Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (273)

Search Parameters:
Keywords = building envelope retrofitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1906 KB  
Article
Towards a Positive Energy District: Energy Efficiency Strategies for an Existing University Campus
by Hamed Mohseni Pahlavan and Natasa Nord
Energies 2026, 19(3), 604; https://doi.org/10.3390/en19030604 - 23 Jan 2026
Viewed by 155
Abstract
Developing positive energy districts (PEDs) is a key strategy in the global energy transition to reduce the high energy use and greenhouse gas emissions from the built environment. While the creation of new, energy-efficient urban areas as PEDs is essential, transforming existing districts [...] Read more.
Developing positive energy districts (PEDs) is a key strategy in the global energy transition to reduce the high energy use and greenhouse gas emissions from the built environment. While the creation of new, energy-efficient urban areas as PEDs is essential, transforming existing districts is even more challenging, as they contain buildings of different types, ages, and energy performance levels. This study investigated energy efficiency improvements to facilitate the transition of an existing university campus toward PED operation. The NTNU Gløshaugen campus in Trondheim, Norway, was analyzed using a calibrated multi-building energy model (MBEM) developed using the URBANopt tool. Buildings were clustered into four age-based cohorts to assess the impact of targeted energy conservation measures (ECMs) on different construction periods. In addition, three energy efficiency scenarios were evaluated over the period 2025–2030 to capture the combined effects of new construction and renovation of existing buildings. Results showed that applying envelope improvement ECMs was more effective in older buildings, where lower baseline energy performance allowed for higher relative reductions in energy use. By the end of the simulation period, the specific energy use of the entire campus decreased from 252.2 kWh/m2 in 2025 to 161.7 kWh/m2 under moderate and 85.9 kWh/m2 under deep retrofit conditions. These improvements create more favorable conditions for meeting the remaining energy demand through renewable sources, achieving an overall renewable coverage of 97%, and moving the campus closer to meeting PED targets. Full article
32 pages, 3155 KB  
Article
Experimentally Calibrated Thermal and Economic Optimization of Wall Insulation Systems for Residential Buildings in Cold Regions of Northwest China
by Xue Bai, Dawei Yang and Gehong Zhang
Buildings 2026, 16(3), 470; https://doi.org/10.3390/buildings16030470 - 23 Jan 2026
Viewed by 85
Abstract
Improving the thermal performance of building envelopes is an effective approach for reducing energy consumption and carbon emissions in cold and heating-dominated regions. This study presents an experimentally calibrated thermal–economic optimization of external wall insulation systems for residential buildings in Northwest China, using [...] Read more.
Improving the thermal performance of building envelopes is an effective approach for reducing energy consumption and carbon emissions in cold and heating-dominated regions. This study presents an experimentally calibrated thermal–economic optimization of external wall insulation systems for residential buildings in Northwest China, using Xi’an as a representative cold–dry continental climate. A guarded hot-box apparatus was employed to measure the steady-state thermal transmittance (U-value) of multilayer wall assemblies incorporating expanded polystyrene (EPS), extruded polystyrene (XPS), and rock wool at different insulation thicknesses. The measured U-values were integrated into a dynamic building energy simulation model (DeST-h), and the simulated energy demand was subsequently evaluated through life-cycle cost (LCC) analysis to identify cost-optimal insulation configurations. The results indicate a nonlinear reduction in heating energy demand with increasing insulation thickness, with diminishing marginal returns beyond approximately 50 mm. Among the investigated materials, XPS exhibits the most favorable thermal–economic performance. For the climatic and economic conditions of Xi’an, a 50 mm XPS insulation layer minimizes total life-cycle cost while reducing annual building energy consumption by approximately 23–24% compared with the uninsulated reference case. This experimentally calibrated framework provides practical and policy-relevant guidance for insulation design and retrofit strategies in cold and dry regions. Full article
(This article belongs to the Special Issue Advanced Characterization and Evaluation of Construction Materials)
Show Figures

