Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (247)

Search Parameters:
Keywords = bulk metallic glasses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2929 KiB  
Article
Modified Water-Dispersion Compositions Based on Synthesized Dispersions and Hollow Glass Microspheres with Improved Protective Characteristics
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Ruslan E. Nurlybayev, Zaure N. Altayeva, Yelzhan S. Orynbekov, Axaya S. Yestemessova, Aktota A. Murzagulova, Alinur A. Iskakov, Aidos A. Joldassov and Zhanar O. Zhumadilova
Coatings 2025, 15(7), 840; https://doi.org/10.3390/coatings15070840 - 18 Jul 2025
Viewed by 390
Abstract
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics [...] Read more.
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics proves to be effective. This article examines the development of a paint-and-coating composition using hollow glass microspheres and modified diatomite as finely dispersed fillers. The influence of technological factors on the properties of coating materials based on a synthesized acrylic dispersion and fillers—such as modified diatomite and hollow glass microspheres ranging from 20 to 100 μm in size with a bulk density of 0.107–0.252 g/cm3—is analyzed. The optimal formulation of the coating materials was determined to ensure the required coating quality. Experimental results demonstrate the improved strength and hardness of the coating due to the use of acrylic dispersion obtained through an emulsifier-free method and modifiers in the form of finely dispersed fillers. It has been established that the resulting samples also exhibit high adhesion to mineral and metallic substrates, along with excellent corrosion resistance. Moreover, the incorporation of acrylic dispersion contributes to increased elasticity of the coating, resulting in improved resistance to washing and abrasion. The developed protective material can be applied to a variety of surfaces, including walls, ceilings, and roofs of buildings and structures, pipelines, and many other applications. Thus, modified water-dispersion compositions based on synthesized acrylic dispersion showed the following results: resistance to sticking—5, which is the best; chemical resistance and gloss level with standard single-phase acrylic dispersion—no destruction or change in gloss. The adhesion of coatings cured under natural conditions and under the influence of UV radiation was 1 point. The developed formulations for obtaining water-dispersion paint and varnish compositions based on synthesized polymer dispersions, activated diatomite, and hollow glass microspheres, meet all the regulatory requirements for paint and varnish materials in terms of performance, and in terms of economic indicators, the cost of 1 kg of paint is 30% lower than the standard. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 1266 KiB  
Article
Machine Learning-Driven Prediction of Glass-Forming Ability in Fe-Based Bulk Metallic Glasses Using Thermophysical Features and Data Augmentation
by Renato Dario Bashualdo Bobadilla, Marcello Baricco and Mauro Palumbo
Metals 2025, 15(7), 763; https://doi.org/10.3390/met15070763 - 7 Jul 2025
Viewed by 331
Abstract
The identification of suitable alloy compositions for the formation of bulk metallic glasses (BMGs) is a key challenge in materials science. In this study, we developed machine learning (ML) models to predict the critical casting diameter (Dmax) of [...] Read more.
The identification of suitable alloy compositions for the formation of bulk metallic glasses (BMGs) is a key challenge in materials science. In this study, we developed machine learning (ML) models to predict the critical casting diameter (Dmax) of Fe-based BMGs, enabling rapid assessment of glass-forming ability (GFA) using composition-based and calculated thermophysical features. Three datasets were constructed: one based on alloy molar fractions, one using thermophysical quantities calculated via the CALPHAD method, and another utilizing Magpie-derived features. The performance of various ML models was evaluated, including support vector machines (SVM), XGBoost, and ensemble methods. Models trained on thermophysical features outperformed those using only molar fractions, with XGBoost and SVM models achieving test R2 scores of up to 0.63 and 0.60, respectively. Magpie features yielded similar results but required a larger feature set. To enhance predictive accuracy, we explored data augmentation using the PADRE method and a modified version (PADRE-2). While PADRE-2 demonstrated slight improvements and reduced data redundancy, the overall performance gains were limited. The best-performing model was an ensemble combining SVM and XGBoost models trained on thermophysical and Magpie features, achieving an R2 score of 0.69 and MAE of 0.69, comparable to published results obtained from larger datasets. However, predictions for high Dmax values remain challenging, highlighting the need for further refinement. This study underscores the potential of leveraging thermophysical features and advanced ML techniques for GFA prediction and the design of new Fe-based BMGs. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

