Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = bulk metal forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2753 KiB  
Article
Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO
by Huimin Guo, Yuhan Liu and Xin Liu
Molecules 2025, 30(15), 3085; https://doi.org/10.3390/molecules30153085 - 23 Jul 2025
Viewed by 253
Abstract
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in [...] Read more.
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in chemical conversion. Such high reactivity would also result in significant response, such as a band gap or resistance change, to approaching molecules, which can be used for sensing applications. As a proof of concept, the electronic structure and reaction pathways with NO and NO2 of Au(I) fragments dispersed on phosphorene (Pene) were investigated with first-principle-based calculations. Atomic-deposited Au atoms on Pene (Au1-Pene) have hybridized Au states in the bulk band gap of Pene and a decreased band gap of 0.14 eV and would aggregate into clusters. Passivation of the Au hybrid states with -OH and -CH3 forms thermodynamically plausible HO-Au1-Pene and H3C-Au1-Pene and restores the band gap to that of bulk Pene. Inspired by this, HO-Au1-Pene and H3C-Au1-Pene were examined for detection of NO and NO2 that would react with -OH and -CH3, and the resulting decrease of band gap back to that of Au1-Pene would be measurable. HO-Au1-Pene and H3C-Au1-Pene are highly sensitive to NO and NO2, and their calculated theoretical sensitivities are all 99.99%. The reaction of NO2 with HO-Au1-Pene is endothermic, making the dissociation of product HNO3 more plausible, while the barriers for the reaction of CH3-Au1-Pene with NO and NO2 are too high for spontaneous detection. Therefore, HO-Au1-Pene is not eligible for NO2 sensing and CH3-Au1-Pene is not eligible for NO and NO2 sensing. The calculated energy barrier for the reaction of HO-Au-Pene with NO is 0.36 eV, and the reaction is about thermal neutral, suggesting HO-Au-Pene is highly sensitive for NO sensing and the reaction for NO detection is spontaneous. This work highlights the potential superior sensing performance of transition-metal fragments and their potential for next-generation sensing applications. Full article
Show Figures

Figure 1

14 pages, 1452 KiB  
Review
Recent Advances in Liquid Metal-Based Stretchable and Conductive Composites for Wearable Sensor Applications
by Boo Young Kim, Wan Yusmawati Wan Yusoff, Paolo Matteini, Peter Baumli and Byungil Hwang
Biosensors 2025, 15(7), 466; https://doi.org/10.3390/bios15070466 - 19 Jul 2025
Viewed by 509
Abstract
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. [...] Read more.
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. To overcome these limitations, liquid metal particles (LMPs) encapsulated by native oxide shells have gained attention as versatile and stable fillers for stretchable and conductive composites. Recent advances have focused on the development of LM-based hybrid composites that combine LMPs with metal, carbon, or polymeric fillers. These systems offer enhanced electrical and mechanical properties and can form conductive networks without the need for additional sintering processes. They also impart composites with multiple functions such as self-healing, electromagnetic interference shielding, and recyclability. Hence, the present review summarizes the fabrication methods and functional properties of LM-based composites, with a particular focus on their applications in wearable sensing. In addition, recent developments in the use of LM composites for physical motion monitoring (e.g., strain and pressure sensing) and electrophysiological signal recording (e.g., EMG and ECG) are presented, and the key challenges and opportunities for next-generation wearable platforms are discussed. Full article
(This article belongs to the Special Issue The Application of Biomaterials in Electronics and Biosensors)
Show Figures

