.L. Solute carrier transporters as potential targets for the treatment of metabolic disease. Pharmacol. Rev. 2020, 72, 343–379. [Google Scholar] [CrossRef] [PubMed]
- Sturner, E.; Behl, C. The role of the multifunctional bag3 protein in cellular protein quality control and in disease. Front. Molec. Neurosci. 2017, 10, 177. [Google Scholar] [CrossRef]
- Liu, X.; Ye, Q.; Huang, Z.; Li, X.; Zhang, L.; Liu, X.; Wu, Y.; Brockmeier, U.; Hermann, D.M.; Wang, Y.; et al. Bag3 overexpression attenuates ischemic stroke injury by activating autophagy and inhibiting apoptosis. Stroke 2023, 54, 2114–2125. [Google Scholar] [CrossRef]
- Stricher, F.; Macri, C.; Ruff, M.; Muller, S. Hspa8/hsc70 chaperone protein: Structure, function, and chemical targeting. Autophagy 2013, 9, 1937–1954. [Google Scholar] [CrossRef]
- Tian, H.; Ding, M.; Guo, Y.; Zhu, Z.; Yu, Y.; Tian, Y.; Li, K.; Sun, G.; Jiang, R.; Han, R.; et al. Effect of hspa8 gene on the proliferation, apoptosis and immune function of hd11 cells. Dev. Comp. Immunol. 2023, 142, 104666. [Google Scholar] [CrossRef]
Composition | Content (%) | Nutrient Levels 2 | Content |
---|---|---|---|
Corn | 46.5 | Metabolic energy (MJ/kg) | 11.06 |
Soybean meal | 26.6 | Crude protein, % | 17.85 |
Wheat bran | 2.1 | Lysine, % | 1.1 |
Rice bran | 15.6 | Cysteine + Methionine, % | 0.68 |
Limeston | 6.3 | Calcium, % | 2.67 |
NaCl | 0.4 | Available phosphorus, % | 0.37 |
Premix 1 | 2.5 | ||
Total | 100 |
Genes | Primer (From 5′ to 3′) | Amplicon Length (bp) | GenBank Number |
---|---|---|---|
SLC4A3 | F: CCCTTTGAAGCGGACTGGAATAT | 163 | XM_021277160.3 |
R: CCCGAAGGTGATGGCAGGA | |||
ADAM12 | F: ACAAGGCAAGGATGTGGAAA | 166 | XM_038181074.1 |
R: ATGGAGGCTGGTGAAAGGAT | |||
BAG3 | F: CGGCAAACGGTCCGTCTCGT | 194 | XM_027460145.2 |
R: GGTGGGCACAGCCTCTGTCTT | |||
CLDN23 | F: TGGAGGACGAGCGAGACGGG | 156 | XM_021272456.3 |
R: GAGATTCAGGCTGGGTCCTTGTT | |||
G6PC1 | F: GCCATCCAGCAGTTCCCACTCAC | 181 | XM_027445511.2 |
R: AGAAGCCCGTCCAAAGCACCAG | |||
ADAMTS4 | F: GCGCCCGCTTCATCACCGATTTCC | 155 | XM_038172665.1 |
R: GTGCCGCGAGTCCATGCCGAAA | |||
HSPA8 | F: CAGCCTATTTCAACGACTCCCA | 140 | XM_027444224.2 |
R: CCTTTCAGCACCGACCTTCTT | |||
TLR1-A | F: TCTTTCTACTTGCTGGCACA | 121 | XR_005265145.1 |
R: AAGGCTTCGGCATACTCA | |||
FBXO32 | F: TGCTGGAGCTGATAGCGAAGT | 189 | HM627858.1 |
R: CAGATTTGCCGACCCGTTG | |||
ST13 | F: TGAACTTCAGAAGGCTGTCGA | 176 | XM_027451163.2 |
R: ATTTGTAGGTCTGTGCCGAGT | |||
β-actin | F: ATGTCGCCCTGGATTTCG | 135 | EF667345.1 |
R: CACAGGACTCCATACCCAAGAAT |
Items | CON | DIQ | API | SB |
---|---|---|---|---|
Villus height (μm) | 688.66 a ±36.22 | 414.43 b ± 36.80 | 473.10 b ± 6.256 | 723.63 a ± 30.73 |