16 pages, 11865 KiB  
Article
Enhancing Fracture Toughness, Strength and Ductility of Zr58.75Cu21.15Fe4.7Al9.4Nb6 Bulk Metallic Glass via Ultrasound Excitation Technique
by Xiaoming Chen, Zhe Zhang, Tuo Wang, Yuluo Li, Rui Bai, Mingming Wang and Xidong Hui
Metals 2025, 15(6), 683; https://doi.org/10.3390/met15060683 - 19 Jun 2025
Viewed by 329
Abstract
The inherent brittleness and limited toughness of bulk metallic glasses (BMGs) remain critical challenges for their application as structural engineering materials. In this study, ultrasonic excitation was applied to Zr58.75Cu21.15Fe4.7Al9.4Nb6 BMG with the aim [...] Read more.
The inherent brittleness and limited toughness of bulk metallic glasses (BMGs) remain critical challenges for their application as structural engineering materials. In this study, ultrasonic excitation was applied to Zr58.75Cu21.15Fe4.7Al9.4Nb6 BMG with the aim of enhancing its mechanical performance. The results reveal that ultrasonic treatment significantly increases the fracture toughness by approximately 28% and induces a pronounced plastic deformation plateau following yielding. This improvement in both strength and ductility is attributed to the formation of nanoscale crystalline phases and ultrasound-induced phase separation within the amorphous matrix, which collectively promote shear band multiplication and inhibit crack propagation. Full article
Show Figures

Figure 1

15 pages, 4691 KiB  
Article
Comparison of Continuous and Pulsed Low-Power DC Sputtered Ti Thin Films Deposited at Room Temperature
by Anna Maria Reider, Ariane Kronthaler, Fabio Zappa, Alexander Menzel, Felix Laimer and Paul Scheier
Surfaces 2025, 8(2), 36; https://doi.org/10.3390/surfaces8020036 - 31 May 2025
Viewed by 815
Abstract
Titanium thin films with thicknesses of up to 105 nm were deposited on borosilicate glass implementing low-power continuous (25 W) and pulsed (85 W, with an ultra-low duty cycle) DC magnetron sputtering. The characteristics of the resulting films were studied via atomic force [...] Read more.
Titanium thin films with thicknesses of up to 105 nm were deposited on borosilicate glass implementing low-power continuous (25 W) and pulsed (85 W, with an ultra-low duty cycle) DC magnetron sputtering. The characteristics of the resulting films were studied via atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), VIS spectroscopy, and four-point-probe measurements. Both deposition modes yield films with low surface roughness, and AFM analysis showed no topographical features indicative of columnar-and-void structures. The films exhibited high optical reflectivity and stable transmittance and reflectance across the visible spectrum. The electric resistivity could be measured even at single nanometer thickness, emphasizing the metallic character of the films and approaching the bulk titanium value at higher film thicknesses. The low power regime of magnetron sputter deposition not only offers the possibility of studying the development of physical characteristics during the growth of ultra-thin films but also provides the advantage of extremely low heat development and no evident mechanical stress on the substrate during the coating process. These results outline a path for low-power DC sputtering as a reliable approach for studying the evolution of functional properties in ultra-thin films and for the gentle fabrication of coatings where thermal stress must be avoided, making the method compatible with temperature-sensitive applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