Figure 1

25 pages, 2929 KiB  
Article
Modified Water-Dispersion Compositions Based on Synthesized Dispersions and Hollow Glass Microspheres with Improved Protective Characteristics
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Ruslan E. Nurlybayev, Zaure N. Altayeva, Yelzhan S. Orynbekov, Axaya S. Yestemessova, Aktota A. Murzagulova, Alinur A. Iskakov, Aidos A. Joldassov and Zhanar O. Zhumadilova
Coatings 2025, 15(7), 840; https://doi.org/10.3390/coatings15070840 - 18 Jul 2025
Viewed by 381
Abstract
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics [...] Read more.
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics proves to be effective. This article examines the development of a paint-and-coating composition using hollow glass microspheres and modified diatomite as finely dispersed fillers. The influence of technological factors on the properties of coating materials based on a synthesized acrylic dispersion and fillers—such as modified diatomite and hollow glass microspheres ranging from 20 to 100 μm in size with a bulk density of 0.107–0.252 g/cm3—is analyzed. The optimal formulation of the coating materials was determined to ensure the required coating quality. Experimental results demonstrate the improved strength and hardness of the coating due to the use of acrylic dispersion obtained through an emulsifier-free method and modifiers in the form of finely dispersed fillers. It has been established that the resulting samples also exhibit high adhesion to mineral and metallic substrates, along with excellent corrosion resistance. Moreover, the incorporation of acrylic dispersion contributes to increased elasticity of the coating, resulting in improved resistance to washing and abrasion. The developed protective material can be applied to a variety of surfaces, including walls, ceilings, and roofs of buildings and structures, pipelines, and many other applications. Thus, modified water-dispersion compositions based on synthesized acrylic dispersion showed the following results: resistance to sticking—5, which is the best; chemical resistance and gloss level with standard single-phase acrylic dispersion—no destruction or change in gloss. The adhesion of coatings cured under natural conditions and under the influence of UV radiation was 1 point. The developed formulations for obtaining water-dispersion paint and varnish compositions based on synthesized polymer dispersions, activated diatomite, and hollow glass microspheres, meet all the regulatory requirements for paint and varnish materials in terms of performance, and in terms of economic indicators, the cost of 1 kg of paint is 30% lower than the standard. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 1266 KiB  
Article
Machine Learning-Driven Prediction of Glass-Forming Ability in Fe-Based Bulk Metallic Glasses Using Thermophysical Features and Data Augmentation
by Renato Dario Bashualdo Bobadilla, Marcello Baricco and Mauro Palumbo
Metals 2025, 15(7), 763; https://doi.org/10.3390/met15070763 - 7 Jul 2025
Viewed by 322
Abstract
The identification of suitable alloy compositions for the formation of bulk metallic glasses (BMGs) is a key challenge in materials science. In this study, we developed machine learning (ML) models to predict the critical casting diameter (Dmax) of [...] Read more.
The identification of suitable alloy compositions for the formation of bulk metallic glasses (BMGs) is a key challenge in materials science. In this study, we developed machine learning (ML) models to predict the critical casting diameter (Dmax) of Fe-based BMGs, enabling rapid assessment of glass-forming ability (GFA) using composition-based and calculated thermophysical features. Three datasets were constructed: one based on alloy molar fractions, one using thermophysical quantities calculated via the CALPHAD method, and another utilizing Magpie-derived features. The performance of various ML models was evaluated, including support vector machines (SVM), XGBoost, and ensemble methods. Models trained on thermophysical features outperformed those using only molar fractions, with XGBoost and SVM models achieving test R2 scores of up to 0.63 and 0.60, respectively. Magpie features yielded similar results but required a larger feature set. To enhance predictive accuracy, we explored data augmentation using the PADRE method and a modified version (PADRE-2). While PADRE-2 demonstrated slight improvements and reduced data redundancy, the overall performance gains were limited. The best-performing model was an ensemble combining SVM and XGBoost models trained on thermophysical and Magpie features, achieving an R2 score of 0.69 and MAE of 0.69, comparable to published results obtained from larger datasets. However, predictions for high Dmax values remain challenging, highlighting the need for further refinement. This study underscores the potential of leveraging thermophysical features and advanced ML techniques for GFA prediction and the design of new Fe-based BMGs. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