Crypt depth (μm) | 285.74 a ± 23.76 | 219.03 ab ± 10.95 | 206.07 b ± 13.69 | 199.27 b ± 31.73 |
Villus height/crypt depth | 2.49 b ± 0.27 | 1.89 b ± 0.09 | 2.32 b ± 0.18 | 3.63 a ± 0.58 |
Terms | Raw Reads | Clean Reads | Clean Reads Ratio | Q20 | Q30 | Mapped Reads | Mapping Ratio |
---|---|---|---|---|---|---|---|
2-2K | 41,791,188 | 40,804,162 | 97.64% | 97.98% | 94.32% | 35,503,701 | 87.01% |
2-3K | 43,848,638 | 42,669,742 | 97.31% | 97.83% | 93.92% | 37,882,196 | 88.78% |
2-4K | 46,330,764 | 45,146,352 | 97.44% | 98.13% | 94.73% | 38,496,294 | 85.27% |
2-5K | 41,404,312 | 40,401,026 | 97.58% | 98.11% | 94.71% | 35,104,451 | 86.89% |
3-2K | 47,602,426 | 46,390,366 | 97.45% | 97.84% | 93.92% | 40,076,637 | 86.39% |
3-3K | 42,445,702 | 41,338,746 | 97.39% | 98.15% | 94.9% | 36,034,984 | 87.17% |
3-4K | 45,998,644 | 44,875,454 | 97.56% | 97.88% | 94.1% | 39,001,257 | 86.91% |
3-5K | 41,093,628 | 39,637,998 | 96.46% | 97.72% | 93.66% | 35,071,700 | 88.48% |
6-2K | 41,361,382 | 40,267,496 | 97.36% | 98.19% | 94.94% | 35,487,744 | 88.13% |
6-3K | 45,781,654 | 44,301,954 | 96.77% | 97.77% | 93.75% | 38,910,406 | 87.83% |
6-4K | 42,965,146 | 41,579,996 | 96.78% | 97.56% | 93.21% | 36,507,236 | 87.80% |
6-5K | 45,120,390 | 44,003,424 | 97.52% | 97.87% | 94.01% | 38,758,215 | 88.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Sun, H.; Tian, Y.; Zhang, H.; Xian, X.; Yu, H.; Zhao, L.; Chen, Y.; Sun, M.; Zhang, Y.; et al. Transcriptomic Insights into the Protective Effects of Apigenin and Sodium Butyrate on Jejunal Oxidative Stress in Ducks. Vet. Sci. 2025, 12, 655. https://doi.org/10.3390/vetsci12070655
Zhou N, Sun H, Tian Y, Zhang H, Xian X, Yu H, Zhao L, Chen Y, Sun M, Zhang Y, et al. Transcriptomic Insights into the Protective Effects of Apigenin and Sodium Butyrate on Jejunal Oxidative Stress in Ducks. Veterinary Sciences. 2025; 12(7):655. https://doi.org/10.3390/vetsci12070655
Chicago/Turabian StyleZhou, Ning, Hanxue Sun, Yong Tian, Heng Zhang, Xuemei Xian, Hui Yu, Lingyan Zhao, Yong Chen, Mingkun Sun, Yiqian Zhang, and et al. 2025. "Transcriptomic Insights into the Protective Effects of Apigenin and Sodium Butyrate on Jejunal Oxidative Stress in Ducks" Veterinary Sciences 12, no. 7: 655. https://doi.org/10.3390/vetsci12070655
APA StyleZhou, N., Sun, H., Tian, Y., Zhang, H., Xian, X., Yu, H., Zhao, L., Chen, Y., Sun, M., Zhang, Y., Meng, T., & Lu, L. (2025). Transcriptomic Insights into the Protective Effects of Apigenin and Sodium Butyrate on Jejunal Oxidative Stress in Ducks. Veterinary Sciences, 12(7), 655. https://doi.org/10.3390/vetsci12070655