17 pages, 6481 KiB  
Article
Enhanced Antimicrobial and Biomedical Properties of Fe-Based Bulk Metallic Glasses Through Ag Addition
by Long Jiang, Xueru Fan, Qiang Li, Xin Li, Tao Jiang and Qin Wei
Inorganics 2025, 13(4), 105; https://doi.org/10.3390/inorganics13040105 - 28 Mar 2025
Cited by 1 | Viewed by 574
Abstract
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots [...] Read more.
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots were synthesized by the induction melting technique and industrial-grade raw materials, the master alloy ingots were prepared as bulk metallic glasses (referred to as Ag0, Ag1, Ag2, and Ag3) by the water-cooled copper-mold suction casting technique, and their glass-forming ability, corrosion resistance, biocompatibility, and antimicrobial properties were systematically investigated. The results indicate that the glass forming ability (GFA) decreased with increasing Ag content, reducing the critical diameter for fully amorphous formation from 2.0 mm for Ag0 to 1.0 mm for Ag3. Electrochemical tests in Hank’s solution revealed the superior corrosion resistance of the Fe-based BMGs as compared with conventional 316 L stainless steel (316L SS) and Ti6Al4V alloy (TC4), with Ag3 demonstrating the lowest corrosion current density and the most stable passivation. Biocompatibility assessments, including fibroblast cell viability and adhesion tests, showed enhanced cellular activity and morphology on Fe-based BMG surfaces as compared with 316L SS and TC4, with minimal harmful ion release. Antimicrobial tests against E. coli and S. aureus revealed significantly improved performance with the Ag addition, achieving bacterial inhibition rates of up to 87.5% and 86.7%, respectively, attributed to Ag+-induced reactive oxygen species (ROS) production. With their excellent corrosion resistance, biocompatibility, and antimicrobial activity, the present Ag-containing Fe-based BMGs, particularly Ag3, are promising candidates for next-generation biomedical implants. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

14 pages, 4243 KiB  
Article
Shear Band-Induced Internal Surface Structures in a Vitreloy Bulk Metallic Glass Deformed by High-Pressure Torsion
by Zsolt Kovács, Talaye Arjmandabasi, Gábor Erdei, Erhard Schafler and Ádám Révész
Materials 2025, 18(5), 1096; https://doi.org/10.3390/ma18051096 - 28 Feb 2025
Viewed by 527
Abstract
In the present investigation, high stability Vitreloy Zr44Ti11Cu10Ni10Be25 bulk metallic glass has been subjected to severe shear deformation by high-pressure torsion for 0.1 revolutions under an applied pressure of 4 and 8 GPa. The [...] Read more.
In the present investigation, high stability Vitreloy Zr44Ti11Cu10Ni10Be25 bulk metallic glass has been subjected to severe shear deformation by high-pressure torsion for 0.1 revolutions under an applied pressure of 4 and 8 GPa. The fully glassy nature of the as-cast glass has been confirmed by X-ray powder diffraction and differential scanning calorimetry. Deformation-induced surface features on an internal plane of the deformed disk-shaped specimens were studied in detail at the macroscopic level by optical reconstruction method and at microscopic scales by white-light optical profilometry. Shear and compressive strain components were measured based on surface changes and it was determined that compressive strain gradient with 0.2–0.4 strain change builds up toward the disk edge, while only part of the nominal shear deformation occurs in the disk interior. The effect of strain localization in the Vitreloy bulk metallic glasses has been quantified by a surface distortion model based on simple shear. The model was then validated experimentally by the reconstructed z-profiles. Full article
Show Figures

Figure 1

13 pages, 5304 KiB  
Article
Effect of Ag and Ti Addition on the Deformation and Tribological Behavior of Zr-Co-Al Bulk Metallic Glass
by Siva Shankar Alla, Mohammad Eskandari, Shristy Jha, Ziyu Pei, S. Vincent, Wook Ha Ryu, Eun Soo Park and Sundeep Mukherjee
Metals 2025, 15(2), 213; https://doi.org/10.3390/met15020213 - 18 Feb 2025
Viewed by 815
Abstract
The effects of a small addition of Ag and Ti on the thermal stability, mechanical properties, and tribological behavior of Zr-Co-Al bulk metallic glass (BMG) were investigated. A 5 at.% addition of Ag and Ti to the Zr-Co-Al base alloy improved the thermal [...] Read more.
The effects of a small addition of Ag and Ti on the thermal stability, mechanical properties, and tribological behavior of Zr-Co-Al bulk metallic glass (BMG) were investigated. A 5 at.% addition of Ag and Ti to the Zr-Co-Al base alloy improved the thermal stability and had no significant effect on the mechanical properties but considerably improved the wear behavior. The coefficient of friction decreased while the wear rate increased with increasing normal loads for all three alloys. Zr-Co-Al-Ti showed the best tribological performance among the studied alloys, with coefficient of friction and wear rate lower by a factor of four compared to Zr-Co-Al BMG. Predominantly oxidative wear was seen for the quaternary Zr-Co-Al-Ag and Zr-Co-Al-Ti BMGs at higher loads in contrast to abrasive and adhesive wear for the ternary Zr-Co-Al base alloy. These results highlight the potential of Ag and Ti micro-alloying for improving the mechanical and tribological properties of Zr-based amorphous alloys. Full article
Show Figures