26 pages, 8710 KiB  
Article
MOFs—Combining Fully Synthetic Injectable Hydrogel Scaffolds Exhibiting Higher Skeletal Muscle Regenerative Efficiency than Matrigel
by Sobuj Shahidul Islam, Tatsuya Dode, Soma Kawashima, Myu Fukuoka, Takaaki Tsuruoka and Koji Nagahama
Gels 2025, 11(7), 514; https://doi.org/10.3390/gels11070514 - 2 Jul 2025
Viewed by 405
Abstract
Due to its sarcoma-derived origin and the associated carcinogenic risks, as well as its lack of tissue-specific extracellular matrix biochemical cues, the use of the injectable gel scaffold Matrigel is generally restricted to research applications. Therefore, the development of new fully synthetic injectable [...] Read more.
Due to its sarcoma-derived origin and the associated carcinogenic risks, as well as its lack of tissue-specific extracellular matrix biochemical cues, the use of the injectable gel scaffold Matrigel is generally restricted to research applications. Therefore, the development of new fully synthetic injectable gel scaffolds that exhibit performance comparable to Matrigel is a high priority. In this study, we developed a novel fully synthetic injectable gel scaffold by combining a biodegradable PLGA-PEG-PLGA copolymer, clay nanoparticle LAPONITE®, and L-arginine-loaded metal–organic frameworks (NU-1000) at the nano level. An aqueous solution of the developed hybrid scaffold (PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000) exhibited rapid sol–gel transition at body temperature following simple injection and formed a continuous bulk-sized gel, demonstrating good injectability. Long-term sustained slow release of L-arginine from the resultant gels can be achieved because NU-1000 is a suitable reservoir for L-arginine. PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000 hybrid gels exhibited good compatibility with and promoted the growth of human skeletal muscle satellite cells. Importantly, in vivo experiments using skeletal muscle injury model mice demonstrated that the tissue regeneration efficiency of PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000 gels is higher than that of Matrigel. Specifically, we judged the higher tissue regeneration efficacy of our gels by histological analysis, including MYH3 immunofluorescent staining, H&E staining, and Masson’s trichrome staining. Taken together, these data suggest that novel hybrid hydrogels could serve as injectable hydrogel scaffolds for in vivo tissue engineering and ultimately replace Matrigel. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

18 pages, 2891 KiB  
Article
Size Effects on Process-Induced Porosity in Ti6Al4V Thin Struts Additively Manufactured by Laser Powder-Bed Fusion
by Nismath Valiyakath Vadakkan Habeeb and Kevin Chou
J. Manuf. Mater. Process. 2025, 9(7), 226; https://doi.org/10.3390/jmmp9070226 - 2 Jul 2025
Viewed by 618
Abstract
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan [...] Read more.
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan lengths, affecting the melt pool behavior between transient and quasi-steady states. This study investigates the keyhole porosity in Ti6Al4V thin struts fabricated by L-PBF, incorporating a range of strut sizes, along with various levels of linear energy densities. Micro-scaled computed tomography and image analysis were employed for porosity measurements and evaluations. Generally, keyhole porosity lessens with decreasing energy density, though with varying patterns across a higher energy density range. Keyhole porosity in struts predictably becomes severe at high laser powers and/or low scan speeds. However, a major finding reveals that the porosity is reduced with decreasing strut size (if less than 1.25 mm diameter), plausibly because the keyhole formed has not reached a stable state to produce pores in a permanent way. This implies that a higher linear energy density, greater than commonly formulated in making bulk components, could be utilized in making small-scale features to ensure not only full melting but also minimum keyhole porosity. Full article
Show Figures

Figure 1

11 pages, 4092 KiB  
Article
Investigation of In Situ and Ex Situ Passivation of Pyrophoric Uranium–Niobium Alloy Powder
by Evan M. Clarke, Hunter B. Henderson, Eric S. Elton, Tian T. Li, Logan D. Winston, Isabel R. Crystal, Olivia G. Long, Sharee L. Harris, Ryan L. Stillwell, Jason R. Jeffries, Joshua D. Kuntz and Kevin Huang
Appl. Sci. 2025, 15(12), 6431; https://doi.org/10.3390/app15126431 - 7 Jun 2025
Viewed by 636
Abstract
This work evaluates the effectiveness of in situ and ex situ passivation methods for mitigating the pyrophoricity of uranium–6 wt.% niobium spherical powders produced via the hydride–dehydride process coupled with plasma spheroidization. Oxide layer thickness was characterized using STEM/EDX, and pyrophoricity was assessed [...] Read more.
This work evaluates the effectiveness of in situ and ex situ passivation methods for mitigating the pyrophoricity of uranium–6 wt.% niobium spherical powders produced via the hydride–dehydride process coupled with plasma spheroidization. Oxide layer thickness was characterized using STEM/EDX, and pyrophoricity was assessed by a UN-recommended test method, which involves directly dropping the powders in the air. In situ passivation, performed by introducing flowing oxygen during spheroidization, produced oxide layers ranging from tens to hundreds of nanometers but resulted in inconsistent pyrophoricity mitigation at lower oxygen flow rates. Ex situ passivation, achieved by slow oxygen exposure over several months, formed uniform oxide layers of approximately 20 nm and consistently mitigated pyrophoricity. Despite requiring higher bulk oxygen content, in situ passivation enables faster processing and control of oxygen, while ex situ passivation achieves superior oxide uniformity with lower oxygen incorporation. These findings highlight the trade-offs between passivation methods and provide a foundation for improving the safety and scalability of reactive metal powder production. Full article
Show Figures