Figure 1

36 pages, 7011 KB  
Article
BIM-to-BEM Framework for Energy Retrofit in Industrial Buildings: From Simulation Scenarios to Decision Support Dashboards
by Matteo Del Giudice, Angelo Juliano Donato, Maria Adelaide Loffa, Pietro Rando Mazzarino, Lorenzo Bottaccioli, Edoardo Patti and Anna Osello
Sustainability 2026, 18(2), 1023; https://doi.org/10.3390/su18021023 - 19 Jan 2026
Viewed by 152
Abstract
The digital and ecological transition of the industrial sector requires methodological tools that integrate information modelling, performance simulation, and operational decision support. In this context, the present study introduces and tests a semi-automatic BIM-to-BEM framework to optimise human–machine interaction and support critical data [...] Read more.
The digital and ecological transition of the industrial sector requires methodological tools that integrate information modelling, performance simulation, and operational decision support. In this context, the present study introduces and tests a semi-automatic BIM-to-BEM framework to optimise human–machine interaction and support critical data interpretation through Graphical User Interfaces. The objective is to propose and validate a BIM-to-BEM workflow for an existing industrial facility to enable comparative evaluation of energy retrofit scenarios. The information model, developed through an interdisciplinary federated approach and calibrated using parametric procedures, was exported in the gbXML format to generate a dynamic, interoperable energy model. Six simulation scenarios were defined incrementally, including interventions on the building envelope, Heating, Ventilation and Air Conditioning (HVAC) systems, photovoltaic production, and relamping. Results are made accessible through dashboards developed with Business Intelligence tools, allowing direct comparison of different design configurations in terms of thermal loads and indoor environmental stability, highlighting the effectiveness of integrated solutions. For example, the combined interventions reduced heating demand by up to 32% without compromising thermal comfort, while in the relamping scenario alone, the building could achieve an estimated 300 MWh reduction in annual electricity consumption. The proposed workflow serves as a technical foundation for developing an operational and evolving Digital Twin, oriented toward the sustainable governance of building–system interactions. The method proves to be replicable and scalable, offering a practical reference model to support the energy transition of existing industrial environments. Full article
Show Figures

Figure 1

24 pages, 4689 KB  
Article
Intelligent Detection and Energy-Driven Repair of Building Envelope Defects for Improved Thermal and Energy Performance
by Daiwei Luo, Tianchen Zhang, Wuxing Zheng and Qian Nie
Energies 2026, 19(2), 351; https://doi.org/10.3390/en19020351 - 11 Jan 2026
Viewed by 162
Abstract
This study addresses the challenge of rapid identification and assessment of localized damage to building envelopes under resource-constrained conditions—specifically, the absence of specialized inspection equipment—with a particular focus on the detrimental effects of such damage on thermal performance and energy efficiency. An efficient [...] Read more.
This study addresses the challenge of rapid identification and assessment of localized damage to building envelopes under resource-constrained conditions—specifically, the absence of specialized inspection equipment—with a particular focus on the detrimental effects of such damage on thermal performance and energy efficiency. An efficient detection methodology tailored to small-scale maintenance scenarios is proposed, leveraging the YOLOv11 object detection architecture to develop an intelligent system capable of recognizing common envelope defects in contemporary residential buildings, including cracks, spalling, and sealant failure. The system prioritizes the detection of anomalies that may induce thermal bridging, reduced airtightness, or insulation degradation. Defects are classified according to severity and their potential impact on thermal behavior, enabling a graded, integrated repair strategy that holistically balances structural safety, thermal restoration, and façade aesthetics. By explicitly incorporating energy performance recovery as a core objective, the proposed approach not only enhances the automation of spatial data processing but also actively supports the green operation and low-carbon retrofitting of existing urban building stock. Characterized by low cost, high efficiency, and ease of deployment, this method offers a practical and scalable technical pathway for the intelligent diagnosis of thermal anomalies and the enhancement of building energy performance. It aligns with the principles of high-quality architectural development and sustainable building governance, while concretely advancing operational energy reduction in the built environment and contributing meaningfully to energy conservation goals. Full article
Show Figures