Figure 1

14 pages, 3743 KiB  
Article
Synthesis of Nanocrystal-Embedded Bulk Metallic Glass Composites by a Combination of Mechanical Alloying and Vacuum Hot Pressing
by Pee-Yew Lee, Pei-Jung Chang, Chin-Yi Chen and Chung-Kwei Lin
Materials 2025, 18(2), 360; https://doi.org/10.3390/ma18020360 - 14 Jan 2025
Cited by 1 | Viewed by 764
Abstract
Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties. Embedding BMG composites with nanocrystals can further extend their applications. In this study, Ta-nanocrystal-embedded metallic glass powder was prepared via the mechanical alloying of [...] Read more.
Bulk metallic glasses (i.e., BMGs) have attracted a lot of research and development interest due to their unique properties. Embedding BMG composites with nanocrystals can further extend their applications. In this study, Ta-nanocrystal-embedded metallic glass powder was prepared via the mechanical alloying of (Cu60Zr30Ti10)91Ta9 composition for 5 h using starting elemental powders. The structural evolution during the mechanical alloying process was examined using X-ray diffraction, scanning electron microscopy, synchrotron extended X-ray absorption fine structure, transmission electron microscopy, and differential scanning calorimetry. The 5 h as-milled powder was then consolidated into a bulk sample using vacuum hot pressing with an applied pressure of 0.72, 0.96, and 1.20 GPa. The effects of the applied pressure during vacuum hot pressing on the structure of the obtained BMG were investigated. The experimental results show that Ta-nanocrystal-embedded metallic glass composite powder was prepared successfully after 5 h of mechanical alloying. The 5 h as-milled composite powder exhibited a large supercooled region of 43 K between the glass transition temperature of 743 K and the crystallization temperature of 786 K. Using vacuum hot pressing at 753 K for 30 mins with an applied pressure, dense nanocrystal-embedded BMG composites were synthesized. The relative density and the crystallization temperature of the BMG composites increased with increasing applied pressure. The nanocrystal-embedded BMG composites prepared at 753 K for 30 mins with an applied pressure of 1.20 GPa exhibited a relative density of 98.3% and a crystallization temperature of 786 K. These nanocrystals were Ta, Cu51Zr14, and other possible Cu–Zr–Ti alloys (e.g., Cu10Zr7) that were randomly dispersed within the glassy matrix. Full article
Show Figures