Figure 1

20 pages, 31391 KiB  
Article
Oxide Behavior During Laser Surface Melting
by Tomio Ohtsuki and Petrus Christiaan Pistorius
Metals 2025, 15(6), 627; https://doi.org/10.3390/met15060627 - 31 May 2025
Cited by 1 | Viewed by 487
Abstract
Parts fabricated by laser powder bed fusion (LPBF) contain oxide inclusions, which can be detrimental to fatigue resistance. Under typical LPBF conditions, the atmosphere contains enough oxygen to oxidize reactive elements such as aluminum and titanium, forming oxides in the parts. In this [...] Read more.
Parts fabricated by laser powder bed fusion (LPBF) contain oxide inclusions, which can be detrimental to fatigue resistance. Under typical LPBF conditions, the atmosphere contains enough oxygen to oxidize reactive elements such as aluminum and titanium, forming oxides in the parts. In this work, mechanisms of oxide formation and oxide alteration were studied by laser-remelting the surfaces of bulk specimens of IN718 and AlSi10Mg, without the addition of metal powder. Calculations based on the mass transfer of oxygen to the melt pool surface indicated that direct oxidation of the melt pool did not play a major role. Rather, both the oxidation of hot spatter and reworking of the pre-existing oxide affected the concentration and morphology of oxides on the metal surface. Full article
(This article belongs to the Special Issue Laser Processing Technology for Metals)
Show Figures