Figure 1

19 pages, 3367 KB  
Article
Low-Emissivity Cavity Treatment for Enhancing Thermal Performance of Existing Window Frames
by Maohua Xiong, Jihoon Kweon and Soobong Kim
Sustainability 2026, 18(1), 525; https://doi.org/10.3390/su18010525 - 5 Jan 2026
Viewed by 257
Abstract
Windows contribute 40–50% of envelope heat loss despite occupying only 1/8–1/6 of the surface area. Conventional frame retrofits rely on geometry optimization or cavity insulation yet remain limited by cost and invasiveness. This study introduces electrochemical polishing to reduce cavity surface emissivity of [...] Read more.
Windows contribute 40–50% of envelope heat loss despite occupying only 1/8–1/6 of the surface area. Conventional frame retrofits rely on geometry optimization or cavity insulation yet remain limited by cost and invasiveness. This study introduces electrochemical polishing to reduce cavity surface emissivity of multi-cavity broken-bridge aluminum window frames to suppress radiative heat transfer, offering a non-invasive, low-cost retrofit strategy for existing building windows. Using a typical 75-series casement window, finite element analysis (MQMC) reveals that reducing cavity surface emissivity from 0.9 to 0.05 lowers frame U-values by 12.39–30.38% and whole-window U-values by 2.72–9.69%, with full-cavity treatment outperforming insulating-cavity-only by an average of 0.29 W/(m2·K). EnergyPlus simulations across multiple climate zones show 0.74–2.26% annual heating and cooling energy savings (with max reduction of 8.99 MJ/m2·yr) in severe cold and cold regions (e.g., Harbin, Beijing), but 1.25–3.04% penalties in mild and hot-summer zones due to impeded nighttime heat rejection. At an incremental cost of 62.5 CNY/window (6.6–7.4% increase), the static payback period is 4.1 years in Harbin. The approach mitigates thermal bridging more effectively than foam-filled frames in whole-window performance. This scalable, minimal-intervention technology aligns with low-carbon retrofit imperatives for existing aging windows, particularly in heating-dominated climates. Full article
Show Figures

Figure 1

21 pages, 2619 KB  
Article
Energy Consumption Analysis and Energy-Saving Renovation Research on the Building Envelope Structure of Existing Thermal Power Plants in China’s Hot Summer and Cold Winter Regions
by Li Qin, Ji Qi, Yunpeng Qi and Wei Shi
Buildings 2026, 16(1), 169; https://doi.org/10.3390/buildings16010169 - 30 Dec 2025
Viewed by 329
Abstract
This study focuses on the operational energy consumption of existing thermal power plant buildings in China’s hot-summer, cold-winter regions. Unlike conventional civil buildings, thermal power plant structures feature intense internal heat sources, large spatial dimensions, specialized ventilation requirements, and year-round industrial waste heat. [...] Read more.
This study focuses on the operational energy consumption of existing thermal power plant buildings in China’s hot-summer, cold-winter regions. Unlike conventional civil buildings, thermal power plant structures feature intense internal heat sources, large spatial dimensions, specialized ventilation requirements, and year-round industrial waste heat. Consequently, the energy consumption characteristics and energy-saving logic of their building envelopes remain understudied. This paper innovatively employs a combined experimental approach of field monitoring and energy consumption simulation to quantify the actual thermal performance of building envelopes (particularly exterior walls, doors, and windows) under current operating conditions, identifying key components for energy-saving retrofits of the main plant building envelope. Due to the fact that most thermal power plants were designed relatively early, their envelope structures generally have problems such as poor insulation performance and insufficient air tightness, resulting in severe energy loss under extreme weather conditions. An energy consumption simulation model was established using GBSEARE software. By focusing on heat transfer coefficients of exterior walls and windows as key parameters, a design scheme for energy-saving retrofits of building envelopes in thermal power plants located in hot-summer, cold-winter regions was proposed. The results show that there is a temperature gradient along the height direction inside the main plant, and the personnel activity area in the middle activity level of the steam engine room is the most unfavorable area of the thermal environment of the steam engine room. The heat transfer coefficient of the envelope structure does not meet the current code requirements. The over-standard rate of the exterior walls is 414.55%, and that of the exterior windows is 177.06%. An energy-saving renovation plan is proposed by adopting a composite color compression panel for the external wall, selecting 50 mm flame-retardant polystyrene EPS foam board for the heat preservation layer, adopting 6 high-transmittance Low-E + 12 air + 6 plastic double-cavity for the external windows, and adding movable shutter sunshade. The energy-saving rate of the building reached 55.32% after the renovation. This study provides guidance for energy-efficient retrofitting of existing thermal power plants and for establishing energy-efficient design standards and specifications for future new power plant construction. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