Graphical abstract

14 pages, 2306 KiB  
Article
Dynamic Evolution of Local Atomic Environments in a Cu66Zr34 Bulk Metallic Glass
by Luan de Moraes Pereira, Marcela Bergamaschi Tercini, Alejandro Zúñiga and Roberto Gomes de Aguiar Veiga
Metals 2024, 14(10), 1139; https://doi.org/10.3390/met14101139 - 6 Oct 2024
Viewed by 1096
Abstract
This study presents a molecular dynamics (MD) investigation of the evolution of local atomic environments (LAEs) in a Cu66Zr34 bulk metallic glass (BMG), both at rest and under constant shear deformation. LAEs were characterized using Voronoi polyhedra analysis. Even in [...] Read more.
This study presents a molecular dynamics (MD) investigation of the evolution of local atomic environments (LAEs) in a Cu66Zr34 bulk metallic glass (BMG), both at rest and under constant shear deformation. LAEs were characterized using Voronoi polyhedra analysis. Even in the absence of external load, LAEs frequently transformed into one another due to short-ranged atomic position fluctuations. However, as expected, each transition from one polyhedra to another was balanced by the reverse transition, thereby preserving the proportions of the different polyhedra. Cu-centered icosahedral LAEs were observed to preferentially transform into and from <1,0,9,3,0>, <0,1,10,2,0>, and <0,2,8,2,0> LAEs. Upon applying pure shear, the simulation box was first deformed in one direction up to a strain of 25% and then in the opposite direction to the same strain level. Shear deformation induced large nonaffine atomic displacements in the directions parallel to the shear, which were concentrated in specific regions of the BMG, forming band-like regions. From the onset, shear deformation led to the destabilization of Cu-centered icosahedral LAEs, as indicated by more frequent transitions to and from other polyhedra. Unlike other Cu-centered LAEs, icosahedra were also found to be more sensitive to yielding. The destruction of Cu-centered icosahedra was primarily a result of net transformations into <1,0,9,3,0> and <0,2,8,2,0> LAEs in the BMG subjected to pure shear, with a minor contribution of transformations involving the <0,1,10,2,0> polyhedra. Full article
Show Figures

Figure 1

21 pages, 3366 KiB  
Review
A Review of the Development of Titanium-Based and Magnesium-Based Metallic Glasses in the Field of Biomedical Materials
by Zeyun Cai, Peng Du, Kun Li, Lina Chen and Guoqiang Xie
Materials 2024, 17(18), 4587; https://doi.org/10.3390/ma17184587 - 19 Sep 2024
Cited by 13 | Viewed by 2406
Abstract
This article reviews the research and development focus of metallic glasses in the field of biomedical applications. Metallic glasses exhibit a short-range ordered and long-range disordered glassy structure at the microscopic level, devoid of structural defects such as dislocations and grain boundaries. Therefore, [...] Read more.
This article reviews the research and development focus of metallic glasses in the field of biomedical applications. Metallic glasses exhibit a short-range ordered and long-range disordered glassy structure at the microscopic level, devoid of structural defects such as dislocations and grain boundaries. Therefore, they possess advantages such as high strength, toughness, and corrosion resistance, combining characteristics of both metals and glasses. This novel alloy system has found applications in the field of biomedical materials due to its excellent comprehensive performance. This review discusses the applications of Ti-based bulk metallic glasses in load-bearing implants such as bone plates and screws for long-term implantation. On the other hand, Mg-based metallic glasses, owing to their degradability, are primarily used in degradable bone nails, plates, and vascular stents. However, metallic glasses as biomaterials still face certain challenges. The Young’s modulus value of Ti-based metallic glasses is higher than that of human bones, leading to stress-shielding effects. Meanwhile, Mg-based metallic glasses degrade too quickly, resulting in the premature loss of mechanical properties and the formation of numerous bubbles, which hinder tissue healing. To address these issues, we propose the following development directions: (1) Introducing porous structures into titanium-based metallic glasses is an important research direction for reducing Young’s modulus; (2) To enhance the bioactivity of implant material surfaces, the surface modification of titanium-based metallic glasses is essential. (3) Developing antibacterial coatings and incorporating antibacterial metal elements into the alloys is essential to maintain the long-term effective antibacterial properties of metallic biomaterials. (4) Corrosion resistance must be further improved through the preparation of composite materials, while ensuring biocompatibility and safety, to achieve controllable degradation rates and degradation modes. Full article
(This article belongs to the Special Issue Liquid Metals: From Fundamentals to Applications)
Show Figures