Graphical abstract

11 pages, 6421 KiB  
Article
One-Pot Synthesis and Immobilization of Gold Nanoparticles Using Peptidyl Microbeads
by Shuhei Yoshida, Koki Yoshida, Taichi Isozaki, Maho Oura, Makoto Ozaki, Takaaki Tsuruoka and Kenji Usui
Molecules 2025, 30(8), 1689; https://doi.org/10.3390/molecules30081689 - 10 Apr 2025
Viewed by 550
Abstract
Gold nanoparticles (AuNPs) have surface plasmon resonance (SPR) and catalytic activity that are not found in bulk gold and have been studied in various fields. Among these, immobilization of AuNPs on various solid-phase substrates is known to produce stable catalytic activity and specific [...] Read more.
Gold nanoparticles (AuNPs) have surface plasmon resonance (SPR) and catalytic activity that are not found in bulk gold and have been studied in various fields. Among these, immobilization of AuNPs on various solid-phase substrates is known to produce stable catalytic activity and specific SPRs and research on the immobilization of AuNPs has been conducted actively. However, the conventional method requires the preparation and immobilization of AuNPs in separate processes, making it difficult to prepare immobilized AuNPs in a one-pot process. In this study, we attempted to synthesize and immobilize AuNPs using peptidyl beads, which are microbeads having immobilized a peptide capable of reducing gold ions. We successfully reduced Au ions from 0.5 to 1000 µM of HAuCl4 and immobilized them on peptidyl beads in the form of AuNPs. The immobilized AuNPs have a constant particle size independent of the HAuCl4 concentration. Furthermore, the peptidyl beads with AuNPs have catalytic activity. The quantity of the AuNPs on the peptidyl beads and, subsequently, the catalytic reaction rate of the sample, could be controlled. This study would also be expected to be applied to the immobilization of metallic nanomaterials other than AuNPs by modifying the peptide sequence. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 6481 KiB  
Article
Enhanced Antimicrobial and Biomedical Properties of Fe-Based Bulk Metallic Glasses Through Ag Addition
by Long Jiang, Xueru Fan, Qiang Li, Xin Li, Tao Jiang and Qin Wei
Inorganics 2025, 13(4), 105; https://doi.org/10.3390/inorganics13040105 - 28 Mar 2025
Cited by 1 | Viewed by 574
Abstract
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots [...] Read more.
This study explores the enhancement of antimicrobial and biomedical properties in Fe-based bulk metallic glasses (BMGs) through the addition of Ag. Fe55-xCr20Mo5P13C7Agx (x = 0, 1, 2, 3 at.%) master alloy ingots were synthesized by the induction melting technique and industrial-grade raw materials, the master alloy ingots were prepared as bulk metallic glasses (referred to as Ag0, Ag1, Ag2, and Ag3) by the water-cooled copper-mold suction casting technique, and their glass-forming ability, corrosion resistance, biocompatibility, and antimicrobial properties were systematically investigated. The results indicate that the glass forming ability (GFA) decreased with increasing Ag content, reducing the critical diameter for fully amorphous formation from 2.0 mm for Ag0 to 1.0 mm for Ag3. Electrochemical tests in Hank’s solution revealed the superior corrosion resistance of the Fe-based BMGs as compared with conventional 316 L stainless steel (316L SS) and Ti6Al4V alloy (TC4), with Ag3 demonstrating the lowest corrosion current density and the most stable passivation. Biocompatibility assessments, including fibroblast cell viability and adhesion tests, showed enhanced cellular activity and morphology on Fe-based BMG surfaces as compared with 316L SS and TC4, with minimal harmful ion release. Antimicrobial tests against E. coli and S. aureus revealed significantly improved performance with the Ag addition, achieving bacterial inhibition rates of up to 87.5% and 86.7%, respectively, attributed to Ag+-induced reactive oxygen species (ROS) production. With their excellent corrosion resistance, biocompatibility, and antimicrobial activity, the present Ag-containing Fe-based BMGs, particularly Ag3, are promising candidates for next-generation biomedical implants. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

12 pages, 27680 KiB  
Article
Effect of Ultrasonic Vibration and Average Grain Size on the Deformability of T2 Copper in T-Shaped Micro-Upsetting
by Liangsong Jia, Yang Liu, Rengui Bi and Jian Li
Crystals 2025, 15(4), 307; https://doi.org/10.3390/cryst15040307 - 26 Mar 2025
Viewed by 330
Abstract
Ultrasonic vibration (UV)-assisted forming technology has emerged as a significant advancement in the field of bulk micro-forming. This study presents a comprehensive experimental investigation into the micro-scale deformation behavior of metallic materials and its influence on size effects under UV, with a specific [...] Read more.
Ultrasonic vibration (UV)-assisted forming technology has emerged as a significant advancement in the field of bulk micro-forming. This study presents a comprehensive experimental investigation into the micro-scale deformation behavior of metallic materials and its influence on size effects under UV, with a specific focus on the UV-assisted T-shaped micro-upsetting of T2 copper. Utilizing a custom-designed UV-assisted micro-upsetting apparatus, the flow stress, filling height, and microstructural evolution of T2 copper are systematically examined, considering various grain sizes, die opening angles, and ultrasonic amplitudes. The findings demonstrate that UV significantly mitigates the influence of grain size effects. Notably, the softening effect induced by UV becomes more pronounced with decreasing grain size, concomitantly leading to increased filling height. As the die opening angle expands, the required forming load increases. The enhancement of ultrasonic amplitude not only increases the V-groove filling height but also improves the surface quality. The optimal V-groove filling performance is achieved at an ultrasonic amplitude of 8.01 μm. It is crucial to note that increased ultrasonic amplitude generally improves forming performance, while excessive ultrasonic amplitude may lead to micro-crack formation within the material, thereby decreasing the formability of T2 copper. These results provide valuable insights into the complex interplay between ultrasonic parameters and material response in micro-forming processes, offering significant implications for the optimization of UV-assisted forming technologies in precision manufacturing applications. Full article
Show Figures