36 pages, 2864 KB  
Article
Energy Savings, Carbon-Equivalent Abatement Cost, and Payback of Residential Window Retrofits: Evidence from a Heating-Dominated Mid-Latitude City—Gyeonggi Province, South Korea
by YeEun Jang, Jeongeun Park, Yeweon Kim and Ki-Hyung Yu
Buildings 2026, 16(1), 71; https://doi.org/10.3390/buildings16010071 - 24 Dec 2025
Viewed by 565
Abstract
This study presents an integrated ex-post evaluation of a municipal window-retrofit program in Goyang, Republic of Korea (heating-dominated, Dwa). Using field surveys and pre- and post-utility bills for 36 dwellings, mainly pre-2000 low-rise reinforced-concrete buildings, we normalize climate with HDD and CDD and [...] Read more.
This study presents an integrated ex-post evaluation of a municipal window-retrofit program in Goyang, Republic of Korea (heating-dominated, Dwa). Using field surveys and pre- and post-utility bills for 36 dwellings, mainly pre-2000 low-rise reinforced-concrete buildings, we normalize climate with HDD and CDD and prices with CPI-deflated tariffs to isolate the intrinsic effect of window replacement. Area-normalized indicators (e, η, DPB, NPV, AC) were computed. Average annual savings were 30.2 kWh per m2 per year (η ≈ 16 percent), consisting of 10.6 kWh per m2 per year of gas and 19.6 kWh per m2 per year of electricity (n = 36). The median discounted payback was 7.0 years. Under a 50 percent subsidy, about 80 percent of projects recovered private investment within 15 years and showed positive NPV with a median of about USD 4944. The electricity-tariff multiplier had the largest influence on cash flows and payback. The median abatement cost was about USD 352 per tCO2-eq. A portfolio view indicates that prioritizing low-cost cases maximizes total abatement, and that higher-cost cases merit design or cost review. Using the first post-retrofit year 2023, portfolio abatement is about 623 tCO2-eq per year. The framework jointly normalizes climate and price effects and yields policy-relevant estimates for heating-dominated contexts. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 8556 KB  
Review
A Review of Recent Advances in the Application of Cereal Straw for Decarbonization of Construction Materials and Applications
by Nathalie Santamaría-Herrera, Jorge Otaegi and Iñigo Rodríguez-Vidal
Sustainability 2026, 18(1), 65; https://doi.org/10.3390/su18010065 - 20 Dec 2025
Viewed by 484
Abstract
The construction sector accounts for 39% of GHG emissions, being the main contributor to embodied carbon emissions of building materials, and operational energy consumption for indoor thermal comfort. Cereal straw, an agricultural by-product, is emerging as a low-carbon alternative due to its thermal [...] Read more.
The construction sector accounts for 39% of GHG emissions, being the main contributor to embodied carbon emissions of building materials, and operational energy consumption for indoor thermal comfort. Cereal straw, an agricultural by-product, is emerging as a low-carbon alternative due to its thermal performance and negative embodied carbon. This paper aims to review recent advances of cereal straw as a building material for decarbonization of construction, analyzing its thermal properties, embodied carbon, and large-scale applications. A literature review focused on European-certified straw-based materials, grouped into four categories: straw bales, blown-in insulation, modular systems, and bio-composites. Twelve Product Environmental Declarations (EPDs) and technical specifications were examined to evaluate manufacturing processes, material properties, and Global Warming Potential (GWP) for cradle-to-gate stages (A1–A3), as well as their use in large-scale projects over the past five years. Thermal conductivity ranged from 0.043 to 0.068 W/m·K, while embodied carbon varied between –101.2 and –146.5 kg CO2 eq/m3. Straw bales remain prevalent in small-scale housing, blown-in insulation supports retrofitting, and modular systems offer the most balanced performance, enabling high-rise or extensive built surfaces. The study concludes that straw products have the potential to decarbonize opaque elements of the envelope, reducing operational and embodied energy of buildings. Full article
(This article belongs to the Special Issue Advances in Green and Sustainable Construction Materials)
Show Figures