Figure 1

15 pages, 7673 KiB  
Article
Tensile Deformation Mechanism of an In Situ Formed Ti-Based Bulk Metallic Glass Composites
by Haiyun Wang, Na Chen, Huanwu Cheng, Yangwei Wang and Denghui Zhao
Materials 2024, 17(18), 4486; https://doi.org/10.3390/ma17184486 - 12 Sep 2024
Cited by 3 | Viewed by 984
Abstract
Ti-based bulk metallic glass composites (BMGMCs) containing an in situ formed metastable β phase normally exhibit enhanced plasticity attributed to induced phase transformation or twinning. However, the underlying deformation micromechanism remains controversial. This study investigates a novel deformation mechanism of Ti-based BMGMCs with [...] Read more.
Ti-based bulk metallic glass composites (BMGMCs) containing an in situ formed metastable β phase normally exhibit enhanced plasticity attributed to induced phase transformation or twinning. However, the underlying deformation micromechanism remains controversial. This study investigates a novel deformation mechanism of Ti-based BMGMCs with a composition of Ti42.3Zr28Cu8.3Nb4.7Ni1.7Be15 (at%). The microstructures after tension were analyzed using advanced electron microscopy. The dendrites were homogeneously distributed in the glassy matrix with a volume fraction of 55 ± 2% and a size of 1~5 μm. The BMGMCs deformed in a serrated manner with a fracture strength (σf) of ~1710 MPa and a fracture strain of ~7.1%, accompanying strain hardening. The plastic deformation beyond yielding was achieved by a synergistic action, which includes shear banding, localized amorphization and a localized BCC (β-Ti) to HCP (α-Ti) structural transition. The localized amorphization was caused by high local strain rates during shear band extension from the amorphous matrix to the crystalline reinforcements. The localized structural transition from BCC to HCP resulted from accumulating concentrated stress during deformation. The synergistic action enriches our understanding of the deformation mechanism of Ti-based BMGMCs and also sheds light on material design and performance improvement. Full article
(This article belongs to the Special Issue Synthesis, Sintering, and Characterization of Composites)
Show Figures

Figure 1

16 pages, 3930 KiB  
Review
Crystallization of Metallic Glasses and Supercooled Liquids
by Dmitri V. Louzguine-Luzgin
Materials 2024, 17(14), 3573; https://doi.org/10.3390/ma17143573 - 19 Jul 2024
Cited by 2 | Viewed by 1431
Abstract
This is an overview of recent findings on the structural changes observed upon heating, including crystallization processes in conventional metallic glasses, bulk metallic glasses, and their corresponding supercooled liquids. This paper encapsulates the various crystallization behaviors in metallic glasses by primary, eutectic, and [...] Read more.
This is an overview of recent findings on the structural changes observed upon heating, including crystallization processes in conventional metallic glasses, bulk metallic glasses, and their corresponding supercooled liquids. This paper encapsulates the various crystallization behaviors in metallic glasses by primary, eutectic, and polymorphous mechanisms, highlighting the complexity and diversity of the nucleation and growth mechanisms involved. Mechanically induced room-temperature crystallization is also discussed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 10634 KiB  
Article
Glass—Mill Scale—Plastics Wastes Upcycling for Synthesis of Ferrosilicon Alloy at 1550 °C: Implication for Zero Wastes Practice
by Somyote Kongkarat, Sitichoke Amnuanpol and Praphaphan Wongsawan
Metals 2024, 14(7), 784; https://doi.org/10.3390/met14070784 - 4 Jul 2024
Viewed by 1727
Abstract
Driven by the rising demand for glass, metals, and plastics in industrial and household sectors, there was a substantial increase in waste and by-products generated. This study presents a method for repurposing waste glass, mill scale, and plastics as raw materials for ferrosilicon [...] Read more.
Driven by the rising demand for glass, metals, and plastics in industrial and household sectors, there was a substantial increase in waste and by-products generated. This study presents a method for repurposing waste glass, mill scale, and plastics as raw materials for ferrosilicon alloy production. This process entails reducing SiO2 and Fe2O3 using carbon derived from polystyrene/polypropylene mixtures. The glass, scale, and carbon powders were blended to achieve a C/O molar ratio of 1 (Blends A to F). The thoroughly mixed samples were then shaped into pellets and subsequently heated at 1550 °C in a tube furnace for 60 min. Ferrosilicon was successfully synthesized, with the reaction generating numerous metal droplets along with a slag layer in the crucible. The metallic yield for Blends A to F ranged from 16.65 wt% to 21.39 wt%, with the highest yield observed in Blend D. The bulk metal primarily consists of the FeSi phase, with Blend D exhibiting the highest Si concentration of 13.51 wt% and the highest hardness of 649.55 HV. Mechanism steps for ferrosilicon formation may vary with carbon dissolution rates. This work supports fossil fuel reduction and carbon neutrality, benefiting zero wastes practice and promoting sustainable material processing. Full article
(This article belongs to the Special Issue Metal Recovery and Separation from Scraps and Wastes)
Show Figures