Figure 1

27 pages, 11524 KiB  
Article
GPU Ray Tracing for the Analysis of Light Deflection in Inhomogeneous Refractive Index Fields of Hot Tailored Forming Components
by Pascal Kern, Max Brower-Rabinowitsch, Lennart Hinz, Markus Kästner and Eduard Reithmeier
Sensors 2025, 25(6), 1663; https://doi.org/10.3390/s25061663 - 7 Mar 2025
Viewed by 667
Abstract
In hot-forming, integrating in situ quality monitoring is essential for the early detection of thermally induced geometric deviations, especially in the production of hybrid bulk metal parts. Although hybrid components are key to meeting modern technical requirements and saving resources, they exhibit complex [...] Read more.
In hot-forming, integrating in situ quality monitoring is essential for the early detection of thermally induced geometric deviations, especially in the production of hybrid bulk metal parts. Although hybrid components are key to meeting modern technical requirements and saving resources, they exhibit complex shrinkage behavior due to differing thermal expansion coefficients. During forming, these components are exposed to considerable temperature gradients, which result in density fluctuations in the ambient air. These fluctuations create an inhomogeneous refractive index field (IRIF), which significantly affects the accuracy of optical geometry reconstruction systems due to light deflection. This study utilizes existing simulation IRIF data to predict the magnitude and orientation of refractive index fluctuations. A light deflection simulation run on a GPU-accelerated ray tracing framework is used to assess the impact of IRIFs on optical measurements. The results of this simulation are used as a basis for selecting optimized measurement positions, reducing and quantifying uncertainties in surface reconstruction, and, therefore, improving the reliability of quality control in hot-forming applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 2577 KiB  
Article
High-Performance Acoustic Transducers with Exfoliated NbSe2 Nanosheets and Hybrid Force Mechanisms
by Dong-Kwan Lee, Won-Jin Kim, Kun-Woo Nam and Sung-Hoon Park
Materials 2025, 18(4), 763; https://doi.org/10.3390/ma18040763 - 9 Feb 2025
Viewed by 978
Abstract
The transition metal dichalcogenide (TMDC) NbSe2 is a highly conductive and superconducting material with great potential for next-generation electronic and optoelectronic devices. However, its bulk form suffers from reduced charge density and conductivity due to interlayer van der Waals interactions. To address [...] Read more.
The transition metal dichalcogenide (TMDC) NbSe2 is a highly conductive and superconducting material with great potential for next-generation electronic and optoelectronic devices. However, its bulk form suffers from reduced charge density and conductivity due to interlayer van der Waals interactions. To address this, we exfoliated NbSe₂ into nanosheets using lithium-ion intercalation and utilized them as diaphragms in acoustic transducers. Conventional electromagnetic and electrostatic mechanisms have limitations in sound pressure level (SPL) performance at high and low frequencies, respectively. To overcome this, we developed a hybrid force mechanism combining the strengths of both approaches. The NbSe₂ nanosheets were successfully prepared and analyzed, and the NbSe2-based hybrid acoustic transducer (N-HAT) demonstrated significantly improved SPL performance across a wide frequency range. This study offers a novel approach for designing high-performance acoustic devices by harnessing the unique properties of NbSe2. Full article
Show Figures

Figure 1

29 pages, 19276 KiB  
Article
Geochemistry of REE and Other Critical Elements in Deep-Sea Polymetallic Nodules from Interoceanmetal (IOM) Exploration Area in Eastern Part of Clarion–Clipperton Fracture Zone, NE Pacific
by Atanas Hikov, Zlatka Milakovska, Irena Peytcheva, Valcana Stoyanova, Elitsa Stefanova, Tomasz Abramowski, Milen Kadiyski, Silvia Chavdarova, Milen Stavrev and Dimitrina Dimitrova
Minerals 2025, 15(2), 154; https://doi.org/10.3390/min15020154 - 6 Feb 2025
Viewed by 1445
Abstract
Deep-sea Fe-Mn polymetallic nodules formed nowadays at the deep-sea ocean floor were evaluated as promising critical raw materials (CRMs). Here, we report results of polymetallic nodules from the H22_NE block of the Interoceanmetal (IOM) exploration area in the eastern part of the Clarion–Clipperton [...] Read more.
Deep-sea Fe-Mn polymetallic nodules formed nowadays at the deep-sea ocean floor were evaluated as promising critical raw materials (CRMs). Here, we report results of polymetallic nodules from the H22_NE block of the Interoceanmetal (IOM) exploration area in the eastern part of the Clarion–Clipperton Zone (CCZ), NE Pacific Ocean. The polymetallic nodules were studied with X-ray Diffraction, Raman spectroscopy, SEM-EDS, and LA-ICP-MS (bulk nodules and in situ nodule layers). Additionally, we combine geochemical data of polymetallic nodules with the previously reported data of pore waters and sediments from six stations. Our study aims to define the mineral composition and determine the content of CRMs in the polymetallic nodules and to assess the main factors controlling metal deposition and nodule enrichment in some CRMs. Mn content and the Mn/Fe ratio of the nodules classify them mostly as mixed hydrogenetic–diagenetic type. They are also enriched in Ni, Cu, Co, Zn, Mo, W, Li, Tl, and REE. The in situ REE patterns exhibit MREE and HREE enrichment and a variable Ce anomaly that argues for a changing oxic/suboxic environment and periodically changing of diagenetic and hydrogenetic nodule growth. The results of the joint study of the bottom sediments, pore waters, and polymetallic nodules show a complexity of processes that influence the formation of these deposits. The changing oxic and anoxic conditions are well documented in the chemistry of the nodule layers. Probably the most important controlling factors are sedimentation rate, bioturbation, adsorption, desorption, and oxidation. In addition, growth rates, water depth variations, electro-chemical speciation, phosphatization, and the structures of the Fe-Mn adsorbents are also considered. The polymetallic nodule deposits in the IOM contract area are estimated for future mining for Ni, Cu, Co, and Mn resources. They, however, contain additional metals of economic importance, such as REE and other trace elements (referred to as CRMs) that are potential by-products for metal mining. They can significantly increase the economic importance of exploited polymetallic nodules. Full article
Show Figures

Figure 1

18 pages, 2655 KiB  
Article
Solid-State Kinetic Modeling and Experimental Validation of Cu-Fe Bimetallic Catalyst Synthesis and Its Application to Furfural Hydrogenation
by Bárbara Jazmín Lino Galarza, Javier Rivera De la Rosa, Eduardo Maximino Sánchez Cervantes, Carlos J. Lucio-Ortiz, Marco Antonio Garza-Navarro, Carolina Solís Maldonado, Ramón Moreno-Tost, Juan Antonio Cecilia-Buenestado and Antonia Infantes Molina
Technologies 2025, 13(2), 63; https://doi.org/10.3390/technologies13020063 - 3 Feb 2025
Viewed by 2026
Abstract
In this work, combined experimental and modeling techniques were used to understand the bimetallic catalyst formation of Cu and Fe. The first part of this study aims to address this gap by employing analytical techniques such as X-ray diffraction (XRD), thermal and gravimetric [...] Read more.
In this work, combined experimental and modeling techniques were used to understand the bimetallic catalyst formation of Cu and Fe. The first part of this study aims to address this gap by employing analytical techniques such as X-ray diffraction (XRD), thermal and gravimetric (TGA), thermoprogrammed oxidation and reduction. These were used to track the evolution of the different crystalline phases formed for CuFe-Bulk and CuFe/Al2O3 catalysts, as well as hydrogen thermoprogrammed reduction (H2-TPR), to evaluate the reducibility of the oxide phases. Both bulk and supported catalysts were also studied in the hydrogenation of furfural at 170 °C, and 4 MPa of H2. The research provides insights into the thermal events and structural transformations that occur during oxidation and reduction processes, revealing the formation of multiple oxide and metallic phases. The proposed reaction mechanism obtained from XRD analysis and TG-based mathematical modeling provides valuable information about the chemical reaction and the diffusion control mechanisms. Furthermore, a catalytic test using furfural, a biomass-derived molecule, was conducted. This interconnects with the initial section of the study, in which we found that active Cu4Fe sites have superior performance in the CuFe/Al2O3 catalyst in the hydrogenation batch test. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Graphical abstract

Back to TopTop