Figure 1

37 pages, 8649 KB  
Review
A Systems Approach to Thermal Bridging for a Net Zero Housing Retrofit: United Kingdom’s Perspective
by Musaddaq Azeem, Nesrine Amor, Muhammad Kashif, Waqas Ali Tabassum and Muhammad Tayyab Noman
Sustainability 2025, 17(24), 11325; https://doi.org/10.3390/su172411325 - 17 Dec 2025
Viewed by 455
Abstract
The United Kingdom’s (UK) retrofit revolution is at a crossroads and the efficacy of retrofit interventions is not solely a function of insulation thickness. To truly slash emissions and lift households out of fuel poverty, we must solve the persistent problem of thermal [...] Read more.
The United Kingdom’s (UK) retrofit revolution is at a crossroads and the efficacy of retrofit interventions is not solely a function of insulation thickness. To truly slash emissions and lift households out of fuel poverty, we must solve the persistent problem of thermal bridging (TB), i.e., the hidden flaws that cause heat to escape, dampness to form, and well-intentioned retrofits to fail. This review moves beyond basic principles to spotlight the emerging tools and transformative strategies to make a difference. We explore the role of advanced modelling techniques, including finite element analysis (FEA), in pinpointing thermal and moisture-related risks, and how emerging materials like vacuum-insulated panels (VIPs) offer high-performance solutions in tight spaces. Crucially, we demonstrate how an integrated fabric-first approach, guided by standards like PAS 2035, is essential to manage moisture, ensure durability, and deliver the comfortable, low-energy homes the UK desperately needs. Therefore, achieving net-zero targets is critically dependent on the systematic upgrade of the building envelope, with the mitigation of TB representing a fundamental prerequisite. The EnerPHit approach applies a rigorous fabric-first methodology to eliminate TB and significantly reduce the building’s overall heat demand. This reduction enables the use of a compact heating system that can be efficiently powered by renewable energy sources, such as solar photovoltaic (PV). Moreover, this review employs a systematic literature synthesis to critically evaluate the integration of TB mitigation within the PAS 2035 framework, identifying key technical interdependencies and research gaps in whole-house retrofit methodology. This article provides a comprehensive review of established FEA modelling methodologies, rather than presenting results from original simulations. Full article
Show Figures

Figure 1

30 pages, 10487 KB  
Article
Comparative Sensitivity Analysis of Cooling Energy Factors in West- and South-Facing Offices in Chinese Cold Regions
by Hua Zhang, Xueyi Wang, Kunming Li and Boxin Sun
Buildings 2025, 15(24), 4545; https://doi.org/10.3390/buildings15244545 - 16 Dec 2025
Viewed by 297
Abstract
This study selects typical existing office buildings in Zhengzhou, a region with a cold climate, as the research object and conducts a comparative analysis of the influencing factors of cooling energy consumption in west-facing and south-facing office spaces. A multi-stage sensitivity analysis methodology [...] Read more.
This study selects typical existing office buildings in Zhengzhou, a region with a cold climate, as the research object and conducts a comparative analysis of the influencing factors of cooling energy consumption in west-facing and south-facing office spaces. A multi-stage sensitivity analysis methodology integrating global and local sensitivity methods is systematically applied to evaluate 13 key parameters across four categories: building morphology, envelope structure, shading measures, and active design strategies. Five parameters are consistently ranked among the top seven most sensitive parameters for both west- and south-facing orientations: the infiltration rate, the window-to-wall ratio, the cooling setpoint temperature, the number of shading boards, and building width. Two parameters exhibit orientation-specific differences, namely lighting power density and the external wall heat transfer coefficient in west-facing spaces, whereas shading board width and the external window heat transfer coefficient play a greater role in south-facing spaces. Local sensitivity analysis further reveals that within the parameter variation range, the five parameters with higher energy-saving rates for both orientations are air tightness, the window-to-wall ratio, the cooling setpoint temperature, the number of horizontal shading boards, and horizontal shading board width. By increasing the cooling setpoint temperature, south-facing spaces can achieve an energy-saving rate of 25.32%, which is significantly higher than the 21.77% achieved by west-facing spaces. Horizontal shading board width exhibits the most pronounced orientation difference, with south-facing spaces achieving an energy-saving rate of 16.69%, while west-facing spaces only reach 2.97%. The research findings offer quantitative scientific evidence for formulating targeted energy-saving retrofit strategies for existing office buildings in cold climate regions, thereby contributing to the meticulous development of building energy efficiency technologies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 5633 KB  
Article
Deep Learning-Supported Panoramic Infrared Framework for Quantitative Diagnosis of Building Envelope Thermal Anomalies
by Bo-Kyoung Koo, Hye-Sun Jin and Jin-Woo Jeong
Buildings 2025, 15(24), 4423; https://doi.org/10.3390/buildings15244423 - 7 Dec 2025
Viewed by 404
Abstract
This study presents a modular diagnostic framework for evaluating thermal degradation in aging building envelopes by integrating infrared thermography, panoramic reconstruction, and deep learning-based semantic segmentation into a unified workflow. The methodology combines image registration, panoramic synthesis, façade component segmentation, and quantitative surface [...] Read more.
This study presents a modular diagnostic framework for evaluating thermal degradation in aging building envelopes by integrating infrared thermography, panoramic reconstruction, and deep learning-based semantic segmentation into a unified workflow. The methodology combines image registration, panoramic synthesis, façade component segmentation, and quantitative surface temperature analysis to provide scalable and reproducible diagnostics. By excluding fenestration zones—where infrared measurements are physically unreliable—the framework focuses on opaque wall regions and window surroundings to ensure physically meaningful evaluation. Field validation was conducted on a multi-story office building constructed in 1996. The diagnostic indicators revealed a mean wall surface temperature of 14.3 °C with a standard deviation of 5.6 °C, and a temperature factor ranging from 0.67 to 0.78 under measured conditions. The vulnerable area ratio reached 9.1% for walls, while window areas showed greater vulnerability at 12.74%, with anomalies concentrated at frame–glass interfaces and perimeter seals. These quantitative results confirmed the framework’s ability to detect thermal irregularities and visualize localized anomalies. More importantly, the contribution of this study lies in establishing a systematic and extensible diagnostic pipeline that advances building envelope analysis, supporting large-scale energy audits, retrofit prioritization, and sustainable building management. Full article
Show Figures

Figure 1

23 pages, 8875 KB  
Article
Climate-Resilient Retrofitting for Enhanced Indoor Comfort in Industrial Workplaces: A Post-Occupancy Evaluation of a Case Study
by Walaa S. E. Ismaeel and Fatma Othman Alamoudy
Climate 2025, 13(12), 243; https://doi.org/10.3390/cli13120243 - 28 Nov 2025
Cited by 1 | Viewed by 707
Abstract
Industrial workplaces, especially in vulnerable, hot, and arid developing countries, face major challenges in maintaining indoor comfort conditions due to the escalating problem of global temperature rise. This study investigates passive scenarios of adaptive retrofitting for a case study carpet and rug industrial [...] Read more.
Industrial workplaces, especially in vulnerable, hot, and arid developing countries, face major challenges in maintaining indoor comfort conditions due to the escalating problem of global temperature rise. This study investigates passive scenarios of adaptive retrofitting for a case study carpet and rug industrial plant in Cairo, Egypt to achieve indoor comfort conditions and energy efficiency. The research method included a Post Occupancy Evaluation (POE) for the operational phase of individual work units through measurements and simulations to investigate indoor thermal, visual, and acoustic comfort conditions as well as air quality concerns. Thus, the study presents a set of recommendations for building unit(s) and collectively for the entire facility by applying integrated application of building envelope enhancements; optimized opening design, thermal wall insulation and high-albedo (reflective) exterior coatings for wall and roof surfaces. Comparing the modified case to the base case scenario shows significant improvements. Thermal comfort achieved a 16% to 33% reduction in discomfort hours during peak summer, primarily through a 33% increase in air flow velocity and better humidity control. Visual comfort indicated improvements in daylight harvesting, with Daylighting Autonomy increasing by 47% to 64% in core areas, improving light uniformity and reducing glare potential by decreasing peak illuminance by approximately 25%. Thus, the combined envelope and system modifications resulted in a 60 to 80% reduction in monthly Energy Use Intensity (EUI). The effectiveness of the mitigation measures using acoustic insulation was demonstrated in reducing sound pollution transferring outdoors, but the high indoor sound levels require further near-source mitigation or specialized acoustic treatment for complete success. Eventually, the research method helps create a mechanism for measuring and controlling indoor comfort conditions, provide an internal baseline or benchmark to which future development can be compared against, and pinpoint areas of improvement. This can act as a pilot project for green solutions to mitigate the problem of climate change in industrial workplaces and pave the way for further collaboration with the industrial sector. Full article
Show Figures

Figure 1

29 pages, 10308 KB  
Article
Comprehensive Energy Retrofit of a 1950s Office Building in Algeria: Toward 2030 Efficiency Goals in Mediterranean Climates
by Amel Limam, Chahrazad Mebarki, Lotfi Derradji, Nicolandrea Calabrese, Marco Morini, Abdelatif Merabtine and Francesca Caffari
Buildings 2025, 15(23), 4247; https://doi.org/10.3390/buildings15234247 - 25 Nov 2025
Viewed by 952
Abstract
Retrofitting conventional buildings is a key strategy for climate change mitigation, as it enhances indoor comfort while reducing energy consumption in countries where old building stocks are a major contributor to energy use and associated emissions. In North African and Mediterranean contexts, deep [...] Read more.
Retrofitting conventional buildings is a key strategy for climate change mitigation, as it enhances indoor comfort while reducing energy consumption in countries where old building stocks are a major contributor to energy use and associated emissions. In North African and Mediterranean contexts, deep energy retrofits for mid-century office buildings remain limited, particularly regarding the practical implementation of solutions adapted to local climatic and economic conditions. This study investigates a deep retrofit of a mid-20th-century office building in Algeria, aiming to assess its alignment with Algeria’s 2030 climate and energy efficiency objectives. A holistic methodology combining an energy audit and dynamic simulation with EnergyPlus has been undertaken to evaluate envelope upgrading, HVAC replacement, and renewable energy supplementation. Retrofit strategies selected were defined as representative of technically feasible and cost-effective solutions for Algerian mid-century office buildings, balancing energy performance improvement and economic viability under local climatic constraints. This study analyzed two retrofit scenarios: one with a combination of envelope improvements, heat pump replacement, and supplementation by photovoltaic solar panels, reaching 41% in terms of electricity savings (≈23 t CO2/year avoided), and the other with the VRF system, reaching 54% in savings (≈30 t CO2/year). Consequently, energy intensity is reduced from the base case by around 41–54%. The study contributes to data-driven retrofitting studies and explores innovative, low-cost strategies that respond to regional climatic challenges. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 3891 KB  
Article
Smart Monitoring for Retrofitted Public Buildings: A Multiscale, Role-Adaptive Framework
by Marina Grigorovitch, Grigor Vlad and Erez Gal
Appl. Sci. 2025, 15(23), 12469; https://doi.org/10.3390/app152312469 - 24 Nov 2025
Viewed by 602
Abstract
This paper presents a multiscale monitoring and management framework designed to enhance energy and indoor environmental performance in retrofitted public schools. The proposed system comprises three layers: (i) a cost-effective sensor network deployed at building, room, and device levels; (ii) a data processing [...] Read more.
This paper presents a multiscale monitoring and management framework designed to enhance energy and indoor environmental performance in retrofitted public schools. The proposed system comprises three layers: (i) a cost-effective sensor network deployed at building, room, and device levels; (ii) a data processing layer supporting redundancy, fault detection, and consistency scoring; and (iii) a role-adaptive interface providing customized dashboards for managers, educators, and students. The framework was deployed in two Mediterranean schools undergoing photovoltaic (PV) integration and envelope rehabilitation. The monitoring layer captures key parameters including temperature, humidity, CO2, PM2.5, occupancy, and circuit-level energy use, enabling multiscale analysis of demand-side behavior and local PV utilization. Data from a full academic year demonstrate a reduction in lighting energy use of up to 22%, classroom-level savings of 10–15%, and an increase in PV self-consumption from 60% to 75%. These improvements were achieved without compromising indoor comfort, as validated by stable environmental conditions aligned with recognized thresholds. The synchronized collection of energy and environmental data allows transparent evaluation of behavioral engagement, operating patterns, and system effectiveness. This research shows that cost-effective, role-adaptive monitoring platforms can support resilience and decarbonization goals in public-sector buildings, particularly where commercial building management systems are financially or technically unfeasible. Full article
Show Figures

Figure 1

17 pages, 2415 KB  
Article
Quantifying Thermal Time Lag Due to PCM Plaster in Model Houses
by Mónika Ferencz, Barna Nagy, Bence Németh, János Gyenis and Tivadar Feczkó
Buildings 2025, 15(22), 4120; https://doi.org/10.3390/buildings15224120 - 15 Nov 2025
Viewed by 621
Abstract
Phase change materials (PCMs) integrated into building envelopes can store and release latent heat, reducing indoor temperature fluctuations and shifting thermal peaks. This study quantifies the time lag and comfort impact of PCM plaster under free-running conditions using two identical, instrumented model houses [...] Read more.
Phase change materials (PCMs) integrated into building envelopes can store and release latent heat, reducing indoor temperature fluctuations and shifting thermal peaks. This study quantifies the time lag and comfort impact of PCM plaster under free-running conditions using two identical, instrumented model houses in Bácsalmás, Hungary. One house served as a reference, while the other was retrofitted with interior PCM plaster panels on four walls (51.2 kg paraffin, ≈8.12 MJ latent heat capacity). The temperatures of the walls, indoor air, and outdoor environment were monitored every five minutes for 105 spring/summer days. Daily peak times were extracted using moving-average smoothing, and time lags between exterior and interior wall peaks were computed. The PCM house exhibited roughly double the average lag compared with the reference (≈200 vs. ≈100 min), with lag distributions well described by lognormal fits. Comfort evaluation based on exceeded degree-hours (EDH) relative to the adaptive comfort range (EN 16798-1) revealed that larger peak-time lags correlated with lower overheating. Results confirm that PCM plaster significantly delays and attenuates daily temperature peaks, extends comfort periods, and supports passive strategies such as night ventilation and demand-side load shifting in lightweight buildings. Full article
(This article belongs to the Special Issue Advances in Green Building and Environmental Comfort)
Show Figures

Figure 1

Back to TopTop