Figure 1

9 pages, 4089 KiB  
Article
Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates
by Shifeng Lin, Lei Zhang, Rushan Lin, Zhengwang Zhu and Haifeng Zhang
Materials 2024, 17(13), 3184; https://doi.org/10.3390/ma17133184 - 28 Jun 2024
Cited by 2 | Viewed by 1377
Abstract
In order to optimize the balance between strength and toughness, a series of multilayered Ti-based bulk metallic glass composites (BMGCs) with varying thicknesses of Ti-rich layers were successfully fabricated. The findings reveal that with an increase in the thickness of the Ti-rich layers, [...] Read more.
In order to optimize the balance between strength and toughness, a series of multilayered Ti-based bulk metallic glass composites (BMGCs) with varying thicknesses of Ti-rich layers were successfully fabricated. The findings reveal that with an increase in the thickness of the Ti-rich layers, both the flexural yield strength and ultimate strength decreased from 2066 MPa and 2717 MPa to 668 MPa and 1163 MPa, respectively. Conversely, there was a noticeable increase in flexural strain. The fracture toughness of these multilayered Ti-based BMGCs decreased as the thickness of the Ti-rich layers increased; nevertheless, it stabilized at approximately 80 MPa·m1/2 when the thickness reached 100 μm. It was observed that a shift in the dominant deformation mode may be accountable for this phenomenon. These noteworthy characteristics suggest that adjusting the thickness of Ti-rich layers in multilayered BMGCs can effectively optimize mechanical performance, shedding light on the manufacturing of novel BMGCs with high performance. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys II)
Show Figures

Figure 1

14 pages, 9079 KiB  
Article
Glass-Forming Ability, Mechanical Properties, and Energetic Characteristics of ZrCuNiAlNbHfY Bulk Metallic Glasses
by Xin Yu, Jianbin Li, Kaichuang Zhang, Huijie Zhang, Hao Wang, Yuanhang Fang, Yusong Ma, Zhenxiong Wang, Xinggao Zhang and Xiqiang Gai
Materials 2024, 17(13), 3136; https://doi.org/10.3390/ma17133136 - 26 Jun 2024
Cited by 1 | Viewed by 2035
Abstract
The effects of partially substituting Al for Cu in Zr59.62Cu18.4-xNi12Al6+xNb3Hf0.78Y0.2 (x = 0, 2, 4, 6, 8 at.%) bulk metallic glasses (BMGs) on their glass-forming ability (GFA), [...] Read more.
The effects of partially substituting Al for Cu in Zr59.62Cu18.4-xNi12Al6+xNb3Hf0.78Y0.2 (x = 0, 2, 4, 6, 8 at.%) bulk metallic glasses (BMGs) on their glass-forming ability (GFA), quasi-static and dynamic mechanical properties, and energy characteristics were investigated. The results showed that an appropriate substitution of Al for Cu can improve GFA and reach a critical casting size up to 10 mm. Additionally, with Al replacement of Cu, the change in the distribution and content of free volume inside the BMGs was the main reason for the quasi-static compression plasticity. In contrast, the BMGs exhibited no plasticity during dynamic compression and high-speed impact, owing to the short loading time and thermal softening effect. In terms of energy characteristics, all alloys have a high combustion enthalpy. And on the surface of the fragments collected from impact, the active elements Zr, Al, and Nb reacted because of the adiabatic temperature rise. Further, x = 4 at.% Zr-based BMG with its superior overall performance could penetrate a 6 mm Q235 plate at a speed of 1038 m/s, combining excellent mechanical properties and energy characteristics. This study contributes to the development of Zr-based BMGs as novel energetic structural materials. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop